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Abstract: Deep learning–based speech recognition applications have made great strides in the past
decade. Deep learning–based systems have evolved to achieve higher accuracy while using simpler
end-to-end architectures, compared to their predecessor hybrid architectures. Most of these state-of-
the-art systems run on backend servers with large amounts of memory and CPU/GPU resources.
The major disadvantage of server-based speech recognition is the lack of privacy and security for user
speech data. Additionally, because of network dependency, this server-based architecture cannot
always be reliable, performant and available. Nevertheless, offline speech recognition on client
devices overcomes these issues. However, resource constraints on smaller edge devices may pose
challenges for achieving state-of-the-art speech recognition results. In this paper, we evaluate the
performance and efficiency of transformer-based speech recognition systems on edge devices. We
evaluate inference performance on two popular edge devices, Raspberry Pi and Nvidia Jetson Nano,
running on CPU and GPU, respectively. We conclude that with PyTorch mobile optimization and
quantization, the models can achieve real-time inference on the Raspberry Pi CPU with a small
degradation to word error rate. On the Jetson Nano GPU, the inference latency is three to five times
better, compared to Raspberry Pi. The word error rate on the edge is still higher, but it is not too far
behind, compared to that on the server inference.

Keywords: ASR; speech-to-text; edge AI; Wav2Vec; transformers; PyTorch

1. Introduction

Automatic speech recognition (ASR) is a process of converting speech signals to text. It
has a large number of real-world use cases, such as dictation, accessibility, voice assistants,
AR/VR applications, captioning of videos, podcasts, searching audio recordings, and
automated answering services, to name a few. On-device ASR makes more sense for many
use cases where an internet connection is not available or cannot be used. Private and
always-available on-device speech recognition can unblock many such applications in
healthcare, automotive, legal and military fields, such as taking patient diagnosis notes,
in-car voice command to initiate phone calls, real-time speech writing, etc.

Deep learning–based speech recognition has made great strides in the past decade [1].
It is a subfield of machine learning which essentially mimics the neural network structure
of the human brain for pattern matching and classification. It typically consists of an input
layer, an output layer and one or more hidden layers. The learning algorithm adjusts
the weights between different layers, using gradient descent and backpropagation until
the required accuracy is met [1,2]. The major reason for its popularity is that it does not
need feature engineering. It autonomously extracts the features based on the patterns in
the training dataset. The dramatic progress of deep learning in the past decade can be
attributed to three main factors [3]: (1) large amounts of transcribed data sets; (2) rapid
increase in GPU processing power; and (3) improvements in machine learning algorithms
and architectures. Computer vision, object detection, speech recognition and other similar
fields have advanced rapidly because of the progress of deep learning.
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The majority of speech recognition systems run in backend servers. Since audio data
need to be sent to the server for transcription, the privacy and security of the speech
cannot be guaranteed. Additionally, because of the reliance on a network connection, the
server-based ASR solution cannot always be reliable, fast and available.

On the other hand, on-device-based speech recognition inherently provides privacy
and security for the user speech data. It is always available and improves the reliability and
latency of the speech recognition by precluding the need for network connectivity [4]. Other
non-obvious benefits of edge inference are energy and battery conservation for on-the-go
products by avoiding Bluetooth/Wi-Fi/LTE connection establishments for data transfers.

Inferencing on edge can be achieved either by running computations on CPU or on
hardware accelerators, such as GPU, DSP or using dedicated neural processing engines.
The benefits and demand for on-device ML is driving modern phones to have dedicated
neural engine or tensor processing units. For example, Apple iOS 15 will support on-device
speech recognition for iPhones with Apple neural engine [5]. The Google Pixel 6 phone
comes equipped with a tensor processing unit to handle on-device ML, including speech
recognition [6]. Though dedicated neural hardwares might become a general trend in the
future, at least in the short term, a large majority of IoT, mobile or wearable devices will not
have these dedicated hardwares for on-device ML. Hence, training the models on backend
and then pre-optimizing for CPU or general purpose GPU-based edge inferencing is a
practical near term solution for on-edge inference [4].

In this paper, we evaluate the performance of ASR on Raspberry Pi and Nvidia Jetson
Nano. Since the CPU, GPU and memory specification of these two devices are similar to
those of typical edge devices, such as smart speakers, smart displays, etc., the evaluation
outcomes in this paper should be similar to the results on a typical edge device. Related to
our work, large vocabulary continuous speech recognition was previously evaluated on an
embedded device, using CMU SPHINX-II [7]. In [8], the authors evaluated the on-device
speech recognition performance with DeepSpeech [9], Kaldi [10] and Wav2Letter [11]
models. Moreover, most on-the-edge evaluation papers focus on computer vision tasks,
using CNN [12,13]. To the best of our knowledge, there have been no evaluations done
for any type of transformer-based speech recognition models on low power edge devices,
using both CPU- and GPU-based inferencing. The major contributions of this paper are
as follows:

• We present the steps for preparing and inferencing the pre-trained PyTorch models
for on edge CPU- and GPU-based inferencing.

• We measure and analyze the accuracy, latency and computational efficiency of ASR
inference with transformer-based models on Raspberry Pi and Jetson Nano.

• We also provide a comparative analysis of inference between CPU- and GPU-based
processing on edge.

The rest of the paper is organized as follows: In the background section, we discuss
ASR and transformers. In the experimental setup, we go through the steps for preparing the
models and setting up both the devices for inferencing. We highlight some of the challenges
we faced while setting up the devices. We go over the accuracy, performance and efficiency
metrics in the results section. Finally, we conclude with the summary and outlook.

2. Background

ASR is the process of converting audio signals to text. In simple terms, the audio
signal is divided into frames and passed through fast Fourier transform to generate feature
vectors. This goes through an acoustic model to output the probability distribution of
phonemes. Then, a decoder with a lexicon, vocabulary and language model is used to
generate the word n-grams distributions. The hidden Markov model (HMM) [14] with a
Gaussian mixture model (GMM) [15] was considered a mainstream ASR algorithm until a
decade ago. Conventionally, the featurizer, acoustic modeling, pronunciation modeling,
and decoding all were built separately and composed together to create an ASR system. Hy-
brid HMM–DNN approaches replaced GMM with deep neural networks with significant
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performance gains [16]. Further advances used CNN- [17,18] and RNN-based [19] models
to replace some or all components in hybrid DNN [1,2] architecture. Over time, ASR model
architectures have evolved to convert audio signals to text directly, called sequence-to-
sequence models. These architectures have simplified the training and implementation
of ASR models.The most successful end-to-end ASR are based on connectionist temporal
classification (CTC) [20], recurrent neural network (RNN) transducer (RNN-T) [19], and
attention-based encoder–decoder architecture [21].

Transformer is a sequence-to-sequence architecture originally proposed for machine
translation [22]. When used for ASR, the input of transformer is audio frames instead of the
text input, as in translation use case. Transformer uses multi head attention and positional
embeddings. It learns sequential information through a self-attention mechanism instead
of the recurrent connection used in RNN. Since their introduction, transformers are increas-
ingly becoming the model of choice for NLP problems. The powerful natural language
processing (NLP) models, such as GPT-3 [23], BERT [24], and AlphaFold 2 [25], which is
the model that predicts the structures of proteins from their genetic sequences, are all based
on transformer architecture. The major advantages of transformers over RNN/LSTM [26]
is that they process the whole sequence at once, enabling parallel computation and hence,
reducing the training time. They also do not suffer from long dependency issues; hence,
they are more accurate. Since the transformer processes the whole sequence at once, they
are not directly suitable for streaming-based applications, such as continuous dictation.
In addition, their decoding complexity is quadratic over input sequence length because
the attention is computed pairwise for each input. In this paper, we focus on the general
viability and computational cost of transformer-based ASR on audio files. In future, we
plan to explore streaming supported transformer architectures on edge.

2.1. Wav2Vec 2.0 Model

Wav2Vec 2.0 is a transformer-based speech recognition model trained using a self-
supervised method with contrastive training [27]. The raw audio is encoded using a
multilayer convolutional network, the output of which is fed to the transformer network
to build latent speech representations. Some of the input representations are masked
during training. The model is then fine tuned with a small set of labeled data, using the
connectionist temporal classification (CTC) [20] loss function. The great advantage of
Wav2Vec 2.0 is the ability to learn from unlabeled data, which is tremendously useful in
training for speech recognition for languages with very limited labeled audio. For the
remaining part of this paper, we refer to the Wav2Vec 2.0 model as Wav2Vec to reduce
verbosity. In our evaluation, we use a pre-trained base Wav2Vec model, which was
trained on 960 hr of unlabeled LibriSpeech audio. We evaluate a 100 hr and a 960 hr
fine-tuned model.

Figure 1 shows the simplified flow of the ASR process with this model.

Figure 1. Wav2Vec2 inference.

2.2. Speech2Text Model

The Speech2Text model is a transformer-based speech recognition model trained using
the supervised method [28]. The transformer architecture is based on [22]. In addition,
it has an input subsampler. The purpose of the subsampler is to downsample the audio
sequence to match the input dimensions of the transformer encoder. The model is trained
with a LibriSpeech, 960 hr, labeled training data set. Unlike Wav2Vec, which takes raw
audio samples as input, this model accepts 80-channel log Mel filter bank extracted features
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with a 25 ms window size and 10 ms shift. Additionally, utterance-level cepstral mean and
variance normalization (CMVN) [29] is applied on the input frames before feeding to the
subsampler. The decoder uses a 10,000 unigram vocabulary.

Figure 2 shows the simplified flow of the ASR process with this model.

Figure 2. Speech2Text inference.

3. Experimental Setup
3.1. Model Preparation

We use PyTorch models for evaluation. PyTorch is an open-source machine learning
framework based on the Torch library. Figure 3 shows the steps for preparing the models
for inferencing on edge devices.

Figure 3. Model preparation steps.

We first go through a few of the PyTorch tools and APIs used in our evaluation.

3.1.1. TorchScript

TorchScript is the means by which PyTorch models can be optimized, serialized and
saved in intermediate representation (IR) format. torch.jit (https://pytorch.org/docs/
stable/jit.html (accessed on 30 October 2021)) APIs are used for converting, saving and
loading PyTorch models as ScriptModules. TorchScript itself is a subset of the Python
language. As a result, sometimes, a model written in Python needs to be simplified to
convert it into a script module. The TorchScript module can be created either using tracing
or scripting methods. Tracing works by executing the model with sample inputs and
capturing all computations, whereas scripting performs static inspection to go through the
model recursively. The advantage of scripting over tracing is that it correctly handles the
loops and control statements in the module. A saved script module can then be loaded
either in a Python or C++ environment for inferencing purposes. For our evaluation, we
generated ScriptModules for both Speech2Text and Wav2Vec models after applying any
valid optimizations for specific devices.

3.1.2. PyTorch Mobile Optimizations

PyTorch provides a set of APIs for optimizing the models for mobile platforms. It
uses module fusing, operator fusing, and quantization among other things to optimize the
models. We apply dynamic quantization for models used in this experiment. During this
quantization, the scale factors are determined for activations dynamically based on the
data range observed at runtime. By quantization, a neural network is converted to use a
reduced precision integer representation for the weights and/or activations. This saves on
model size and allows the use of higher throughput math operations on CPU or GPU.

3.1.3. Models

We evaluated the Speech2Text and Wav2Vec transformer-based models on Raspberry
Pi and Nvidia Jetson Nano. Inference on Raspberry Pi happens on CPU, while on Jetson
Nano, it happens on GPU, using CUDA APIs. Given the limited RAM, CPU, and storage

https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html
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on these devices, we make use of Google Colab for importing, optimizing and saving the
model as a TorchScript module. The saved modules are copied to Raspberry Pi and Jetson
Nano for inferencing. On Raspberry Pi, which uses CPU-based inference, we evaluate
both quantized and unquantized models. On Jetson Nano, we only evaluate unquantized
models since CUDA only supports floating point operations.

Speech2Text Model

The Speech2Text pre-trained model is imported from fairseq (https://github.com/
pytorch/fairseq/tree/master/examples/speech_to_text (accessed on 30 October 2021)).
Fairseq is a sequence modeling toolkit that allows researchers and developers to train
custom models for speech and text tasks. We needed to make minor syntactical changes,
such as Python type hints, to export the generator model as a TorchScript module. We have
used s2t_transformer_s small architecture for this evaluation. The decoding uses a beam
search decoder with a beam size of 5 and a SentencePiece tokenizer.

Wav2Vec Model

Wav2Vec pre-trained models are imported from huggingface (https://huggingface.
co/transformers/model_doc/wav2vec2.html (accessed on 30 October 2021)) using the
Wav2Vec2ForCTC interface. We have used Wav2Vec2CTCTokenizer to decode the output
indexes into transcribed text.

3.2. Raspberry Pi Setup

Raspberry Pi 4 B is used in this evaluation. The device specs are provided in Table 1.
The default Raspberry Pi OS is 32 bit, which is not compatible with PyTorch. Hence, we
installed a 64 bit OS.

Table 1. Raspberry Pi 4 B specs.

Name Spec

Chip BCM2711
CPU Quad core Cortex-A72 (ARM v8) 64-bit SoC
Clock speed 1.5GHz
RAM 4 GB SDRAM
Caches 32 KB data + 48 KB instruction L1 cache per core. 1 MB L2 cache
Storage 32 GB micro SD card
OS 64 bit Raspberry Pi OS
Python version 3.7
Power supply 5 V DC via USB-C connector

The main Python package required for inferencing is PyTorch. The default prebuilt
wheel files of this package are mainly for Intel architecture, which depend on Intel-MKL
(math kernel library) for math routines on CPU. The ARM-based architectures cannot use
Intel MKL. They instead have to use QNNPACK/XNNPACK backend with other BLAS
(basic linear algebra subprograms) libraries. QNNPACK (https://github.com/pytorch/
QNNPACK (accessed on 30 October 2021)) (quantized neural networks package) is a
mobile-optimized library for low-precision, high-performance neural network inference.
Similarly, XNNPACK (https://github.com/google/XNNPACK (accessed on 30 October
2021)) is a mobile-optimized library for higher precision neural network inference. We
built and installed the torch wheel file on Raspberry Pi from source with XNNPACK and
QNNPACK cmake configs. We needed to set the device backend to QNNPACK during
inference as torch.backends.quantized.engine=’qnnpack’. Note that with the latest PyTorch
release 1.9.0, the wheel files are available for ARM 64-bit architectures. Hence, there is no
need to build torch from source anymore.

The lessons learnt during setup are as follows:

• Speech2Text transformer models expect Mel-frequency cepstral coefficients [30] as input
features. However, we could not use Torchaudio, PyKaldi, librosa or python_speech_features

https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
https://huggingface.co/transformers/model_doc/wav2vec2.html
https://huggingface.co/transformers/model_doc/wav2vec2.html
https://github.com/pytorch/QNNPACK
https://github.com/pytorch/QNNPACK
https://github.com/google/XNNPACK
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libraries for this because of dependency issues. Torchaudio has dependency on Intel
MKL. Building PyKaldi on device was not feasible because of memory limitations.
The librosa and python_speech_features packages produced different outputs for MFCC,
which were unsuitable for PyTorch models. Therefore, the MFCC features for the
LibriSpeech data set were pre-generated, using fairseq audio_utils (https://github.com/
pytorch/fairseq/blob/master/fairseq/data/audio/audio_utils.py (accessed on 30
October 2021)) on the server, and saved as NumPy files. These NumPy files were used
as model input after applying CWVN transforms.

• Running pip install with or without sudo while installing packages, can cause silent
dependency issues. This is especially true when the same package is installed multiple
times with and without using sudo.

• To experiment with huggingface transformer models, the datasets package is required,
which in turn has dependency on PyArrow (an Apache arrow library). Arrow library
needs to be built and installed from source to use PyArrow.

3.3. Nvidia Jetson Nano Setup

We configured Jetson Nano using the instructions on the Nvidia website. The Nano
flash file comes with JetPack pre-installed, which includes all the CUDA libraries required
for inferencing on GPU. The full specs of the device are provided in Table 2.

Table 2. Jetson Nano specs.

Name Spec

GPU 128-core Maxwell
CPU Quad-core ARM A57
Clock speed 1.43 GHz
Memory 4 GB 64-bit LPDDR4
Caches 262,144 bytes L2 cache
Storage 32 GB micro SD card
OS Ubuntu 18.04.5 LTS
Python version 3.6
CUDA 10.2
nvidia-jetpack 4.5.1-b17
Power supply Barrel jack 5 V 4 A

For Nano, we needed to build torch from source with CUDA cmake option. Fur-
ther, an upgrade was needed to Clang and LLVM compiler toolchain to use Clang for
compiling PyTorch.

The lessons learnt during setup are as follows:

• Need to use 5 V, 4 A barrel jack power supply for Jetson Nano. The USB C power
supply does not provide sufficient power for continuous speech-to-text inferencing
on CUDA.

• cuDNN benchmarking needs to be switched on for Nano to pick up the speed while
executing. It takes a very long time for Nanto to execute the initial few samples. That
is because the cuDNN tries to find the best algorithm for the configured input. After
that, the RTF improves significantly and it executes very quickly.

• Jetson Nano froze on long duration audios while inferencing with the Wav2Vec model.
Through trial and error, we figured out that by limiting the input audio duration to
8 s and batching the inputs to be of size 64 K (4 s audio) or less, we can allow the
inference to continue without hiccups.

3.4. Evaluation Methodology

This section explains the methodologies used for collecting and presenting the metrics
in this paper. The LibriSpeech [31] test and dev datasets were used to evaluate ASR
performance on both Raspberry Pi and Jetson Nano. The test and dev datasets together
contain 21 hr of audio. To save time, for these experiments we randomly sampled 300

https://github.com/pytorch/fairseq/blob/master/fairseq/data/audio/audio_utils.py
https://github.com/pytorch/fairseq/blob/master/fairseq/data/audio/audio_utils.py
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(∼10%) of the audio files in each of the four data sets for inference. The same set for
each configuration was used so that the results would be comparable. Typically, ML
practitioners only report the WER metric for server-based ASR. So, we did not have a
server side reference for latency and efficiency metrics, such as memory, CPU or load
times. Unlike backend servers, the edge devices are constrained in terms of memory, CPU,
disk and energy. To achieve on-device ML, the inferencing needs to be efficient enough
to fit within the device’s resource budgets. Hence, we measured these efficiency metrics
along with the accuracy to assess the plausibility of meeting these budgets on typical
edge devices.

3.4.1. Accuracy

Accuracy is measured using word error rate (WER), a standard metric for speech-to-
text tasks. It is defined as in Equation (1):

WER = (S + I + D)/N (1)

where S is the number of substitutions, D is the number of deletions, I is the number of
insertions and N is the number of words in the reference.

WER for a dataset is computed as the total number of errors over the total number of
reference words in the dataset. We compare the on-device WER on Raspberry Pi and Jetson
Nano with the on-server-based WER as reported in Speech2Text [28] and Wav2Vec [27]
papers. In both papers, the WER for all models was computed on LibriSpeech test and dev
data sets with GPU in standalone mode. On server, the Speech2Text model used a beam
size of 5 and vocabulary of 10,000 words for decoding, whereas the Wav2Vec model used
a transformer-based language model for decoding. The pre-trained models used in this
experiment have the same configuration as that of the server models.

3.4.2. Latency

The latency of ASR is measured using real time factor (RTF). It is defined in Equation (2).
In simple terms, with a RTF of 0.5, two seconds of audio will be transcribed by the system
in one second.

RTF = (read time + in f erence time + decoding time)/total uttterance duration (2)

We compute the avg, mean, pctl 75 and pctl 90 RTF over all the audio samples in each
data set. We also used PyTorch profiler to visualize the CPU usage of various operators
and functions inside the models.

3.4.3. Efficiency

We measure the CPU load and memory footprint during the entire data set evaluation,
using the Linux top command. The top command is executed in the background every two
minutes in order to avoid side effects on the main inference script.

The model load time is measured by collecting the torch.jit.load API latency to load the
scripted model. We separately measured the load time by running 10 iterations and took
an average. We ensured that the load time measurements were from a clean state, i.e., from
the system boot, to discount any caching in the Linux OS layer for subsequent model loads.

4. Results

In this section, we present the accuracy, performance and efficiency metrics for Speech2Text
and Wav2Vec model inference.

4.1. WER

Tables 3 and 4 show the WER on Raspberry Pi and Jetson Nano, respectively.
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Table 3. WER on Raspberry Pi.

Test Dataset Dev Dataset

Dataset Model Edge
WER

Server
WER Dataset Model Edge

WER
Server
WER

test-clean

S2T_q 4.7%

dev-clean

S2T_q 4.3%
S2T 4.4% 4.4% S2T 3.9% 3.8%
W2V100q 7.3% W2V100q 7.9%
W2V100 6.9% 2.6% W2V100 7.8% 2.2%
W2V960q 4.1% W2V960q 4.3%
W2V960 4.1% 2.1% W2V960 3.6% 1.8%

test-other

S2T_q 11.7%

dev-other

S2T_q 11.1%
S2T 11.0% 9.0% S2T 10.6% 8.9%
W2V100q 16.2% W2V100q 15.1%
W2V100 15.6% 6.3% W2V100 14.9% 6.3%
W2V960q 10.8% W2V960q 10.2%
W2V960 9.7% 4.8% W2V960 9.8% 4.7%

The WER is slightly higher for the quantized models, compared to the unquantized
ones by an avg of ∼0.5%. This is a small trade off in accuracy for better RTF and efficient
inference. The test-other and dev-other data sets have a higher WER, compared to the test-
clean and dev-clean data sets. This is expected because other datasets are noisier, compared
to clean ones.

The WER on device for unquantized models is generally higher than what is reported
on the server. We need to investigate further to understand this discrepancy. One plausible
reason could be due to a smaller sampled dataset used in our evaluation, compared to the
server WER, which is calculated over the entire dataset.

Table 4. WER on Jetson Nano.

Test Dataset Dev Dataset

Dataset Model Edge
WER

Server
WER Dataset Model Edge

WER
Server
WER

test-clean
S2T 4.4% 4.4%

dev-clean
S2T 3.3% 3.8%

W2V100 9.5% 2.6% W2V100 10.2% 2.2%
W2V960 6.4% 2.1% W2V960 6.2% 1.8%

test-other
S2T 8.6% 9.0%

dev-other
S2T 9.8% 8.9%

W2V100 20.5% 6.3% W2V100 19.7% 6.3%
W2V960 13.1% 4.8% W2V960 13.0% 4.7%

WER for the Wav2Vec case is higher because of batching of the input samples at
the 64 K (4 s audio) boundary. If a sample duration is longer than 4 s, we divide it into
two batches. See Section 3.3 for the reasoning. So, words at the boundary of 4 s can be
misinterpreted. We plan to investigate this batching problem in future. We report the WER
figures here for the purpose of completeness.

4.2. RTF

In our experiments, RTF is dominated by model inference time > 99% compared to
other two factors in (2). Tables 5 and 6 show the RTF for Raspberry Pi and Jetson Nano,
respectively. RTF does not vary between different data sets for the same models. Hence,
we show the RTF (avg, mean, pctl 75 and pctl 90) per model instead of one per data set.
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Table 5. RTF of Raspberry Pi.

Model Avg Mean P75 P90

Speech2Text 0.33 0.33 0.38 0.45
Speech2Text quantized 0.29 0.29 0.34 0.39
Wav2Vec 100 hr 1.43 1.42 1.45 1.5
Wav2Vec 100 hr quantized 1.00 0.97 1.03 1.11
Wav2Vec 960 hr 1.49 1.48 1.54 1.58
Wav2Vec 960 hr quantized 1.03 1.00 1.07 1.18

RTF is improved by ∼10% for quantized models, compared to unquantized floating
point models. This is because CPU has to load less memory and can run tensor computa-
tions more efficiently in int8 than in floating points. The inferencing of the Speech2Text
model is three times faster than the Wav2Vec model. This can be explained by the fact
that the Wav2Vec has three times more parameters than the Speech2Text model (refer
to Table 7). There is no noticeable difference in RTF between 100 hr and 960 hr fine-tuned
Wav2Vec models because the number of parameters do not change between 960 hr and
100 hr fine-tuned models.

Table 6. RTF on Jetson Nano.

Model Avg Mean P75 P90

Speech2Text 0.13 0.13 0.15 0.17
Wav2Vec 100 hr 0.22 0.22 0.25 0.28
Wav2Vec 960 hr 0.23 0.22 0.26 0.29

Table 7. Model size.

Model Name Size Parameters

Speech2Text quantized 80 MB 30 Million
Speech2Text 125 MB
Wav2Vec quantized 207 MB 93 Million
Wav2Vec 377 MB

RTF on Jetson Nano is three times better for the Speech2Text model and five times
better for the Wav2Vec model, compared to Raspberry Pi. Nano is able to make use of
a large number of CUDA cores for tensor computations. We do not evaluate quantized
models on Nano because CUDA only supports floating point computations.

Wav2Vec RTF on Raspberry Pi is close to real time, whereas in every other case,
the RTF is far below 1. This implies that on-device ASR can be used for real-time dicta-
tion, accessibility, voice based app navigation, translation and other such tasks without
much latency.

4.3. Efficiency

For both CPU and memory measurements over time, we use the Linux top command.
The command is executed in loop every 2 min in order to not affect the main processing.

4.3.1. CPU Load

Figures 4 and 5 show the CPU load of all model inferences on Raspberry Pi and Jetson
Nano, respectively. The CPU load in Nano for both the Speech2Text and Wav2Vec models
is ∼85% in steady state. It mostly uses one of the four cores during operation. Most of the
CPU processing on Nano is for copying the input to memory for GPU processing and also
copying back the output. On Raspberry Pi, the CPU load is ∼380%. Since all the tensor
computations happen on CPU, all CPU cores are utilized fully during model inference. On
Nano, the initial few minutes are spent loading and benchmarking the model. That is why
the CPU is not busy during the initial few minutes.
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Figure 4. CPU load on Raspberry Pi.

Figure 5. CPU load on Jetson Nano.

4.3.2. Memory Footprint

Figures 6 and 7 show the memory of all model inferences on Raspberry Pi and Jetson
Nano, respectively. The memory values presented here are RES (resident set size) values
from top command. On Raspberry Pi, the quantized Wav2Vec model consumes ∼50%
less memory (from 1 GB to 560 MB), compared to the unquantized model. Similarly, the
Speech2Text model consumes ∼40% less memory (from 480 MB to 320 MB), compared
to the unquantized model. On Nano, memory consumption for the Speech2Text model
is ∼1 GB, and the Wav2Vec model is ∼500 MB. On Nano, the same memory is shared
between GPU and CPU.

Figure 6. Memory footprint on Raspberry Pi.
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Figure 7. Memory footprint on Jetson Nano.

4.3.3. Model Load Time

Table 8 shows the model load times on Raspberry Pi and Jetson Nano. A load time of
1–2 s on Raspberry Pi seems reasonable for any practical application where the model is
loaded once and the process inference requests multiple times. The load time on Nano is
15–20 times longer than on Raspberry Pi. Nano cuDNN has to allot some amount of cache
for loading the model, which takes time.

Table 8. Model load times.

Raspberry Pi Jetson Nano

Model Avg (sec) Model Avg (sec)

Speech2Text 1.4 Speech2Text 24.2
Speech2Text quantized 1.07 Wav2Vec 33.5
Wav2Vec 1.9
Wav2Vec quantized 1.9

4.4. PyTorch Profiler

PyTorch profiler (https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
(accessed on 30 October 2021)) can be used to study the time and memory consumption of
the model’s operators. It is enabled through Context Manager in Python. The profiler is
used to understand the distribution of CPU percentage over model operations. Some of
the columns from the profiler are not shown in the table for simplicity.

4.4.1. Jetson Nano Profiles

Tables 9 and 10 show the profiles of Wav2Vec and Speech2Text models on Jetson Nano.
For Wav2Vec model, the majority of the CUDA time is spent in aten::cudnn_convolution

for input convolutions followed by matrix multiplication (aten::mm). Additionally, the CPU
and GPU spend a significant amount of time transferring data between each other, aten::to.

For the Speech2Text model, the majority of the CUDA time is spent in decoder forward
followed by aten::mm for tensor multiplication operations.

4.4.2. Raspberry Pi profiles

Tables 11–14 show the profiles of Wav2Vec and Speech2Text models on Raspberry Pi.

https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
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Table 9. Jetson Nano profile for the Wav2Vec model.

Name Self CPU % Self CUDA Self CUDA % # of Calls

forward 0.70 5.373 ms 0.51 1
aten::conv1d 0.14 576.000 us 0.05 8
aten::convolution 0.10 228.000 us 0.02 8
aten::_convolution 0.11 459.000 us 0.04 8
aten::cudnn_convolution 0.32 527.416 ms 50.32 8
<foward op> 0.63 1.054 ms 0.10 61
aten::matmul 0.97 1.614 ms 0.15 98
aten::linear 10.48 1.279 ms 0.12 74
aten::mm 0.84 207.371 ms 19.78 74
aten::to 38.43 185.175 ms 17.67 3
aten::bmm 0.31 20.066 ms 1.91 24
aten::gelu 0.27 20.261 ms 1.93 20
aten::group_norm 0.03 4.000 us 0.00 1
aten::native_group_norm 0.03 19.968 ms 1.90 1
aten::add_ 0.8 16.373 ms 1.56 75

Table 10. Jetson Nano profile for Speech2Text model.

Name Self CPU % Self CUDA Self CUDA % # of Calls

forward 6.21 307.304 ms 14.28 1
aten::linear 3.12 86.356 ms 4.01 672
aten::matmul 3.16 80.340 ms 3.73 672
aten::mm 4.72 265.171 ms 12.32 672
aten::layer_norm 1.01 20.434 ms 0.95 253
aten::transpose 5.46 106.751 ms 4.96 1398
aten::native_layer_norm 2.77 91.685 ms 4.26 253
aten::t 2.93 57.888 ms 2.69 710
aten::view 9.56 119.122 ms 5.53 2724
aten::empty 8.34 102.937 ms 4.78 2417
aten::bmm 2.26 83.940 ms 3.90 312
aten::as_strided 6.86 77.660 ms 3.61 2156
aten::add_ 4.07 67.874 ms 3.15 675
aten::softmax 0.66 16.265 ms 0.76 156
aten::to 2.38 41.231 ms 1.92 433

Table 11. Raspberry Pi profile for Wav2Vec quantized on model.

Name Self CPU % Self CPU CPU Total # of Calls

forward 0.49 45.452 ms 9.334 s 1
quantized::linear_dynamic 30.77 2.872 s 3.167 s 74
aten::conv1d 0.00 347.000 us 2.875 s 8
aten::convolution 0.00 274.000 us 2.875 s 8
aten::_convolution 0.02 1.472 ms 2.875 s 8
aten::_convolution_nogroup 0.04 3.663 ms 2.862 s 23
aten::thnn_conv2d 0.30 28.075 ms 2.858 s 23
aten::thnn_conv2d_forward 5.46 509.250 ms 2.830 s 23
aten::addmm_ 24.79 2.314 s 2.314 s 23
aten::matmul 0.02 2.316 ms 1.022 s 24
aten::bmm 10.66 994.810 ms 1.016 s 24
aten::gelu 10.33 964.418 ms 965.023 ms 20
aten::softmax 0.01 597.000 us 719.717 ms 12
aten::_softmax 7.69 718.238 ms 719.120 ms 12
aten::mul 2.78 259.586 ms 260.482 ms 12

The CPU time is dominated by linear_dynamic for linear layer computations followed
by aten::addmm_ for tensor add multiplications.
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Table 12. Raspberry Pi profile for Wav2Vec non-quantized model.

Name Self CPU % Self CPU CPU Total # of Calls

forward 0.41 58.280 ms 14.227 s 1
prepacked::linear_clamp_run 54.85 7.804 s 7.994 s 74
aten::conv1d 0.00 388.000 us 2.865 s 8
aten::convolution 0.00 266.000 us 2.865 s 8
aten::_convolution 0.01 1.790 ms 2.865 s 8
aten::_convolution_nogroup 0.01 813.000 us 2.855 s 23
aten::thnn_conv2d 0.20 28.328 ms 2.854 s 23
aten::thnn_conv2d_forward 3.18 452.048 ms 2.826 s 23
aten::addmm_ 16.63 2.366 s 2.366 s 23
aten::matmul 0.02 2.350 ms 1.118 s 24
aten::bmm 7.64 1.087 s 1.113 s 24
aten::gelu 6.54 930.477 ms 931.136 ms 20
aten::softmax 0.00 645.000 us 637.379 ms 12
aten::_softmax 4.47 635.864 ms 636.734 ms 12
aten::mul 2.43 345.998 ms 346.924 ms 12

Compared to the quantized model, the non-quantized model spends 5 s more time in
linear computations, prepacked::linear_clamp_run.

Table 13. Raspberry Pi profile for Speech2Text quantized model.

Name Self CPU % Self CPU CPU Total # of Calls

forward 6.75 237.950 ms 3.527 s 1
quantized::linear_dynamic 29.46 1.039 s 1.634 s 1995
aten::bmm 14.56 513.414 ms 654.848 ms 960
aten::min 7.41 261.352 ms 282.381 ms 1995
aten::max 5.30 186.852 ms 204.806 ms 1996
aten::select 3.11 109.748 ms 158.923 ms 12,591
aten::clamp_min 2.18 76.946 ms 150.032 ms 492
aten::layer_norm 0.45 15.811 ms 122.822 ms 766
aten::softmax 0.18 6.385 ms 114.797 ms 480
aten::_softmax 2.95 104.130 ms 108.412 ms 480
aten::native_layer_norm 2.45 86.478 ms 107.011 ms 766
aten::add 3.01 106.317 ms 106.365 ms 924
aten::relu 0.11 3.752 ms 82.349 ms 246
aten::copy_ 2.17 76.565 ms 76.565 ms 1073
aten::empty 1.94 68.404 ms 68.404 ms 11,944

Table 14. Raspberry Pi profile for Speech2Text non-quantized model.

Name Self CPU % Self CPU CPU Total # of Calls

forward 7.93 287.466 ms 3.623 s 1
prepacked::linear_clamp_run 38.51 1.395 s 1.683 s 1995
aten::bmm 11.84 428.876 ms 575.170 ms 960
aten::copy_ 10.07 364.827 ms 364.827 ms 3068
aten::select 3.13 113.435 ms 163.539 ms 12591
aten::clamp_min 2.28 82.503 ms 159.938 ms 492
aten::layer_norm 0.49 17.881 ms 150.078 ms 766
aten::native_layer_norm 3.02 109.335 ms 132.197 ms 766
aten::softmax 0.18 6.389 ms 130.655 ms 480
aten::_softmax 3.32 120.186 ms 124.266 ms 480
aten::add 2.81 101.642 ms 101.693 ms 924
aten::relu 0.18 6.374 ms 92.151 ms 246
aten::masked_fill 0.02 640.000 us 79.648 ms 12
aten::mul_ 0.35 12.554 ms 79.419 ms 480
aten::mul 1.38 50.079 ms 73.879 ms 560
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CPU percentages are dominated by forward function, linear layer computations and
batched matrix multiplication in both quantized and unquantized models.

The unquantized linear layer processing is 40% higher than the quantized version.

5. Conclusions

We evaluated the ASR accuracy, performance and computational efficiency of transformer-
based models on edge devices. By applying quantization and PyTorch mobile optimizations
for CPU based inferencing, we gain ∼ 10% improvement in latency and ∼50% reduction in
the memory footprint at the cost of ∼0.5% increase in WER, compared to the original model.
Running the inference on Jetson Nano GPU improves the latency by a factor of 3 to 5. With
1–2 s load times, ∼300 MB of memory footprint and RTF < 1.0, the latest transformer models
can be used on typical edge devices for private, secure, reliable and always-available ASR
processing. For applications such as dictation, smart home control, accessibility, etc., a
small trade off in WER for latency and efficiency gains is mostly acceptable since small
ASR errors will not hamper the overall task completion rate for voice commands, such as
turning off a lamp, opening an app on a device, etc. By offloading inference to a general
purpose GPU, we can potentially gain 3–5× latency improvements.

In future, we are planning to explore other optimization techniques, such as pruning,
sparsity, 4-bit quantization and different model architectures to further analyze the WER
vs. performance trade offs. We also plan to measure the thermal and battery impact of
various models in CPU and GPU platforms on mobile and wearable devices.
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Abbreviations

The following abbreviations are used in this manuscript.
DL deep learning
CPU central processing unit
GPU graphics processing unit
ASR automatic speech recognition
HMM hidden Markov model
RNN recurrent neural network
RNNT recurrent neural network transducer
CNN convolutional neural network
LSTM long short-term memory
Speech2Text speech to text transformer model from fairseq
Wav2Vec Wav2Vec 2.0 model
GMM Gaussian mixture model
DNN deep neural network
CTC connectionist temporal classification
CMVN cepstral mean and variance normalization
MFCC Mel-frequency cepstral coefficients
CUDA a parallel computing platform and application programming interface by Nvidia
WER word error rate
RTF real time factor
NLP natural language processing
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