
Opacus: User-Friendly Differential Privacy Library
in PyTorch

Ashkan Yousefpour∗ Igor Shilov∗ Alex Sablayrolles∗ Davide Testuggine

Karthik Prasad Mani Malek John Nguyen Sayan Ghosh

Akash Bharadwaj Jessica Zhao∗ Graham Cormode Ilya Mironov

Meta AI

Abstract

We introduce Opacus, a free, open-source PyTorch library for training deep learning
models with differential privacy (hosted at opacus.ai). Opacus is designed for
simplicity, flexibility, and speed. It provides a simple and user-friendly API,
and enables machine learning practitioners to make a training pipeline private by
adding as little as two lines to their code. It supports a wide variety of layers,
including multi-head attention, convolution, LSTM, GRU (and generic RNN),
and embedding, right out of the box and provides the means for supporting other
user-defined layers. Opacus computes batched per-sample gradients, providing
higher efficiency compared to the traditional “micro batch” approach. In this paper
we present Opacus, detail the principles that drove its implementation and unique
features, and benchmark it against other frameworks for training models with
differential privacy as well as standard PyTorch.

1 Background and Introduction

Differential privacy (DP) [5] has emerged as the leading notion of privacy for statistical analyses. It
allows performing complex computations over large datasets while limiting disclosure of information
about individual data points. Roughly stated, an algorithm that satisfies DP ensures that no individual
sample in a database can have a significant impact on the output of the algorithm, quantified by the
privacy parameters ε and δ.

Formally, a randomized mechanism M : D → R is (ε, δ)-differentially private for ε > 0 and
δ ∈ [0, 1) if for any two neighboring datasets D,D′ ∈ D (i.e., datasets that differ in at most one
sample) and for any subset of outputs R ⊆ R it holds that

P(M(D) ∈ R) ≤ exp(ε) P(M(D′) ∈ R) + δ.

Differentially Private Stochastic Gradient Descent (DP-SGD) due to Abadi et al. [1], building on
Song et al. [18] and Bassily et al. [2], is a modification of SGD that ensures differential privacy
on every model parameters update. Instead of computing the average of gradients over a batch of
samples, a DP-SGD implementation computes per-sample gradients, clips their `2 norm, aggregates
them into a batch gradient, and adds Gaussian noise (see Fig. 1 for an illustration.) However, mainly
for efficiency reasons, deep learning frameworks such as PyTorch or TensorFlow do not expose

∗Equal contribution. Jessica Zhao contributed benchmarking code and analysis (Section 3). Correspondence
to yousefpour@fb.com.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://opacus.ai

intermediate computations, including per-sample gradients; users only have access to the gradients
averaged over a batch.

Figure 1: Pictorial representation of the DP-SGD algorithm. The single-colored lines represent
per-sample gradients, the width of the lines represent their respective norms, and the multi-colored
lines represent the aggregated gradients.

A naïve way to implement DP-SGD is thus to separate each batch into micro-batches of size one,
compute the gradients on these micro-batches, clip, and add noise (see Appendix A for sample code
to obtain the per-sample gradients using this approach). While this procedure (called the “micro-batch
method” or “micro-batching”) does indeed yield correct per-sample gradients, it can be very slow in
practice due to underutilization of hardware accelerators (GPUs and TPUs) that are optimized for
batched, data-parallel computations.

Opacus implements performance-improving vectorized computation instead of micro-batching. In
addition to speed, Opacus is designed to offer simplicity and flexibility. In this paper, we discuss
these design principles, highlight some unique features of Opacus, and evaluate its performance in
comparison with other DP-SGD frameworks.

2 Design Principles and Features

Opacus is designed with the following three principles in mind:

• Simplicity: Opacus exposes a compact API that is easy to use out of the box for researchers
and engineers. Users need not know the details of DP-SGD in order to train their models
with differential privacy.

• Flexibility: Opacus supports rapid prototyping by users proficient in PyTorch and Python,
thanks to its rich set of features (described below).

• Speed: Opacus seeks to minimize performance overhead of DP-SGD by supporting vector-
ized computation.

We explain throughout the paper how these principles manifest themselves in the Opacus API.

Example Usage. The main entry point to Opacus is the PrivacyEngine class. It keeps track
of “privacy budget” spent so far and is responsible for wrapping regular PyTorch training objects
with DP-related code. The key method provided by PrivacyEngine is make_private(). It takes
the three PyTorch training objects—model, optimizer and data loader— along with the privacy
parameters (noise multiplier and maximum norm of the gradients) and outputs differentially private
analogues of these objects:

2

• the model wrapped with GradSampleModule, which adds the ability to compute per-sample
gradients;

• the optimizer wrapped with an additional code for clipping gradients and adding noise;

• the data loader transformed into one using Poisson sampling as required by DP-SGD.

This design provides a good balance between simplicity and flexibility. On the one hand, most users
are able to switch to DP training by calling a single method. On the other hand, advanced users can
modify the details of the private components’ behavior as long as their interface is unchanged.

Attaching Opacus to an existing script can be done with changing as few as two lines of code, e.g.,
the lines containing privacy_engine in the following example:

dataset = Dataset()
model = Net()
optimizer = SGD(model.parameters(), lr)
data_loader = torch.utils.data.DataLoader(dataset, batch_size)
privacy_engine = PrivacyEngine()
model, optimizer, data_loader = privacy_engine.make_private(

module=model,
optimizer=optimizer,
data_loader=data_loader,
noise_multiplier=noise_multiplier,
max_grad_norm=max_grad_norm,

)
Now it’s business as usual

Main features of Opacus. We highlight some of the key features Opacus provides.

Privacy accounting. Opacus provides out of the box privacy tracking with an accountant based on
Rényi Differential Privacy [13, 14]. The PrivacyEngine object keeps track of how much privacy
budget has been spent at any given point in time, enabling early stopping and real-time monitoring.
Opacus also allows a user to directly instantiate a DP training targeting an (ε, δ) budget. In this
instance, the engine computes a noise level σ that yields an overall privacy budget of (ε, δ). Opacus
also exposes an interface to write custom privacy accountants.

Model validation. Before training, Opacus validates that the model is compatible with DP-SGD.
For example, certain layers (e.g., BatchNorm or GroupNorm modules in some configurations) mix
information across samples of a batch, making it impossible to define a per-sample gradient; Opacus
disallows those modules. It also ensures that no additional statistics without DP guarantees are
tracked by the model (See Appendix C).

Poisson sampling. Opacus also supports uniform sampling of batches (also called Poisson sampling):
each data point is independently added to the batch with probability equal to the sampling rate.
Poisson sampling is necessary in some analyses of DP-SGD [14].

Efficiency. Opacus makes efficient use of hardware accelerators (See Appendix B). Opacus also
supports distributed training via PyTorch’s DistributedDataParallel.

Virtual steps. As Opacus is highly optimized for batched per-sample gradient computation, it faces an
inevitable speed/memory trade-off. In particular, when computing per-sample gradients for the entire
batch, the size of the gradient tensor it needs to store is increased by the factor of batch_size. To
support a wider range of batch sizes, Opacus provides an option to decouple physical batch sizes,
limited by the amount of memory available, and logical batch sizes, whose selection is driven by
considerations of model convergence and privacy analysis.

Predefined and custom layers. Opacus comes with several predefined layer types, including con-
volution, multi-head attention, LSTM, GRU (and generic RNN), normalization, and embedding
layers. Moreover, it allows users to add their own custom layers. When adding a custom layer, users
can provide a method to calculate per-sample gradients for that layer and register it with a simple
decorator provided by Opacus. The details can be found in opacus.ai/tutorials.

Secure random number generation. Opacus offers a cryptographically safe (but slower) pseudo-
random number generator (CSPRNG) for security-critical code. This can be enabled by the option
secure_mode, which enables CSPRNG for noise generation and random batch composition.

3

https://opacus.ai/tutorials

Noise scheduler and variable batch size. Similar to learning rate scheduler in deep learning, the noise
scheduler in Opacus adjusts the noise multiplier during training by evolving it according to some
predefined schedule, such as exponential, step, and custom function. Opacus also supports varying
batch sizes throughout training.

Modular. Opacus integrates well with PyTorch Lightning, a high-level abstraction framework for
PyTorch, which reduces boilerplate and simplifies coding complex networks.

3 Benchmarks

We benchmark Opacus against other frameworks for training models with DP-SGD as well as standard
PyTorch by comparing their respective runtimes on several end-to-end model training tasks. We also
quantify the runtime and memory overhead of training with DP using Opacus compared to training
without DP using PyTorch for each layer that Opacus currently supports.

3.1 End-to-end benchmarks

Our end-to-end benchmarks are based on the Fast-DPSGD benchmarks [19]. We evaluate Opacus on
four end-to-end model training tasks against a JAX implementation of DP-SGD, a custom TensorFlow
Privacy implementation, BackPACK, and PyVacy, as well as standard PyTorch without DP.

3.1.1 Frameworks

JAX is a general-purpose framework for high-performance numerical computing that uses just-in-time
(JIT) compilation and static graph optimization. We use the custom implementation of DP-SGD
found in [19] and denote it as JAX (DP).

TensorFlow Privacy is a TensorFlow library for differentially private model training. We use the
custom implementation with vectorization and XLA-driven JIT compilation, which outperforms both
the custom TensorFlow Privacy implementation without XLA and the existing TensorFlow Privacy
library in [19]. We denote it as Custom TFP (XLA) for consistency with [19].

To enable per-sample gradient extraction, BackPACK extends several PyTorch layers with support for
efficient Jacobian computation. In contrast, PyVacy processes each sample individually in a for-loop,
forgoing parallelization.

3.1.2 Experimental setup

Following [19], we train a CNN with 26,010 parameters on MNIST [9], a handwritten digit recognition
dataset, and a CNN with 605,226 parameters on CIFAR-10 [8], a dataset of small color images.
We train an embedding network and an LSTM network with 160,098 and 1,081,002 parameters
respectively on the IMDb dataset [12], which consists of movie reviews for sentiment classification.

For each model and framework, we train the model using the framework’s implementation of DP-SGD
with a given privacy budget. Since Opacus is built on top of PyTorch, we also train each model
using PyTorch without DP to better understand the runtime overhead of enabling DP with Opacus
compared to training without DP using PyTorch.

We benchmark the latest version of each framework as of December 8th, 2021 in a separate Docker
container, see Appendix E.3 for details. Compared to the setup in [19], our GPU has more VRAM
(40GB rather than 12GB), which allows us to benchmark larger batch sizes (512, 1024, 2048)
for a more extensive comparison. The code is available at https://github.com/TheSalon/
fast-dpsgd/tree/latest.

We report each framework’s median per-epoch runtime on each end-to-end training task at various
batch sizes in Table 1.

3.1.3 Results

JAX (DP) consistently achieves the lowest runtime among all DP-SGD frameworks on both MNIST
and IMDb with the embedding network, even outperforming PyTorch without DP at smaller batch
sizes. On CIFAR-10, JAX (DP) outperforms all other frameworks at smaller batch sizes, while

4

https://github.com/TheSalon/fast-dpsgd/tree/latest
https://github.com/TheSalon/fast-dpsgd/tree/latest

Batch Size 16 32 64 128 256 512 1024 2048

JAX (DP) 3.72 1.93 0.94 0.52 0.26 0.18 0.16 0.15
PyTorch without DP 5.82 2.97 1.55 0.82 0.47 0.26 0.16 0.11
Opacus 15.81 8.00 4.25 2.30 1.22 0.64 0.36 0.21
BackPACK 21.41 11.00 5.62 3.14 1.83 1.31 1.41 1.31
Custom TFP (XLA) 13.55 10.61 9.05 8.30 7.87 7.56 7.32 7.44
PyVacy 109.08 106.31 107.96 108.47 109.13 110.94 110.15 112.28

(a) MNIST with CNN

Batch Size 16 32 64 128 256 512 1024 2048

JAX (DP) 10.20 5.98 3.64 3.28 2.91 2.75 2.66 2.60
PyTorch without DP 11.07 5.99 3.42 1.76 1.07 0.87 0.82 0.79
Opacus 32.02 16.59 8.66 4.40 2.45 2.06 1.93 1.89
BackPACK 46.57 24.17 13.09 10.66 10.91 10.36 10.06 10.02
Custom TFP (XLA) 41.51 37.45 33.66 33.07 32.18 30.78 31.82 30.73
PyVacy 198.35 196.63 192.54 191.75 192.27 195.36 192.90 192.76

(b) CIFAR-10 with CNN

Batch Size 16 32 64 128 256 512 1024 2048

JAX (DP) 0.74 0.40 0.19 0.10 0.06 0.05 0.05 0.04
PyTorch without DP 1.54 0.78 0.40 0.21 0.11 0.06 0.04 0.04
Opacus 3.49 1.76 0.88 0.45 0.23 0.12 0.11 0.12
Custom TFP (XLA) 1.93 1.11 0.68 0.47 0.37 0.31 0.29 0.29
PyVacy 18.73 18.71 18.43 18.58 18.63 18.93 18.00 18.65

(c) IMDb with Embedding

Batch Size 16 32 64 128 256 512 1024 2048

JAX (DP) 25.61 12.89 8.68 6.48 5.23 4.54 4.33 4.22
PyTorch without DP 14.08 7.13 3.91 2.00 1.04 0.60 0.41 0.34
Opacus 358.80 183.22 118.11 59.92 30.45 15.91 11.51 9.94
Custom TFP (XLA) 21.99 12.30 8.80 5.03 3.08 2.21 1.65 1.44
PyVacy 201.27 201.67 200.49 200.36 200.48 201.55 200.63 202.34

(d) IMDb with LSTM

Table 1: Median runtime (in seconds) per epoch, computed over 20 epochs, of several DP-SGD
frameworks as well as PyTorch without DP on four end-to-end model training tasks at various batch
sizes. Since BackPACK does not support embedding or LSTM layers, the corresponding rows are
omitted.

5

Opacus surpasses JAX (DP) at larger batch sizes. On IMDb with the LSTM network, Custom TFP
(XLA) consistently achieves the lowest runtime among all DP-SGD frameworks. Training with
PyVacy consistently results in the highest runtime due to its use of micro-batching.

At a batch size of 2048, Opacus achieves the lowest runtime on CIFAR-10 and the second lowest
runtime after JAX (DP) on MNIST and IMDb with the embedding network, its runtime being 1.4×
and 3× that of JAX (DP) respectively. On IMDb with the LSTM network, Opacus achieves the third
lowest runtime after Custom TFP (XLA) and JAX (DP), with 7× the runtime of Custom TFP (XLA)
and 2.4× the runtime of JAX (DP).

While the median per-epoch runtime decreases as the batch size increases for most frameworks, the
effect is strongest for Opacus and PyTorch: By increasing the batch size from 16 to 2048, Opacus’s
per-epoch runtime decreases by a factor ranging from 17× (on CIFAR-10) to 75× (on MNIST). We
report the mean per-epoch runtime reduction from increasing the batch size from 16 to 2048 for each
framework: 40× (Opacus), 37.8× (PyTorch without DP), 12.8× (JAX (DP)), 10.5× (BackPACK),
6.3× (Custom TFP (XLA)), and 1× (PyVacy).

Since Opacus and PyTorch benefit the most from a larger batch size, increasing the batch size further
may close the gap (where applicable) between Opacus and JAX (DP) or Custom TFP (XLA) and
even result in Opacus outperforming them. Both JAX (DP) and Custom TFP (XLA) rely on JIT
compilation, which incurs a large runtime overhead in the first epoch (up to 101× and 625× the
median per-epoch runtime, respectively) in exchange for a lower runtime in subsequent epochs.
See Fig. 4 for each framework’s cumulative runtime over 20 epochs.

On MNIST, CIFAR-10, and IMDb with the embedding network, enabling DP with Opacus incurs a
2× to 2.9× runtime overhead compared to training without DP using PyTorch. On IMDb with the
LSTM network, the runtime overhead ranges from 25× to 30×, see Section 3.2.3 for further analysis.
Since Opacus is built on PyTorch, we expect any future improvements to PyTorch’s efficiency (e.g.
torch.vmap graduating from the prototype stage) to benefit Opacus as well.

3.2 Microbenchmarks

We measure the runtime and peak allocated memory for one forward and one backward pass for each
layer currently supported by Opacus, both with and without DP. We report the runtime and memory
overhead of enabling DP with Opacus for each layer.

3.2.1 Experimental setup

For each layer that Opacus currently supports, we benchmark both the layer with DP enabled and the
corresponding torch.nn module without DP at various batch sizes.

For the convolutional, normalization, linear, and embedding layers, which Opacus supports directly,
wrapping the corresponding torch.nn module in Opacus’s GradSampleModule enables DP. For
the multi-head attention and RNN-based layers, which Opacus provides custom implementations for,
wrapping the corresponding custom module in GradSampleModule enables DP.

Each benchmark estimates the mean runtime and peak allocated CUDA memory for one forward
and one backward pass by measuring the cumulative runtime and peak allocated CUDA memory
for a total of 2,000 forward and backward passes on 100 different input batches. See Appendix E.3
for details. The microbenchmarking code is available at https://github.com/pytorch/opacus/
tree/main/benchmarks.

We report the runtime and peak memory overhead of the DP-enabled layer relative to the correspond-
ing torch.nn module for all currently supported layers in Fig. 2.

3.2.2 Memory requirements of DP

Since DP-SGD requires per-sample gradients, training with DP-SGD uses more memory than training
without DP-SGD. Let L denote the number of trainable parameters in a given module and let each
parameter be of size 1. Let C be the size of the features, label, and model output for a single data
point. Let M denote the total memory usage for one forward and one backward pass on a batch
of size b. Then, ignoring intermediate computations and constant additive overhead such as from

6

https://github.com/pytorch/opacus/tree/main/benchmarks
https://github.com/pytorch/opacus/tree/main/benchmarks

Conv LayerNorm InstanceNorm GroupNorm Linear Embedding MHA RNN GRU LSTM
Layer

0

10

20

30

40

50

60

R
un

tim
e

ov
er

he
ad

 (f
ac

to
r)

2.
3

1.
9

1.
8

1.
9

1.
8

2 2

16 18 16

2.
5

1.
9

1.
8

1.
9

1.
7 3.
5

2

15 18 16

2.
5

1.
9

1.
8

1.
9

1.
8 6.

5

2

15 17 18

2.
8

1.
9

1.
6

1.
9

1.
8

12

2

15 18 17

2.
9

1.
9

1.
5

1.
9 2.
8

25

1.
6

11

16 15

2.
9

1.
9

1.
5

1.
9 5.

5

49

1.
2

8.
9 13 13

16
32
64
128
256
512

Conv LayerNorm InstanceNorm GroupNorm Linear Embedding MHA RNN GRU LSTM
Layer

0

50

100

150

200

M
em

or
y

ov
er

he
ad

 (f
ac

to
r)

1.
6

1.
3

1.
2

1.
3 11 12 1.
5

1 1.
3

1.
4

2.
5

1.
3

1.
2

1.
3 21 22

1.
1

1.
1

1.
3

1.
4

3.
5

1.
3

1.
2

1.
3

38 44

1 1.
1

1.
3

1.
44.
5

1.
3

1.
2

1.
3

65

86

1 1 1.
3

1.
45.
2

1.
3

1.
2

1.
3

10
3

17
0

1 1 1.
3

1.
45.
6

1.
3

1.
2

1.
3

12
9

33
4

1 1 1.
4

1.
4

16
32
64
128
256
512

Figure 2: Runtime and peak allocated memory overhead of enabling DP for each layer currently
supported by Opacus at various batch sizes. Top: Runtime overhead (factor). Bottom: Peak allocated
memory overhead (factor). The runtime overhead is the mean runtime for one forward and one
backward pass of the DP-enabled layer divided by the mean runtime for one forward and one
backward pass of the corresponding torch.nn module without DP. The overhead in terms of peak
allocated memory is calculated in the same manner.

non-trainable parameters:

Mnon-DP = bC + 2L, (1)
MDP = bC + (1 + b)L. (2)

In both non-DP and DP training, the features, labels, and the module’s output for b data points occupy
memory of size bC, and the module itself occupies memory of size L by definition. Without DP, we
expect the gradient to occupy memory of size L as well, whereas with DP, we expect the gradient
to occupy memory of size bL due to b per-sample gradients. For b � 1, we can approximate the
memory overhead as follows:†

MDP

Mnon-DP
≈

bC+(1+b)L

bC ≈ 1 + L
C if L/C � b

2+b
3 ≈

b
3 if L/C ≈ b

1+b
2 ≈

b
2 if L/C � b

(3)

3.2.3 Results

Runtime. For the convolutional, normalization, and multi-head attention layers, enabling DP with
Opacus’s GradSampleModule results in a 1.2× to 2.9× runtime increase, which we attribute to
the calculation of per-sample gradients. For the linear and embedding layers, the runtime overhead
increases with the batch size, reaching a factor of up to 5.5× and 49× respectively.

In contrast, enabling DP for RNN-based layers consistently incurs a large (up to 18×) runtime
overhead, which decreases as the batch size increases. Opacus’s custom RNN-based modules are
responsible for most of this overhead, their runtime being up to 11× the runtime of the corresponding
torch.nn module. As with directly supported torch.nn modules, wrapping the custom modules
in GradSampleModule results in a ~2× slowdown. Fig. 5 compares the runtime of the torch.nn
module, the corresponding custom module without DP, and the latter wrapped in GradSampleModule
with DP enabled for the multi-head attention and RNN-based layers.

In practice, Opacus’s custom LSTM with DP enabled performs competitively with other DP-SGD
frameworks when training with large batch sizes. Recall that on the IMDb dataset, Opacus’s

†Since L/C ∼ b↔ L ∼ bC.

7

1 10 100 1000 10000 20000 50000
num_embeddings

1
16

32
64

12
8

25
6

51
2

B
at

ch
 s

iz
e

2.0 1.9 1.9 1.9 1.9 1.9 1.9

1.9 1.9 1.9 2.0 1.9 2.0 4.6

1.9 2.0 1.9 1.9 2.0 3.5 8.6

1.9 1.9 1.9 2.0 3.4 6.5 16.5

1.9 2.0 2.1 1.9 6.4 12.4 32.4

1.9 2.0 1.9 2.0 12.7 24.9 64.0

2.0 2.0 1.9 2.9 24.4 48.7 126.7

Runtime overhead (factor)

1 10 100 1000 10000 20000 50000
num_embeddings

1
16

32
64

12
8

25
6

51
2

B
at

ch
 s

iz
e

1.2 1.6 1.7 1.7 1.7 1.7 1.7

1.2 3.9 10.0 11.5 11.8 11.7 11.2

1.2 4.4 17.0 21.6 22.3 22.3 21.3

1.2 4.6 25.4 41.0 43.4 43.5 41.6

1.2 4.7 31.2 76.5 85.2 85.8 82.2

1.2 4.7 36.1 136.6 167.4 169.6 163.0

1.2 4.8 38.6 224.9 325.7 333.8 323.3

Memory overhead (factor)

20

40

60

80

100

120

50

100

150

200

250

300

Figure 3: Runtime and peak allocated memory overhead of enabling DP for the embedding layer.
In addition to the batch size, we also vary num_embeddings and thus, the size of the module L.
Left: Runtime overhead (factor). Right: Peak allocated memory overhead (factor). For each value
of num_embeddings from left to right, L/C = 0.63, 5, 50, 496, 4,951, 9,901, 25,955 respectively.
Overheads are calculated as in Fig. 2

median per-epoch runtime is only 2.4× the median per-epoch runtime of the custom JAX DP-SGD
implementation while avoiding the latter’s 101× JIT compilation overhead in the first epoch (see
Table 1, Fig. 4).

Peak allocated CUDA memory. For the normalization, multi-head attention, and RNN-based layers,
enabling DP with Opacus’s GradSampleModule results in an up to 1.5× increase in peak allocated
memory. In our experiments, L/C is much smaller than the batch size for these layers, hence the
relatively constant memory overhead.

For the linear and embedding layers, L/C is substantial compared to the batch size. Hence, as
predicted by Eq. (3) and depicted in Fig. 2, the peak allocated memory overhead increases with the
batch size, reaching factors of up to 129× and 334× respectively.

Fig. 3 shows how L/C and the batch size affect the runtime and peak allocated memory overhead
of enabling DP by example of the embedding layer. Comparing the predicted memory overhead of
enabling DP to the measured peak allocated memory overhead for various num_embeddings and
batch sizes shows that on average, Eq. (3) overestimates the memory overhead of enabling DP by
41%± 17.6% when L/C � b and underestimates it by 23.3%± 6.3% when L/C � b.

For the convolutional layer, the peak allocated memory overhead increases slightly with the batch
size. As opposed to the linear and embedding layers, L/C � b and the phenomenon weakens as
the batch size increases. We attribute this to the comparatively many intermediate computations and
additive overheads of the convolutional layer that are not captured in Eq. (2): For the other supported
torch.nn layers, Mnon-DP and MDP, on average, explain 56.5% ± 8.7% and 57.5% ± 14.9% of the
measured peak allocated CUDA memory, whereas for the convolutional layer, Mnon-DP and MDP
explain only 17.7% ± 7.1% and 6.15% ± 0.03% of the measured peak allocated memory.

4 Related Work

Gradient Clipping. At the heart of implementing DP-SGD is the need to compute clipped gradients,
for which there are several different approaches. A first option, as implemented in Opacus, is to
directly compute and clip the per-sample gradients. A second option is to compute only the norm
of each sample’s gradient (in an exact or approximate form), and form the weighted average loss
over the batch by weighting samples according to their norm. Typically, each sample’s weight is
C/max(Ni, C), where C is the clipping threshold and Ni is the norm of the sample’s gradient. The
gradient of this loss with respect to the parameters yields the average of clipped gradients. This
option was proposed by Goodfellow [6] with exact norms, and was considered more recently along
with Johnson-Lindenstrauss projections [3] to compute approximate gradient norms.

8

Goodfellow’s method is based on computing per-sample `2-norms of the gradients and is restricted to
fully-connected layers; more recently, Rochette et al. [17] extended it to CNNs. Lee and Kifer [10]
propose computing the norm of the per-sample gradients directly, hence doing two passes of back-
propagation: one pass for obtaining the norm, and one pass for using the norm as a weight. In Opacus
per-sample gradients are obtained in a single back-propagation pass, without performance or accuracy
penalties of alternative techniques.

Shortly after an initial version of this work was published, Li et al. [11] generalized the Goodfellow
method to handle sequential inputs, making fine-tuning large Transformers under DP computationally
efficient. The proposed method, ghost clipping, is memory-efficient and has good throughput. In
their experiments on large language models, Opacus is as good in memory efficiency and better in
throughput than JAX, thanks to some improvements in the implementation. We plan to incorporate
such improvements to optimize performance of Opacus further.

Frameworks for differentially private learning. TensorFlow Privacy and PyVacy are two exist-
ing frameworks providing implementation of DP-SGD for TensorFlow and PyTorch, respectively.
BackPACK [4], another framework for DP-SGD, exploits Jacobians for efficiency. BackPACK cur-
rently supports only fully connected or convolutional layers, and several activation layers (recurrent
and residual layers are not yet supported). Objax [15] is a machine learning framework for JAX
and also provides a DP-SGD implementation. The per-sample gradient clipping in Objax is based
on a vmap method. It closely resembles the approach implemented in Subramani et al. [19] and we
believe benchmark findings are applicable to both implementations. In Section 3 we compare the
performance of these frameworks with Opacus.

Finally, we mention alternative approaches to ML training under different notions of privacy and
security: using secure hardware to support oblivious training over encrypted data [16], or relying on
secure multi-party computation techniques (SMPC) to train over data jointly held by several protocol
participants [7].

5 Conclusions

Opacus is a PyTorch library for training deep learning models with differential privacy guarantees.
The system design aims to provide simplicity, flexibility, and speed, for maximal compatibility with
existing ML pipelines. We have outlined how these design principles have influenced the features of
Opacus, and demonstrated that Opacus not only outperforms existing frameworks for training with
differential privacy, but performs competitively with custom JIT compiled DP-SGD implementations
on a variety of models and datasets.

Opacus is actively maintained as an open source project, supported primarily by the privacy-preserving
machine learning team at Meta AI. A number of extensions and upgrades are planned for Opacus in
the future, including enhanced flexibility for custom components, further efficiency improvements,
and improved integration with the PyTorch ecosystem through projects like PyTorch Lightning.

Acknowledgements

We are extremely grateful to Peter Romov for his substantial and valuable contributions to the Opacus
codebase. Opacus also owes a debt of thanks to all of its open-source contributors who continuously
helped in the development and maintaining of the Opacus library.

References
[1] Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. “Deep Learning with Differential Privacy”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (2016), pp. 308–318.

[2] Raef Bassily, Adam Smith, and Abhradeep Thakurta. “Private empirical risk minimization:
Efficient algorithms and tight error bounds”. In: 55th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE. 2014, pp. 464–473.

9

[3] Zhiqi Bu, Sivakanth Gopi, Janardhan Kulkarni, Yin Tat Lee, Hanwen Shen, and Uthaipon
Tantipongpipat. “Fast and Memory Efficient Differentially Private-SGD via JL Projections”.
In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 34. 2021, pp. 19680–
19691.

[4] Felix Dangel, Frederik Kunstner, and Philipp Hennig. “BackPACK: Packing more into Back-
prop”. In: International Conference on Learning Representations (ICLR). 2020.

[5] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. “Calibrating noise to
sensitivity in private data analysis”. In: Theory of Cryptography Conference. 2006, pp. 265–
284.

[6] Ian Goodfellow. “Efficient per-example gradient computations”. In: arXiv preprint
arXiv:1510.01799 (2015).

[7] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Lau-
rens van der Maaten. “CrypTen: Secure Multi-Party Computation Meets Machine Learning”.
In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 34. 2021, pp. 4961–
4973.

[8] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. University of
Toronto, 2009. URL: http://www.cs.toronto.edu/~kriz/cifar.html.

[9] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST database of handwrit-
ten digits. 1998. URL: http://yann.lecun.com/exdb/mnist/.

[10] Jaewoo Lee and Daniel Kifer. “Scaling up Differentially Private Deep Learning with Fast
Per-Example Gradient Clipping”. In: Proceedings on Privacy Enhancing Technologies 2021.1
(2021), pp. 128–144.

[11] Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. “Large language mod-
els can be strong differentially private learners”. In: International Conference on Learning
Representations (ICLR) (2022).

[12] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. “Learning Word Vectors for Sentiment Analysis”. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies -
Volume 1. 2011, pp. 142–150.

[13] Ilya Mironov. “Rényi Differential Privacy”. In: 2017 IEEE 30th Computer Security Founda-
tions Symposium (CSF). 2017, pp. 263–275.

[14] Ilya Mironov, Kunal Talwar, and Li Zhang. “Rényi Differential Privacy of the Sampled
Gaussian Mechanism”. In: arXiv preprint arXiv:1908.10530 (2019).

[15] Objax Developers. Objax. Version 1.2.0. 2020. URL: https://github.com/google/objax.
[16] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil

Vaswani, and Manuel Costa. “Oblivious Multi-Party Machine Learning on Trusted Processors”.
In: Proceedings of the 25th USENIX Conference on Security Symposium. 2016, pp. 619–636.

[17] Gaspar Rochette, Andre Manoel, and Eric W Tramel. “Efficient Per-Example Gradient Com-
putations in Convolutional Neural Networks”. In: arXiv preprint arXiv:1912.06015 (2019).

[18] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. “Stochastic gradient descent
with differentially private updates”. In: IEEE Global Conference on Signal and Information
Processing (GlobalSIP). 2013, pp. 245–248.

[19] Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath. “Enabling Fast Differentially
Private SGD via Just-in-Time Compilation and Vectorization”. In: Advances in Neural Infor-
mation Processing Systems (NeurIPS). Vol. 34. 2021, pp. 26409–26421.

10

http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://github.com/google/objax

Appendix

A Micro-Batching

The following code snippet is a naïve way to yield the per-sample gradients through micro-batching.

for batch in Dataloader(train_dataset, batch_size):
all_per_sample_gradients = []
for x,y in batch:

y_hat = model(x)
loss = criterion(y_hat, y)
loss.backward()

per_sample_grads = [p.grad.detach().clone() for p in model.parameters()]

all_per_sample_gradients.append(per_sample_grads)
model.zero_grad() # reset p.grad

B Vectorized Computation

In accordance with its speed objective, Opacus supports computing per-sample gradients efficiently,
in a vectorized manner. This is achieved by deriving a per-sample gradient formula for every layer and
transforming it into a form that can be implemented using a single application of the einsum operator.
Due to space constraints, we discuss this approach only for the nn.Linear layer. The implementation
details for other layers and other related tutorials can be found in opacus.ai/tutorials.

Consider one linear layer with weight matrix W . We omit the bias from the forward pass equation
and denote the forward pass by Y = WX , where X is the input and Y is the output of the linear
layer. X is a matrix of size d × B, with B columns (B is the batch size), where each column is
an input vector of dimension d. Similarly, the output matrix Y would be of size r ×B where each
column is the output vector corresponding to an element in the batch and r is the output dimension.

The forward pass can be written as follows:

Y
(b)
i =

d∑
j=1

Wi,jX
(b)
j ,

where Y (b)
i denotes the i’th coordinate of the b’th sample in the batch.

In an ML problem, we typically need the derivative of the loss with respect to weights. Correspond-
ingly, in Opacus we need the “per-sample” version of that, which is the per-sample derivative of the
loss with respect to the weights W :

∂L

∂z
=

B∑
b=1

r∑
i′=1

∂L

∂Y
(b)
i′

∂Y
(b)
i′

∂z
.

Applying the chain rule above, we can now replace variable z with Wi,j and get

∂L

∂Wi,j
=

B∑
b=1

r∑
i′=1

∂L

∂Y
(b)
i′

∂Y
(b)
i′

∂Wi,j
.

We know from Y =WX that
∂Y

(b)

i′
∂Wi,j

is X(b)
j when i = i′, and is 0 otherwise. Continuing the above

we have
∂L

∂Wi,j
=

B∑
b=1

∂L

∂Y
(b)
i′

X
(b)
j .

This equation corresponds to a matrix multiplication in PyTorch. In a regular backpropagation, the
gradients of the loss function with respect to the weights (i.e., the gradients) are computed for the

11

https://opacus.ai/tutorials

output of each layer and averaged over the batch. Since Opacus requires computing per-sample
gradients, what we need is the following:

∂Lbatch

∂Wi,j
=

∂L

∂Y
(b)
i′

X
(b)
j . (4)

More generally, in a neural network with more layers, equation (4) can be written as

∂Lbatch

∂W
(l)
i,j

=
∂L

∂Z
(l)(b)
i

Z
(l−1)(b)
j (5)

for every layer l, where Z(l)(b)
i is the activation of the hidden layer l for the b’th element of the batch

of the neuron i. We refer to ∂L

∂Z
(l)(b)
i

as the highway gradient.

We now explain how we compute the per-sample gradient equation (5) in Opacus efficiently. In
order to remove the sum reduction to get to the equations (4) and (5), we need to replace the
matrix multiplication with a batched outer product. In PyTorch, einsum allows us to do that in
vectorized form. The function einsum computes multi-dimensional linear algebraic array operations
by representing them in a short-hand format based on the Einstein summation convention.

For instance, for computing the per-sample gradients for a linear layer, the einsum function can be
written as torch.einsum("n...i,n...j->nij", B, A), where variables A and B refer to activa-
tions and backpropagations, respectively. In Opacus activations and backpropagations essentially
contain what we need for equation (5): using module and tensor hooks in PyTorch, Opacus stores
the activations Z(l−1)(b)

j in forward hooks and access the highway gradients ∂L

∂Z
(l)(b)
i

through back-

ward hooks. That is how the method torch.einsum("n...i,n...j->nij", B, A) implements
equation (5) for computing per-sample gradients for a nn.Linear layer. To understand the einsum
expression itself, it is useful to think of it as a generalized version of torch.bmm (batch matrix
multiplication) for multi-dimensional inputs. For 2D matrices A and B, einsum is equivalent to
torch.bmm(B.unsqueeze(2), A.unsqueeze(1)). For higher dimensional inputs the idea is the
same, while we also sum over extra dimensions.

C Detection of DP Violations

In this section we explain how Opacus can detect whether an operation violates some DP guarantees
by applying the following criteria. First, Opacus checks if all layers in the model are supported.
Second, Opacus checks for violations that make a model incompatible with differentially private
training, which is usually due to one of the two issues: 1) the model tracks some extra information not
covered by DP guarantees, or 2) a module is known to do batch-level computations, thus rendering
the computation of per-sample gradients impossible.

Some examples: 1) Opacus does not allow models to have batch normalization layers, as they
share information across samples; 2) Opacus does not allow track_running_stats in instance-
normalization layers, as they track statistics that are not covered by DP guarantees.

The above checks in Opacus for DP compatibility are not exhaustive. In particular, Opacus has no
way of checking whether the model maintains the independence of the individual samples or tracks
extraneous statistics. We plan to investigate ways to address this in the future releases of Opacus.

D Tracking Gradients

In this section we explain how Opacus makes it easy to keep track of the gradient at different stages
of DP training. In the following code snippet, we show how in Opacus we can access intermediate
stages of gradient computation throughout training:

model, optimizer and data_loader are initialized with make_private()

for data, labels in data_loader:
output = model(data)

12

loss = criterion(output, labels)
loss.backward()

print(p.grad) # normal gradients computed by PyTorch autograd
print(p.grad_sample) # per-sample gradients computed by Opacus

(no clipping, no noise)

optimizer.step()

print(p.grad_sample) # same as before optimizer.step() - this field is unchanged
print(p.summed_grad) # clipped and aggregated over a batch, but no noise
print(p.grad) # final gradients (clipped, noise added, aggregated over a batch)

optimizer.zero_grad() # all gradients are None now

E Additional Experimental Results

E.1 End-to-end benchmarks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0

10

20

30

40

50

60

R
un

tim
e

(s
)

JAX (DP)
PyTorch without DP
Opacus
BackPACK
Custom TFP (XLA)
PyVacy

(a) MNIST with CNN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0

25

50

75

100

125

150

R
un

tim
e

(s
)

JAX (DP)
PyTorch without DP
Opacus
BackPACK
Custom TFP (XLA)
PyVacy

(b) CIFAR-10 with CNN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0

2

4

6

8
R

un
tim

e
(s

)
JAX (DP)
PyTorch without DP
Opacus
Custom TFP (XLA)
PyVacy

(c) IMDb with Embedding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0

200

400

600

800

1000

R
un

tim
e

(s
)

JAX (DP)
PyTorch without DP
Opacus
Custom TFP (XLA)
PyVacy

(d) IMDb with LSTM

Figure 4: Cumulative runtime over 20 epochs with batch size 512 for each framework. Using JIT
compilation results in a slower first epoch.

Fig. 4 shows each framework’s cumulative runtime over 20 epochs with batch size 512 on each end-
to-end model training task. Both JAX (DP) and Custom TFP (XLA) incur a large runtime overhead
during the first epoch of up to 101× and 625× the runtime of subsequent epochs respectively due to
JIT compilation. If training for relatively few epochs, disabling JIT compilation or using a framework
that is optimized to run without JIT may reduce total runtime.

E.2 Microbenchmarks

Opacus provides custom implementations for the multi-head attention, RNN, GRU, and LSTM
layers, which can be wrapped in GradSampleModule to enable training with DP. Fig. 5 compares
the runtime and peak memory usage of the torch.nn module, the corresponding Opacus module
without DP, and the corresponding Opacus module wrapped in GradSampleModule with DP enabled
for these layers.

13

16 32 64 128 256 512
Batch Size

0

5

10

15

R
un

tim
e

(m
s)

1.3 1.4 1.4 1.4 1.7
3.3

1.4 1.4 1.4 1.4 1.7
3.32.7 2.8 2.8 2.8 2.8 3.9

16 32 64 128 256 512
Batch Size

0

200

400

600

M
em

or
y

(M
B

)

16 31 63
12

5 24
6

49
3

16 31 62
12

4 24
6

49
3

23 34 65
12

7 24
9

49
5

MHA
DPMHA
GSM(DPMHA)

(a) Multi-head Attention

16 32 64 128 256 512
Batch Size

0

50

100

150

R
un

tim
e

(m
s)

3.2 3.3 3.3 3.3 5.6 7.120 20 20 20 26 26
51 51 51 51 63 63

16 32 64 128 256 512
Batch Size

0

200

400

600

M
em

or
y

(M
B

)

6.3 12 24 47 94
18

8

5.9 12 24 46 92
18

3

6.3 13 25 49 97
19

4

RNN
DPRNN
GSM(DPRNN)

(b) RNN

16 32 64 128 256 512
Batch Size

0

50

100

150

R
un

tim
e

(m
s)

5.3 5.4 5.6 5.8 6.6 8.5
58 57 57 64 67 67

95 95 95 10
5 10

9
10

8

16 32 64 128 256 512
Batch Size

0

200

400

600

M
em

or
y

(M
B

)

13 25 47 94
18

5
36

9

12 23 47 92
18

4
36

7

17 32 63
12

5 25
0

49
9

GRU
DPGRU
GSM(DPGRU)

(c) GRU

16 32 64 128 256 512
Batch Size

0

50

100

150

R
un

tim
e

(m
s)

5.2 5.3 5.5 5.8 6.5 8

49 49 56 57 59 59
85 85 97 98 10

0 10
4

16 32 64 128 256 512
Batch Size

0

200

400

600

M
em

or
y

(M
B

)

13 25 48 95
18

6
37

1

12 22 44 86
17

1
34

1

18 34 68
13

6 26
8

53
5

LSTM
DPLSTM
GSM(DPLSTM)

(d) LSTM

Figure 5: Comparing the torch.nn module, the corresponding Opacus module without DP, and the
Opacus module wrapped in GradSampleModule with DP enabled for the multi-head attention, RNN,
GRU, and LSTM layers. Top: Mean runtime (ms). Bottom: Peak allocated memory (MB).

For RNN-based layers, Opacus’s custom modules are responsible for most of the runtime overhead
of enabling DP, as they are up to 11× slower than the corresponding torch.nn module. Wrapping
the custom modules in GradSampleModule results in a ~2× slowdown.

The small peak allocated memory overhead (where applicable) is purely due to wrapping the custom
modules in GradSampleModule and collecting per-sample gradients, as Opacus’s custom modules
tend to use slightly less memory than the corresponding torch.nn modules.

Table 2 (runtime) and Table 3 (memory) include the raw data used to generate Fig. 2 and Fig. 5.
Table 4 includes a breakdown of CUDA memory usage, as well as L/C and (L/C)/b for each layer
and batch size.

E.3 Experiment Setup

The exact hardware configurations are listed below. Software versions are listed in Table 5.

End-to-end benchmarks. The end-to-end benchmarks were executed within a virtual environment
on a public cloud with an Intel(R) Xeon(R) CPU @ 2.20GHz, NVIDIA A100 SXM4 (40GB VRAM),
and 83GB RAM. We created and ran a separate Docker container for each framework. The Docker
image source is nvidia/cuda:11.4.2-cudnn8-devel-ubuntu20.04.

Microbenchmarks. The microbenchmarks were executed on a cloud instance running Ubuntu
18.04.5 LTS with an Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz, NVIDIA A100 SXM4
(40GB VRAM), and 1.1TB of RAM. CUDA memory was allocated in block sizes of 512.

For details on the settings for each layer, refer to https://github.com/pytorch/opacus/blob/
main/benchmarks/config.json.

14

https://github.com/pytorch/opacus/blob/main/benchmarks/config.json
https://github.com/pytorch/opacus/blob/main/benchmarks/config.json

Runtime (ms)
Layer Batch size nn.module DPModule GSM(module) Factor (DP)

Conv

16 2.66

n/a

6.18 2.32
32 4.38 10.9 2.50
64 8.71 21.7 2.49

128 14.3 40.0 2.79
256 27.6 79.0 2.87
512 54.8 157 2.87

LayerNorm

16 0.27

n/a

0.52 1.92
32 0.27 0.52 1.91
64 0.27 0.52 1.91

128 0.27 0.52 1.91
256 0.27 0.52 1.90
512 0.27 0.52 1.91

InstanceNorm

16 0.41

n/a

0.74 1.81
32 0.41 0.74 1.81
64 0.41 0.75 1.81

128 0.73 1.13 1.55
256 1.43 2.20 1.54
512 2.77 4.28 1.54

GroupNorm

16 0.30

n/a

0.59 1.94
32 0.30 0.59 1.94
64 0.30 0.59 1.94

128 0.30 0.59 1.95
256 0.30 0.59 1.95
512 0.31 0.60 1.91

Linear

16 0.37

n/a

0.65 1.76
32 0.38 0.66 1.75
64 0.38 0.66 1.76

128 0.38 0.68 1.79
256 0.39 1.08 2.80
512 0.37 2.05 5.49

Embedding

16 0.25

n/a

0.50 2.01
32 0.25 0.86 3.45
64 0.25 1.62 6.52

128 0.25 3.13 12.4
256 0.25 6.15 24.9
512 0.25 12.2 48.7

MHA

16 1.34 1.41 2.72 2.02
32 1.36 1.43 2.76 2.02
64 1.37 1.43 2.76 2.02

128 1.36 1.43 2.77 2.04
256 1.70 1.72 2.78 1.64
512 3.29 3.27 3.91 1.19

RNN

16 3.20 20.4 51.3 16.0
32 3.32 20.0 50.7 15.3
64 3.34 20.0 50.8 15.2

128 3.33 20.0 51.1 15.4
256 5.59 25.8 63.1 11.3
512 7.08 25.6 62.8 8.87

GRU

16 5.25 57.5 95.0 18.1
32 5.36 56.8 94.6 17.7
64 5.61 56.9 94.7 16.9

128 5.84 63.9 106 18.2
256 6.64 66.8 110 16.5
512 8.51 67.2 109 12.8

LSTM

16 5.21 49.0 85.1 16.3
32 5.32 48.8 84.8 15.9
64 5.48 56.0 96.5 17.6

128 5.84 56.6 97.8 16.7
256 6.55 59.0 101 15.4
512 8.04 59.1 105 13.0

Table 2: Mean runtime (in milliseconds) for one forward and one backward pass for the torch.nn
module, the corresponding Opacus module without DP (where applicable), and the corresponding
Opacus or torch.nn module wrapped in GradSampleModule with DP enabled. The factor is the
runtime of the layer with DP enabled divided by the runtime of the torch.nn module.

15

Peak allocated CUDA memory (MB)
Layer Batch size nn.module DPModule GSM(module) Factor (DP)

Conv

16 738

n/a

1157 1.57
32 929 2312 2.49
64 1307 4621 3.54

128 2065 9240 4.48
256 3582 18479 5.16
512 6615 36955 5.59

LayerNorm

16 0.03

n/a

0.04 1.32
32 0.05 0.07 1.33
64 0.10 0.14 1.33

128 0.20 0.27 1.33
256 0.40 0.53 1.33
512 0.79 1.06 1.33

InstanceNorm

16 6.35

n/a

7.39 1.17
32 12.7 14.8 1.17
64 25.4 29.6 1.17

128 50.7 59.1 1.17
256 101 118 1.17
512 203 236 1.17

GroupNorm

16 0.11

n/a

0.14 1.30
32 0.21 0.27 1.32
64 0.41 0.54 1.32

128 0.81 1.07 1.32
256 1.61 2.14 1.33
512 3.22 4.27 1.33

Linear

16 3.28

n/a

36.9 11.2
32 3.42 70.7 20.7
64 3.68 138 37.6

128 4.20 273 65.0
256 5.25 543 103
512 8.39 1083 129

Embedding

16 24.0

n/a

280 11.7
32 24.0 536 22.3
64 24.1 1048 43.5

128 24.2 2072 85.8
256 24.3 4122 170
512 24.6 8217 334

MHA

16 15.7 15.7 23.3 1.48
32 31.3 31.3 33.9 1.08
64 62.5 62.3 64.9 1.04

128 125 125 127 1.02
256 247 247 249 1.01
512 493 493 496 1.01

RNN

16 6.27 5.94 6.35 1.01
32 12.1 11.6 13.1 1.08
64 23.9 23.5 25.1 1.05

128 47.3 46.1 48.5 1.03
256 94.2 92.0 97.3 1.03
512 188 184 195 1.04

GRU

16 12.7 12.2 16.6 1.31
32 24.6 23.4 32.0 1.30
64 47.2 46.8 63.1 1.34

128 94.2 92.3 125 1.33
256 185 184 250 1.35
512 369 368 499 1.35

LSTM

16 13.2 11.5 18.0 1.37
32 24.7 22.0 34.5 1.40
64 48.2 43.7 68.3 1.42

128 94.8 85.9 136 1.44
256 186 171 268 1.44
512 371 342 536 1.44

Table 3: Peak allocated CUDA memory (in MB) for one forward and one backward pass for the
torch.nn module, the corresponding Opacus module without DP (where applicable), and the
corresponding Opacus or torch.nn module wrapped in GradSampleModule with DP enabled. The
factor is the peak allocated memory for the layer with DP enabled divided by the peak allocated
memory for the torch.nn module. 16

Layer Batch size Input (MB) Labels (MB) C Module (L) L/C (L/C)/b

Conv

16 21.0 16.4 3.36

1.05

0.31 0.02
32 41.0 33.6 3.38 0.31 0.010
64 81.9 65.5 3.33 0.32 0.005

128 164 131 3.33 0.32 0.002
256 328 262 3.33 0.32 0.001
512 655 524 3.33 0.32 0.001

LayerNorm

16 0.004 0.004 0.001

0.001

1.33 0.08
32 0.008 0.008 0.001 1.33 0.04
64 0.02 0.02 0.001 1.33 0.02

128 0.03 0.03 0.001 1.33 0.01
256 0.07 0.07 0.001 1.33 0.005
512 0.13 0.13 0.001 1.33 0.003

InstanceNorm

16 1.05 1.05 0.20

0.002

0.01 0.001
32 2.10 2.10 0.20 0.01 0.000
64 4.19 4.19 0.20 0.01 0.000

128 8.39 8.39 0.20 0.01 0.000
256 16.8 16.8 0.20 0.01 0.000
512 33.6 33.6 0.20 0.01 0.000

GroupNorm

16 0.02 0.02 0.003

0.002

0.67 0.04
32 0.03 0.03 0.003 0.67 0.02
64 0.07 0.07 0.003 0.67 0.01

128 0.13 0.13 0.003 0.67 0.005
256 0.26 0.26 0.003 0.67 0.003
512 0.52 0.52 0.003 0.67 0.001

Linear

16 0.03 0.03 0.006

1.05

171 10.7
32 0.07 0.07 0.006 171 5.34
64 0.13 0.13 0.006 171 2.67

128 0.26 0.26 0.006 171 1.34
256 0.52 0.52 0.006 171 0.67
512 1.05 1.05 0.006 171 0.33

Embedding

16 0.001 0.007 0.001

8

9259 579
32 0.001 0.01 0.001 9804 306
64 0.001 0.03 0.001 9901 155

128 0.001 0.05 0.001 9901 77.4
256 0.002 0.10 0.001 9901 38.7
512 0.004 0.20 0.001 9901 19.3

MHA

16 0.41 0.41 0.08

0.16

2.12 0.13
32 0.82 0.82 0.08 2.12 0.07
64 1.64 1.64 0.08 2.12 0.03

128 3.28 3.28 0.08 2.12 0.02
256 6.55 6.55 0.08 2.12 0.008
512 13.1 13.1 0.08 2.12 0.004

RNN

16 0.82 0.82 0.15

0.08

0.53 0.03
32 1.64 1.64 0.15 0.53 0.02
64 3.28 3.28 0.15 0.53 0.008

128 6.55 6.55 0.15 0.53 0.004
256 13.1 13.1 0.15 0.53 0.002
512 26.2 26.2 0.15 0.53 0.001

GRU

16 0.82 0.82 0.15

0.24

1.58 0.10
32 1.64 1.64 0.15 1.58 0.05
64 3.28 3.28 0.15 1.58 0.02

128 6.55 6.55 0.15 1.58 0.01
256 13.1 13.1 0.15 1.58 0.006
512 26.2 26.2 0.15 1.58 0.003

LSTM

16 0.82 0.82 0.15

0.32

2.11 0.13
32 1.64 1.64 0.15 2.11 0.07
64 3.28 3.28 0.15 2.11 0.03

128 6.55 6.55 0.15 2.11 0.02
256 13.1 13.1 0.15 2.11 0.008
512 26.2 26.2 0.15 2.11 0.004

Table 4: Measured sizes (in MB) for the input, labels/output, and the torch.nn module for each
layer and batch size. These numbers are (almost) identical for the corresponding Opacus module
(±1%) and when wrapped in GradSampleModule. C is calculated as the size of the input and 2×
the size of the labels (to account for model outputs) divided by the batch size.

17

Software Version

Python 3.8.10 (end-to-end)
3.9.7 (microbenchmarks)

dm-haiku 0.0.5
JAX 0.2.25
jaxlib 0.1.73

PyTorch 1.10.0

Opacus 1.0.0

BackPACK 0.1
backpack-for-pytorch 1.4.0

TensorFlow 2.7.0
TensorFlow Privacy 0.7.3

PyVacy 0.0.1 + commit 2e0a9f

Table 5: Software versions used in the end-to-end and microbenchmarks. The latter only use Python,
PyTorch, and Opacus.

18

	Background and Introduction
	Design Principles and Features
	Benchmarks
	End-to-end benchmarks
	Frameworks
	Experimental setup
	Results

	Microbenchmarks
	Experimental setup
	Memory requirements of DP
	Results

	Related Work
	Conclusions
	Micro-Batching
	Vectorized Computation
	Detection of DP Violations
	Tracking Gradients
	Additional Experimental Results
	End-to-end benchmarks
	Microbenchmarks
	Experiment Setup

