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Abstract

Learning latent representations of registered meshes is useful for many 3D tasks.
Techniques have recently shifted to neural mesh autoencoders. Although they
demonstrate higher precision than traditional methods, they remain unable to
capture fine-grained deformations. Furthermore, these methods can only be applied
to a template-specific surface mesh, and is not applicable to more general meshes,
like tetrahedrons and non-manifold meshes. While more general graph convolution
methods can be employed, they lack performance in reconstruction precision and
require higher memory usage. In this paper, we propose a non-template-specific
fully convolutional mesh autoencoder for arbitrary registered mesh data. It is
enabled by our novel convolution and (un)pooling operators learned with globally
shared weights and locally varying coefficients which can efficiently capture the
spatially varying contents presented by irregular mesh connections. Our model
outperforms state-of-the-art methods on reconstruction accuracy. In addition, the
latent codes of our network are fully localized thanks to the fully convolutional
structure, and thus have much higher interpolation capability than many traditional
3D mesh generation models.

1 Introduction

Learning latent representations for registered meshes 1, either from performance capture or physical
simulation, is a core component for many 3D tasks, ranging from compressing and reconstruction to
animation and simulation. While in the past, principal component analysis (PCA) models [1, 21, 30,
35] or manually defined blendshapes [31, 6, 20] have been employed to construct a linear latent space
for 3D mesh data, recent works tend towards deep learning models. These models are able to produce
more descriptive latent spaces, useful for capturing details like cloth wrinkles or facial expressions.

Convolutional neural networks (CNN) are widely used to capture the spatial features in regular grids,
but due to the irregular sampling and connections in the mesh data, spatially-shared convolution ker-
nels cannot be directly applied on meshes as in regular 2D or 3D grid data. A common compromised
approach is to first map the 3D mesh data to a predefined UV space, and then train a classic 2D CNN
to learn features in the UV space. However, this will inevitably suffer from the parameterization

1Registered meshes are deformable meshes with a fixed topology.
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distortion and the seam/cut in the UV to warp a watertight mesh to a 2D image (See Figure 7 in the
appendix), not to mention that this work-around cannot be easily extended to more general mesh data,
like tetrahedron meshes.

As a more elegant approach, convolutional neural networks (CNN) designed directly for meshes or
graphs were utilized in 3D autoencoders (AE) to achieve state-of-the-art (SOTA) results. Ranjan et
al. [26] proposed to use spectral convolution layers and quadric mesh up-and-down sampling methods
for constructing a mesh autoencoder called CoMA, and achieved promising results in aligned 3D face
data. However, the spectral CNN is not adept at learning data with greater global variations and suffers
from oscillation problems. To solve that, Bouritsas et al. [7] replaced the spectral convolution layer by
a novel spiral convolution operator and their named Neural3DMM model achieved the state-of-the-art
accuracy for both 3D aligned face data and aligned human body motion data. However, both of
these methods only work for 2-manifold meshes, and still don’t achieve the precision necessary
to capture fine-grained deformations or motion in the data.On the other hand, cutting-edge graph
convolution operators like GAT [32], MoNet [25] and FeastConv [33], although capable of being
applied on general mesh data, exhibit much worse performance for accurately encoding and decoding
the vertices’ 3D positions.

One major challenge in developing these non-spectral methods is to define an operator that works
with different numbers of neighbors, yet maintains the weight sharing property of CNNs. It is also
necessary to enable transpose convolution and unpooling layers which allow for compression and
reconstruction.

With these in mind, we propose the first template-free fully-convolutional autoencoder for arbi-
trary registered meshes, like tetrahedrons and non-manifold meshes. The autoencoder has a fully
convolutional architecture empowered by our novel mesh convolution operators and (un)pooling
operators.

One key feature of our method is the use a spatially-varying convolution kernel which accounts
for irregular sampling and connectivity in the dataset. In simpler terms, every vertex will have its
own convolution kernel. While a naive implementation of a different kernel at every vertex location
can be memory intensive, we instead estimate these local kernels by sampling from a global kernel
weight basis. By jointly learning the global kernel weight basis, and a low dimensional sampling
function for each individual kernel, we greatly reduce the number of parameters compared to a naive
implementation.

In our experiments, we demonstrate that both our proposed AE and the convolution and (un)pooling
operators exceed SOTA performance on the D-FAUST [4] dynamic 3D human body dataset which
contains large variations in both pose and local details. Our model is also the first mesh autoencoder
that demonstrates the ability to highly compress and reconstruct high resolution meshes as well
as simulation data in the form of tetrahedrons or non-manifold meshes. In addition, our fully
convolutional autoencoder architecture has the advantage of semantically meaningful localized latent
codes, which enables better semantic interpolation and artistic manipulation than that with global
latent features. From our knowledge, we are the first mesh AE that can achieve localized interpolation.

2 Related Work

2.1 Deep Learning Efforts on 3D Mesh Autoencoders

A series of efforts have been put to train deep neural auto-encoders to achieve better latent repre-
sentations and higher generation and reconstruction power than traditional linear methods. Due
to the irregularity of local structures in meshes (varying vertex degree, varying sampling density,
etc), ordinary 2D or 3D convolution networks cannot be directly applied on mesh data. Thus, early
methods attempted to train 2D CNNs on geometry images obtained by parameterizing the 3D meshes
to uv space [2] or to spheres as in [27, 28] or torus [23] first and then with proper cutting and unfolding
to the 2D image. This type of method is useful in handling high-resolution meshes but suffers from
artifacts brought by distortion and discontinuity along the seams. Other types of works [30] simply
learning the parameters of an off the rack PCA model.

Later works sought for convolution operators on meshes directly. Litany et al. [22] proposed a
mesh VAE for registered 3D meshes where they stacked several graph convolution layers at the two
ends of an auto-encoder. However, the convolution layers didn’t function for mesh dimensionality
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reduction and accretion, so the latent code was obtained in a rough way of averaging all vertices’
feature vectors out. Ranjan et al. [26] proposed a mesh AE called CoMA which has the multi-scale
hierarchical structure. The network used spectral convolution layers with Chebychev basis [10] as
filters and quadric mesh simplification and its reverse for down and up-sampling. The quadric scaling
parameters are determined by a template mesh and shared and fixed for all other meshes.

State of the art work Neural3DMM [7] replaces the spectral convolution layers with operators that
convolve along a spiral path around each vertex, outperforming CoMA and the other previous works.
The starting point of the spiral path is determined by the geometry of the template mesh. Despite
the promising results on surface meshes, both CoMA and Neural3DMM are not applicable to more
general mesh types like volumetric and non-manifold meshes. Moreover, the Quadric Mesh sampling
is based more on the Euclidean distance of the vertices on the template mesh than the mesh’s actual
topology, thus, leading to discontinuous receptive fields of the network neurons that break the locality
of latent features in the bottleneck layer.

2.2 Graph Convolution Networks
In addition to the above mentioned works, there are also many other graph or mesh convolution
operators widely utilized in networks for tasks like classification, segmentation and correspondence
learning.

Some of them are limited to triangular surface meshes. Masci et al. designed GCNN [24] which uses
locally constructed geodesic polar coordinates. Hanocka et al. [14] developed MeshCNN with edge-
based convolution operators and scaling layers by leveraging their intrinsic geodesic connections. The
defined edge-convolution is direction invariant and so cannot be directly applied for reconstructions.
Furthermore, as edges outnumber vertices, this method is not ideal for high resolution data.

Some graph convolution operators are unsuitable for reconstructions because they rely on the vertices’
3D coordinates as input. Fey et al. [12] proposed to use a spline for kernel generation (SplineCNN)
which requires inputting pseudo-coordinates computed by the 3D positions of the vertices. Huang
et al. [16] designed TextureNet, which defines a 4-rotational symmetric field based on local texture
parameterization. In terms of handling varying sampling density of mesh vertices, Hermosilla et
al.[15] proposed to use Monta Carlo sampling for non-uniformly sampled point clouds where vertices
are weighted by the local density estimated based on their 3D positions. However, this only works
in cases where the features for computing densities are not the prediction target, e.g. point cloud
segmentation, but not for reconstruction, as our method is designed for.

Spectral approaches [8, 11, 18, 10] work on spectral representations of graphs. While this domain
adaptation allows us to leverage the power of standard CNNs directly, it also loses the fidelity of the
original signal and the ability to learn directly in the spatial domain. This leads to lower precision
in the case of generative models, especially for the task of reconstruction. Other trends, including
Graph Attention GAT [32], ANN [5], MoNet [25] and FeastNet [33], take local input vertex features
to compute the attention weights with either different types of kernels or learnable functions. Many
3D point cloud and mesh learning methods [34, 22] utilize these graph convolution layers in their
models.

While many of those methods model the local variations based on the input features, our method
differs from these in that our local convolution is independent from input features and fully learned to
be shared across all the training samples. Ours are on the design choice that we want to have local
coefficients to only model the graph irregularity, like varying sampling density and orders, while the
feature statistics are learned in the shared weight bases.

It is important to note that all graph convolution methods listed above do not support transpose
convolution, thus in tasks that requires up-sampling, one needs to apply additional unpooling layers,
while our method does enable transpose convolution layers.

3 Method
In this section, we first introduce our convolution and transpose convolution operations, named as
vcConv and vcTransConv. We assume the convolution weights lie in the span of a shared weight
basis, and are sampled by a set of local coefficients per neighbor. These local coefficients are called
"variant coefficients"(vc). We call our pooling and unpooling layers vdPool and vdUnpool since we
propose to weight the input vertices with learned densities, which accounts better for the irregularity
during rescaling, and those density weights are called "variant densities"(vd). We design residual
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Figure 1: a) Convolution weights. b) Graph sampling.

layers vcUpRes and vcDownRes in a similar manner respectively for up and down-sampling. Finally,
we construct a fully convolutional mesh autoencoder using these proposed graph layers. It has the
ability to locally interpolate the mesh and supports user manipulation.

3.1 vcConv and vcTransConv
Suppose an output graph Y is sampled from an input graph X . Y has N vertices, and each vertex yi
is computed from a local region N (i) in X . N (i) has Ei vertices xi,j , j = 1, .., Ei.

In a 2D convolution operation, output feature yi ∈ RO is computed as:

yi =
∑

xi,j∈N (i)

Wjxi,j + b (1)

, where xi,j ∈ RI are the input feature, Wj ∈ RI×O is the learned weight matrix defined for each
neighboring vertex, and b is the learned bias. In a regular grid, as the topology of all neighborhoods
are identical, Wj can be defined consistently and shared within all the vertices in the grid.

However, on a mesh, vertices are unevenly distributed in the space, and each vertex has different
connectivity and direction, so the same weighting schemes cannot be directly applied. One solution
for this could be to allow the weights to vary spatially [29], so that each vertex freely defines its
own convolution weights. This is called locally connected convolution (LCConv). An LCConv
layer has IO

∑N
i=1Ei + O training parameters and will require considerable memory. This over-

parameterization is also prone to overfitting.

In this paper, we propose a much more efficient spatially varying convolution method. The intuition
is that, as illustrated as a 2D case in Figure 1a, we can imagine a discrete convolution kernel defined
with weights on a standard grid and we call them Weight Basis. The real vertices in a local region
of the mesh scatter in the grid. The Weight Basis can be shared through the whole mesh, while
the weights on those real vertices need to be sampled from the Weight Basis by different functions
from vertex to vertex. Another perspective for this intuition is that since a mesh is a discretization
of a continuous space and a continuous convolution kernel can be shared spatially on the original
continuous space, we should be able to resample the unique continuous kernel to generate the weights
for each neighborhood of the vertex. To achieve that, the sampling functions need to be defined per
vertex locally. Rather than using a handcrafted sampling functions , we learn them through training.

Specifically, we compute the weights per each xi,j as the linear combination of the Weight Basis
B = {Bk}Mk=1, Bk ∈ RI×O with locally variant coefficients(vc) Ai,j = {αi,j,k}Mk=1, α ∈ R:

Wi,j =

M∑
k=1

αi,j,kBk (2)

, and compute the convolution as

yi =
∑

xi,j∈N (i)

Wi,jxi,j + b (3)

Ai,j are different for each vertex xi,j in N (i) of each yi, but B is shared globally in one layer.
They are both learnable parameters and shared across the entire dataset. To remove the scaling
ambiguity between the weight basis and variant coefficients, one can additionally normalize Bk

before multiplying with α. However, we found in our ablation study that this can slow down the
convergence and lead to higher error.
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Figure 2: Network architecture and comparison for receptive fields.

With this formulation, our parameter count is reduced to IOM +M
∑N

i=1Ei +O. The size of the
Weight Basis determines the network approximation capability. Empirically, we choose M to be
roughly the average size of a neighborhood. Section 4.4 shows vcConv uses fewer parameters and
less memory than LCConv.

While existing graph convolution operators don’t support both down and up scaling functionality, we
provide convolution and transpose convolution operators with stride and radius control as in standard
2D convolutions. As illustrated in Figure 1b, the up and down samplings are dual operations but
allows for different radius and learning parameters. The sampling is totally based on the mesh’s
topology so are the same for the whole training set. Manual assignment of certain vertices are allowed
for specific purposes. Details of the algorithm can be found in the appendix.

3.2 vdPool, vdUnpool, vdUpRes, and vdDownRes
To be consistent with traditional CNNs, we also need to define our Pool and Unpool layers. Naively,
we could use max or average operations, which work great for regular grids. However, in an arbitrary
graph, the vertices can distribute quite unevenly within the kernel radius, and our experiments in
Section 4.4 show that simply using max or average pooling doesn’t perform well.

Inspired by Hermosilla et al.[15], we apply Monte Carlo sampling for feature aggregation. In [15],
the vertex density is estimated by the 3D coordinates of its neighboring vertices. However, in
more general cases, we don’t have such information for each layer. While it’s hard to design a
generally rational density estimation function, we let the network learn the optimal variant density
(vd) coefficients across all the training samples. Note that vd is defined per node after pooling or
unpooling.

Specifically, the aggregation functions in vdPool and vdUnpool layers are

Myi =
∑

j∈N (i)

ρ′i,jxi,j , ρ′i,j =
|ρi,j |∑Ei

j=1 |ρi,j |
(4)

, where ρi,j ∈ R is the training parameter and ρ′i,j is the density value. Due to the vd coefficient
normalization, the vdPool/vdUnpool does not perform any rescaling nor change the mean values of
the input feature map.

Similarly, we can define a residual layer as:

yi =
∑

xi,j∈N (i)

ρ′i,jCxi,j (5)

When the input and output feature dimensions are the same, C is an identity matrix, otherwise, C is
a learned O × I matrix shared across all the graph nodes.

With the residual layer, we can design a residual block for up or down-sampling. As illustrated in
Figure 6 in the appendix, the input passes through the vcConv or vcTransConv layer and the activation
layer Elu [9], and is then added by the output of the vdDownRes or vdUpRes layer. The convolution
and residual layer should have the same sampling stride. We denote it as vcConv+vdDownRes or
vcTransConv+vdUpRes. For simplicity, we don’t denote Elu in the rest of the paper.

3.3 Fully Convolutional Autoencoder
Based on the operators above, we propose a fully convolutional mesh AE. Different from [7, 26, 19],
ours has no fully connected layers in the middle and is purely built with residual blocks. Figure 2a
shows the architecture of an AE on D-FAUST meshes. The network has four down-sampling blocks
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Figure 3: Reconstruction results for different meshes and compression ratios.

and four up-sampling blocks with stride s = 2 and kernel radius r = 2 for all layers. It compresses
the original mesh to 7 vertices, 9 channels per vertex, resulting in a 63 dimensional latent code.

Localized Latent feature Interpolation. Our graph sampling scheme allows for automatic or
manual choice of latent vertices. Here we place the latent vertices on the head, hands, feet, and torso.
Their receptive fields will naturally centralize at these vertices and propagate gradually on the surface
as visualized in Figure 2b. Consequently, the latent code defines a semantically meaningful latent
space. For instance, we can interpolate only the latent vertex on the right arm between a source and a
target code, to alter only the right arm on the full mesh.

In comparison, the quadric mesh simplification method as proposed in [26] and [7] doesn’t provide
such local semantic control in its latent space, as it simplifies the mesh according to the point to plane
error of a template, so the receptive field is prone to respect Euclidean space rather than geodesic
distance. In Figure 2b, one can see the receptive fields from the quadric mesh simplification to both
the right arm and the right hip, which is less favorable for localized interpolation.

4 Experiments
We first examine the generality of our AE models on different types of 3D mesh data. Then, we
present localized latent code interpolation for 3D hand models. After that, we compare our model with
SOTA 3D mesh AEs. Finally we compare the performance of different convolution and (un)pooling
layers under the same network architecture. All experiments were trained with L1 reconstruction
loss only, Adam [17] optimizer and reported with point to point mean euclidean distance error if not
specified. Additional experiment details can be found in the appendix.

4.1 Generality
We first experiment on the 2D-manifold D-FAUST human body dataset [4]. It contains 140 sequences
of registered human body meshes. We use 103 sequences (32933 meshes in total) for training, 13
sequences (4023 meshes) for validation and 13 sequences (4264 meshes) for testing. Our AE has
a mean test error at 5.01 mm after 300 epochs of training. Then we test for the 3D-manifold cases
using 3D tetrahedrons (tet meshes). Tet meshes are commonly used for physical simulation [3]. We
use a dataset containing 10k deformed tet meshes of an Asian dragon and use 7k for training an
AE, 1.3k for validation and 562 for testing. After 400 epochs of training, the error converged to 0.2
mm. To demonstrate our model on non-manifold data, we train the network on a 3D tree model with
non-manifold components. We made a dataset of 10 sequence of this tree’s animation simulated
by Vega using random forces, 1000 frames for each clip, and used 2 clips for testing, 2 clips for
validation and the rest for training. After 36 epochs, the reconstruction error dropped to 4.1 cm.
Figure 3 visualizes the reconstruction result and vertex-wise errors of the three experiments.
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Figure 4: Interpolation from source to target using global or local latent codes.

3D data in real applications can have very high resolution. Therefore, we experiment our network on
a high-resolution human dataset that contains 24,628 fully aligned meshes, each with 154k vertices
and 308k triangles. We randomly chose 2, 463 for testing and used the rest for training. The AE’s
bottleneck contains 18 vertices and 64 dimensions per vertex, resulting in a compression rate of
0.25%. After training 100 epochs, the mean test error dropped to 3.01 mm. From Figure 3d we can
see that the output mesh is quite detailed. Compared with the groundtruth, which is more noisy, the
network output is relatively smoothed. Interestingly, from the middle two images, we can see that
the network learned to reconstruct the vein in the inner side of the arm which is missing from the
originally noisy surface.

4.2 Localized Interpolation
We demonstrate localized latent feature interpolation with an AE trained on hand meshes. As in
Figure 4, we set the latent vertices to be at the tips of the five fingers and the wrist. For interpolation,
we first inferred the latent codes from a source mesh and a target mesh, then we linearly interpolated
the latent code on each individual latent vertex separately. With only two input hand models, we can
obtain many more gestures by interpolating a subset of latent vertices instead of the entire code.

4.3 Comparison of 3D Mesh Autoencoder Models
For comparison, we choose to test on the D-FAUST dataset as it captures both high-frequency
variance in poses and low-frequency variance in local details and is widely used for estimation in
previous works. We compare our autoencoder with Neural3DMM [7] which is the current SOTA
work for registered 3D meshes. Both networks are set with compression ratio (network bottle neck
size over original size) at 0.3%. We trained ours with 200 epochs and Neural3DMM with 300 epochs.
As reported in Table 1, our network achieves over 30% and 40% lower errors for the testing and
training set respectively with fewer training epochs and learning parameters. A visual comparison
between the two methods can be found in Figure 3a.

We also compare with MeshCNN [14], but found that MeshCNN is infeasible for the full resolution
D-FAUST dataset due to memory and speed constraints. Thus, we have to down-sampled all meshes
to 750 vertices, which is the same size used in their experiments. Because [14] performs convolution
on the edges, we use each edge’s two endpoints as the input feature we attempt to reconstruct. We
set the input size to 3000 edges and have a bottleneck layer of 150 edges. The number of layers and
channels is the same as in [14]. With 200 epochs of training, this network still doesn’t perform well,
as reported in Table 1.

4.4 Comparison of Network Layers
In this section, we evaluate our proposed network with other design choices. Based on the architecture
defined in Section 3.3, we keep the block number, the input/output channel and vertex number the
same (Except for GATConv in Experiment 2.5 which has eight times more channels), but compare
with different convolution and (un)pooling layers. All experiments were trained on the D-FAUST
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Error (mm) Error (mm)

Train Test Param Encoder Block Decoder Block Train Test Param Train Mem

Ours 3.73 5.01 1.9m 1.1 vcDownConv(2,2,37) + vcDownRes(2) vcTransConv(2,2,37) + vcUpRes(2) 3.02 4.56 3.9m 2509Mib

Neural-
6.42 7.39 2.0m

1.2 vcDownConv(2,2,27) + vcDownRes(2) vcTransConv(2,2,27) + vcUpRes(2) 3.29 4.73 2.9m 2493Mib

3DMM 1.3 vcDownConv(2,2,17) + vcDownRes(2) vcTransConv(2,2,17) + vcUpRes(2) 3.73 5.01 1.9m 2471Mib

Mesh-
83.3 101.7 2.2m

1.4 vcDownConv(2,2,17) vcTransConv(2,2,17) 4.02 5.23 1.8m 2123Mib

CNN* 1.5 vcConv(1,1,9) - vdPool(2) vdUnpool(2)-vcConv(1,1,9) 4.57 5.63 1.4m 4183Mib

0. Comparison of Whole Models 1.6 vcConv(1,1,9)* - vdPool(2) vdUnpool(2)-vcConv(1,1,9)* 13.25 14.29 1.4m 4183Mib

1. Ablation Study

2.1 vcConv(1,1,9) - vdPool(2) vdUnpool(2)-vcConv(1,1,9) 4.57 5.63 1.38m 4185Mib

2.2 LCConv(1,1) - vdPool(2) vdUnpool(2)-LCConv(1,1) 2.67 4.23 185.7m 8767Mib

2.3 ChebConv(1,1) - vdPool(2) vdUnpool(2)-ChebConv(1,1) 7.19 8.59 0.15m 1853Mib

2.4 MoNetConv(1,1) - vdPool(2) vdUnpool(2)-MoNetConv(1,1) 9.21 10.4 0.61m 5223Mib

2.5 GATConv(1,1) - vdPool(2) vdUnpool(2)-GATConv(1,1) 11.95 14.28 0.21m 7377Mib

2.6 FeastConv(1,1) - vdPool(2) vdUnpool(2)-FeastConv(1,1) 14.77 17.03 0.76m 7359Mib

2. Comparison of Convolution Layers

3.1 vcConv(1,1) - vdPool(2) vdUnpool(2)-vcConv(1,1) 4.57 5.63 1.38m 4185Mib

3.2 vcConv(1,1) - avgPool(2) avgUnpool(2)-vcConv(1,1) 5.93 6.88 1.37m 3651Mib

3.3 vcConv(1,1) - maxPool(2) maxUnpool(2)-vcConv(1,1) 8.8 13.55 1.37m 3651Mib

3.4 vcConv(1,1) - qPool(2) qUnpool(2)-vcConv(1,1) 4.94 6.08 1.37m 4731Mib

3. Comparison of Pooling Layers

Table 1: Comparison of whole models and layers on D-FAUST dataset.

dataset with the same setting. Table 1 lists all the block designs, the errors, the parameter count and
the GPU memory consumption for training with batch size=16.

In Group 1 Ablation Study, we compare different attributes and combinations of our proposed layers.
From 1.1 to 1.3, we test the effect of adjusting M . We denote the encoding or decoding residual
blocks as vcDown/TransConv(s, r, M ) + vcDown/UpRes(s). By increasing M , the network’s capacity
increases and achieves lower errors. In 1.4 the residual layers are removed and errors go higher. In
1.5 we replace the convolution and transpose convolution by the combination of s = 1 convolution
and s = 2 pool or unpool, denoted as vcConv->vdPool and vdUnpool->vcTransConv and the errors
increase a bit. In 1.6 we apply normalization on the weight bases and the error further increases.

In Group 2, we compare our vcConv with other convolution operators as proposed in previous works.
Since all the other convolution layers don’t support up or down-sampling, we use our vdPool and
vdUnpool layers for sampling, and set s = 1,r = 1 for all convolution layers. From the table, 2.2
LCConv layer, which never learns any shared weights, has the lowest error but it has around 135
times more learnable parameters than our vcConv layer and consumes twice the GPU memory for
training, preventing it from being applied to bigger network architectures, like with high-resolution
meshes. In 2.3, spectral convolution with 6 Chebyshev bases [10] has the least parameters but the test
error increases 50%. For 2.4 MoNet [25], we use the pseudo coordinates from its paper, and set the
kernel size to 25; For 2.5 GATConv [32], we set the head number being 8, all heads concatenated
except for the middle and last layer which were averaged instead; for 2.6 FeastConv [33], we set the
head size as 32. 2.3 to 2.6 were implemented with PyTorch Geometry [13]. They have much higher
error than our vcConv and require much more memory. This demonstrates our method achieves the
best accuracy and efficiency in terms of memory consumption.

In Group 3, we keep the vcConv layers the same but use different (un)pooling layers. From 3.2 and
3.3, we can see that using simple average or max (un)pooling operations increases the error. In 3.4,
using the quadric layers (qPool), the error also increases.

5 Conclusion
We introduce a novel mesh AE that produces SOTA results for regressing arbitrary types of registered
meshes. Our method contains natural analogs of the operations in classic 2D CNNs while avoiding
the high parameter cost of naive locally connected networks by using a shared kernel basis. It is also
the first mesh AE that demonstrates localized interpolation.

Several future directions are possible with our formulation. For one thing, though our method can
learn on arbitrary graphs, all the graphs in the dataset must have the same topology. We plan to extend
our work in the future so that it can work on datasets with varying topology.
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6 Potential Broader Impact

This work can potentially impact future entertainment and communication industry. It could also
allow for more efficient storage and transport of 3D data.
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Figure 5: Steps for graph up and down-sampling.

A Method Details

A.1 Graph Sampling Algorithm

To select a subset of sampled vertices from the original graph with stride s, for each connected
component, we start from a random vertex, mark it as selected and mark its (s− 1)-ring neighbors as
removed, and then traverse the vertices on the s-ring until finding a vertex that is not marked and has
no (s-1)-ring neighbors marked as selected. Next, we mark this vertex as selected and start a new
round of searching. We repeat those steps recurrently using a queue structure until all vertices are
marked. One can also manually assign certain vertices to be included in the sampling set by marking
them before starting the searching.

For down-sampling, given stride s > 1, as shown in Figure 5, {xi} are the blue vertices with orange
circles sampled with s = 2. In the output graph Y , we create a vertex yi (yellow vertices) for each xi.
The topology of Y purely depends on the vertex connectivity in X : two vertices are connected in Y if
their distance is less than or equal to 2s− 1 in X . With a kernel radius of r, N (i) contains the r-ring
neighborhood of xi.

For up-sampling, the input and output graphs are the output and input graphs in down-sampling with
the same stride size. It’s a dual process of down-sampling. To determine N (i) of yi for a kernel
radius r, we first collect yi’s r-ring neighbors in Y , then locate the sampled vertices (yellow-circled)
and include their corresponding vertices in X to construct N (i).

A.2 Network Implementation

In our implementation, we precompute the graph sampling process and record {N (i)} in a table of
vertex connections. Each line i in the table contains the indices of the vertices in {N (i)} in the input
graph. In practice, we store the table using a N ×Max(Ei) integer tensor. The training parameters
for convolution coefficients are stored in a tensor of size N ×Max(Ei)×M and the basis is a tensor
of M ×O × I . We use a N ×Max(Ei) mask to mask out the vacant entries.

All of our networks in Section 4.1 and 4.2 are composed of residual blocks illustrated in Figure 6

For training and testing, the whole network forward and backward processes are fully parallelized in
GPU written in Pytorch. During testing, the kernels are pre-computed using equation 2 to accelerate
the inference time. All networks are trained with batch size=16, learning rate=0.0001, learning rate
decay=0.9 every epoch, using Geforce 1080Ti, cuda 10.0 and pytorch 1.0.
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Figure 7: Artifact along seam lines in UV mapping method.

B Experiment Details

The dragon tet mesh2 in Section 4.1 has 959 vertices and lies in a bounding box of roughly 20×20×20
cm. The auto-encoder has five down-sampling residual blocks and five up-sampling residual blocks.
s = 2, r = 2,M = 37 for all blocks. Its bottle neck has two vertices, 16 latent codes per vertex.

The 3D tree model3 has 328 disconnected components. To connect all the components, we added an
edge between each pair of close components. The auto-encoder had four down-sampling residual
blocks to compress the original 20k vertices into 149 vertices, 8 latent codes per vertex and four
up-sampling residual blocks. s = 2, r = 2,M = 27 for each block.

For the high resolution human dataset, Our auto-encoder has 6 down-sampling residual blocks and
6 up-sampling residual blocks, with s = 2,r = 2 and M = 17 for all blocks. The latent space has
18 vertices and 64 dimensions per vertex, resulting in a compression rate of 0.75%. We additionally
used L1 laplacian loss for training.

The hand dataset contains fully aligned hand meshes reconstructed from performance captures of two
people with roughly 200 seconds of 90 poses per person. The mesh has 57k vertices and 115k facets.
We randomly picked 39 one-second clips for testing, 39 one-second clips for validation, and used
the rest for training, resulting in 9376 meshes for training and 1170 for testing. Each vertex is given
both the 3D coordinate and RGB color as input. Our auto-encoder network has nine down-sampling
residual blocks and nine up-sampling residual blocks with s = 2, r = 2 and M = 17 for all blocks.
The latent space has 6 vertices with 64 dimensions per vertex, resulting in a compression rate of
0.11%. The middle 6 vertices were manually selected to be at the fingertips and wrist. We trained the
network with point to point L1 loss, L1 laplacian loss and L1 RGB loss. After 205 epochs of training,
the mean point to point euclidean distance error dropped to 1.06 mm and the mean L1 RGB error to
0.036 (range 0 to 1).

C Additional Figures

Figure 7 shows the artifact along seam lines in UV mapping based mesh CNN methods.

2The original mesh was created by Stanford Computer Graphics Laboratory, available at http://graphics.
stanford.edu/data, and then simulated using Vega [3].

3The original model is downloaded from https://www.turbosquid.com/3d-models/
cherry-blossom-tree-3d-1189864
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