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Abstract

Conventional neural autoregressive decod-
ing commonly assumes a fixed left-to-right
generation order, which may be sub-optimal.
In this work, we propose a novel decod-
ing algorithm – InDIGO – which supports
flexible sequence generation in arbitrary or-
ders through insertion operations. We extend
Transformer, a state-of-the-art sequence gen-
eration model, to efficiently implement the
proposed approach, enabling it to be trained
with either a pre-defined generation order or
adaptive orders obtained from beam-search.
Experiments on four real-world tasks, in-
cluding word order recovery, machine trans-
lation, image caption and code generation,
demonstrate that our algorithm can generate
sequences following arbitrary orders, while
achieving competitive or even better perfor-
mance compared to the conventional left-to-
right generation. The generated sequences
show that InDIGO adopts adaptive genera-
tion orders based on input information.

1 Introduction

Neural autoregressive models have become the de
facto standard in a wide range of sequence genera-
tion tasks, such as machine translation (Bahdanau
et al., 2015), summarization (Rush et al., 2015) and
dialogue systems (Vinyals and Le, 2015). In these
studies, a sequence is modeled autoregressively
with the left-to-right generation order, which raises
the question of whether generation in an arbitrary
order is worth considering (Vinyals et al., 2016;
Ford et al., 2018). Nevertheless, previous studies
on generation orders mostly resort to a fixed set of
generation orders, showing particular choices of
ordering are helpful (Wu et al., 2018; Ford et al.,
2018; Mehri and Sigal, 2018), without providing
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Figure 1: An example of InDIGO. At each step,
we simultaneously predict the next token and its
(relative) position to be inserted. The final output
sequence is obtained by mapping the words based
on their positions.

an efficient algorithm for finding adaptive genera-
tion orders, or restrict the problem scope to n-gram
segment generation (Vinyals et al., 2016).

In this paper, we propose a novel decoding al-
gorithm, Insertion-based Decoding with Inferred
Generation Order (InDIGO), which models gener-
ation orders as latent variables and automatically
infers the generation orders by simultaneously pre-
dicting a word and its position to be inserted at
each decoding step. Given that absolute positions
are unknown before generating the whole sequence,
we use a relative-position-based representation to
capture generation orders. We show that decoding
consists of a series of insertion operations with a
demonstration shown in Figure 1.

We extend Transformer (Vaswani et al., 2017)
for supporting insertion operations, where the gen-
eration order is directly captured as relative po-
sitions through self-attention inspired by (Shaw
et al., 2018). For learning, we maximize the evi-
dence lower-bound (ELBO) of the maximum like-
lihood objective, and study two approximate pos-
terior distributions of generation orders based on
a pre-defined generation order and adaptive orders



obtained from beam-search, respectively.
Experimental results on word order recovery,

machine translation, code generation and image
caption demonstrate that our algorithm can gener-
ate sequences with arbitrary orders, while achiev-
ing competitive or even better performance com-
pared to the conventional left-to-right generation.
Case studies show that the proposed method adopts
adaptive orders based on input information. The
code will be released as part of the official repo of
Fairseq (https://github.com/pytorch/fairseq).

2 Neural Autoregressive Decoding

Let us consider the problem of generating a se-
quence y = (y1, ..., yT ) conditioned on some in-
puts, e.g., a source sequence x = (x1, ..., xT ′).
Our goal is to build a model parameterized by θ
that models the conditional probability of y given
x, which is factorized as:

pθ(y|x) =
T∏
t=0

pθ(yt+1|y0:t, x1:T ′), (1)

where y0 and yT+1 are special tokens 〈s〉 and 〈/s〉,
respectively. The model sequentially predicts the
conditional probability of the next token at each
step t, which can be implemented by any func-
tion approximator such as RNNs (Bahdanau et al.,
2015) and Transformer (Vaswani et al., 2017).

Learning Neural autoregressive model is com-
monly learned by maximizing the conditional like-
lihood log p(y|x) =

∑T
t=0 log pθ(yt+1|y0:t, x1:T ′)

given a set of parallel examples.

Decoding A common way to decode a sequence
from a trained model is to make use of the autore-
gressive nature that allows us to predict one word
at each step. Given any source x, we essentially
follow the order of factorization to generate tokens
sequentially using some heuristic-based algorithms
such as greedy decoding and beam search.

3 Insertion-based Decoding with
Inferred Generation Order (InDIGO)

Eq. 1 explicitly assumes a left-to-right (L2R) gen-
eration order of the sequence y. In principle, we
can factorize the sequence probability in any per-
mutation and train a model for each permutation
separately. As long as we have infinite amount of
data with proper optimization performed, all these
models are equivalent. Nevertheless, Vinyals et al.

(2016) have shown that the generation order of a
sequence actually matters in many real-world tasks,
e.g., language modeling.

Although the L2R order is a strong inductive
bias, as it is natural for most human-beings to read
and write sequences from left to right, L2R is not
necessarily the optimal option for generating se-
quences. For instance, people sometimes tend to
think of central phrases first before building up a
whole sentence; For programming languages, it is
beneficial to be generated based on abstract syntax
trees (Yin and Neubig, 2017).

Therefore, a natural question arises, how can we
decode a sequence in its best order?

3.1 Orders as Latent Variables
We address this question by modeling generation
orders as latent variables. Similar to Vinyals et al.
(2016), we rewrite the target sequence y in a par-
ticular order π = (z2, ..., zT , zT+1) ∈ PT 1 as a set
yπ = {(y2, z2), ..., (yT+1, zT+1)}, where (yt, zt)
represents the t-th generated token and its absolute
position, respectively. Different from the common
notation, the target sequence is 2-step drifted be-
cause the two special tokens (y0, z0) = (〈s〉, 0)
and (y1, z1) = (〈/s〉, T + 1) are always prepended
to represent the left and right boundaries, respec-
tively. Then, we model the conditional probability
as the joint distribution of words and positions by
marginalizing all the orders:

pθ(y|x) =
∑
π∈PT

pθ(yπ|x),

where for each element:

pθ(yπ|x) = pθ(yT+2|y0:T+1, z0:T+1, x1:T ′)·
T∏
t=1

pθ(yt+1, zt+1|y0:t, z0:t, x1:T ′)
(2)

where the third special token yT+2 = 〈eod〉 is intro-
duced to signal the end-of-decoding, and p(yT+2|·)
is the end-of-decoding probability.

At decoding time, the factorization allows us to
decode autoregressively by predicting word yt+1

and its position zt+1 step by step. The generation
order is automatically inferred during decoding.

3.2 Relative Representation of Positions
It is difficult and inefficient to predict the absolute
positions zt without knowing the actual length T .

1 PT is the set of all the permutations of (1, ..., T ).
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One solution is directly using the absolute posi-
tions zt0, ..., z

t
t of the partial sequence y0:t at each

autoregressive step t. For example, the absolute
positions for the sequence (〈s〉, 〈/s〉, dream, I) are
(zt0 = 0, zt1 = 3, zt2 = 2, zt3 = 1) in Figure 1 at
step t = 3. It is however inefficient to model such
explicit positions using a single neural network
without recomputing the hidden states for the en-
tire partial sequence, as some positions are changed
at every step (as shown in Figure 1).

Relative Positions We propose using relative-
position representations rt0:t instead of absolute
positions zt0:t. We use a ternary vector rti ∈
{−1, 0, 1}t+1 as the relative-position representa-
tion for zti . The j-th element of rti is defined as:

rti,j =


−1 ztj > zti (left)
0 ztj = zti (middle)
1 ztj < zti (right)

, (3)

where the elements of rti show the relative po-
sitions with respect to all the other words in
the partial sequence at step t. We use a matrix
Rt =

[
rt0, r

t
1, ..., r

t
t

]
to show the relative-position

representations of all the words in the sequence.
The relative-position representation can always be
mapped back to the absolute position zti by:

zti =

t∑
j=0

max(0, rti,j) (4)

One of the biggest advantages for using such vector-
based representations is that at each step, updating
the relative-position representations is simply ex-
tending the relative-position matrix Rt with the
next predicted relative position, because the (left,
middle, right) relations described in Eq. (3) stay
unchanged once they are created. Thus, we update
Rt as follows:

Rt+1 =


rt+1
t+1,0

Rt
...

rt+1
t+1,t

−rt+1
t+1,0 · · · −rt+1

t+1,t 0


(5)

where we use rt+1
t+1 to represent the relative position

at step t+1. This append-only property enables our
method to reuse the previous hidden states without
recomputing the hidden states at each step. For
simplicity, the superscript of r is omitted from now
on without causing conflicts.

Algorithm 1 Insertion-based Decoding

Initialize: y = (〈s〉, 〈/s〉), R =
[

0 1
−1 0

]
, t = 1

repeat
Predict the next word yt+1 based on y, R.
if yt+1 is 〈eod〉 then

break
end if
Choose an existing word yk ∈ y;
Choose the left or right (s) of yk to insert;
Obtain the next position rt+1 with k, s (Eq. (6)).
Update R by appending rt+1 (Eq. (5)).
Update y by appending yt+1

Update t = t+ 1
until Reach the maximum length
Map back to absolute positions π (Eq. (4))
Reorder y: yzi = yi ∀zi ∈ π, i ∈ [0, t]

3.3 Insertion-based Decoding
Given a partial sequence y0:t and its correspond-
ing relative-position representations r0:t, not all
of the 3t+2 possible vectors are valid for the next
relative-position representation, rt+1. Only these
vectors corresponding to insertion operations sat-
isfy Eq. (4). In Algorithm 1, we describe an
insertion-based decoding framework based on this
observation. The next word yt+1 is predicted based
on y0:t and r0:t. We then choose an existing word
yk (0 ≤ k ≤ t)) from y0:t and insert yt+1 to its
left or right. As a result, the next position rt+1 is
determined by

rt+1,j =

{
s j = k

rk,j j 6= k
, ∀j ∈ [0, t] (6)

where s = −1 if yt+1 is on the left of yk, and
s = 1 otherwise. Finally, we use rt+1 to update
the relative-position matrix R as shown in Eq. (5).

4 Model

We present Transformer-InDIGO, an extension of
Transformer (Vaswani et al., 2017), supporting
insertion-based decoding. The overall framework
is shown in Figure 2.

4.1 Network Design
We extend the decoder of Transformer with relative-
position-based self-attention, joint word & position
prediction and position updating modules.

Self-Attention One of the major challenges that
prevents the vanilla Transformer from generating
sequences following arbitrary orders is that the
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<latexit sha1_base64="NlFKxwEorTyvX+ZWl7iisJb1VZk=">AAAB6HicbZC7SwNBEMbnfMbzFbW0WQyCVbiz0UYMimCZgHlAcoS9zVyyZm/v2N0TQgjY21goYus/Y2/nf+PmUWjiBws/vm+GnZkwFVwbz/t2lpZXVtfWcxvu5tb2zm5+b7+mk0wxrLJEJKoRUo2CS6wabgQ2UoU0DgXWw/71OK8/oNI8kXdmkGIQ067kEWfUWKty084XvKI3EVkEfwaFy0/34hEAyu38V6uTsCxGaZigWjd9LzXBkCrDmcCR28o0ppT1aRebFiWNUQfDyaAjcmydDokSZZ80ZOL+7hjSWOtBHNrKmJqens/G5n9ZMzPReTDkMs0MSjb9KMoEMQkZb006XCEzYmCBMsXtrIT1qKLM2Nu49gj+/MqLUDst+l7Rr3iF0hVMlYNDOIIT8OEMSnALZagCA4QneIFX5955dt6c92npkjPrOYA/cj5+AAb0jpI=</latexit><latexit sha1_base64="bH4UPRdYnmM6bMmSz7bDix7UCZc=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjW7EogguW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK0+jHs34ts4vSy09YeBj/8/hznnBAlnSrvut5VbWl5ZXcuv2xubW9s7hd29uopTSbFGYx7LZkAUciawppnm2Ewkkijg2AgGV+O8cY9SsVjc6mGCfkR6goWMEm2s6nWnUHRL7kTOIngzKF582OfJ+5dd6RQ+292YphEKTTlRquW5ifYzIjWjHEd2O1WYEDogPWwZFCRC5WeTQUfOkXG6ThhL84R2Ju7vjoxESg2jwFRGRPfVfDY2/8taqQ7P/IyJJNUo6PSjMOWOjp3x1k6XSaSaDw0QKpmZ1aF9IgnV5ja2OYI3v/Ii1E9Knlvyqm6xfAlT5eEADuEYPDiFMtxABWpAAeEBnuDZurMerRfrdVqas2Y9+/BH1tsP+HSQBg==</latexit><latexit sha1_base64="bH4UPRdYnmM6bMmSz7bDix7UCZc=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjW7EogguW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK0+jHs34ts4vSy09YeBj/8/hznnBAlnSrvut5VbWl5ZXcuv2xubW9s7hd29uopTSbFGYx7LZkAUciawppnm2Ewkkijg2AgGV+O8cY9SsVjc6mGCfkR6goWMEm2s6nWnUHRL7kTOIngzKF582OfJ+5dd6RQ+292YphEKTTlRquW5ifYzIjWjHEd2O1WYEDogPWwZFCRC5WeTQUfOkXG6ThhL84R2Ju7vjoxESg2jwFRGRPfVfDY2/8taqQ7P/IyJJNUo6PSjMOWOjp3x1k6XSaSaDw0QKpmZ1aF9IgnV5ja2OYI3v/Ii1E9Knlvyqm6xfAlT5eEADuEYPDiFMtxABWpAAeEBnuDZurMerRfrdVqas2Y9+/BH1tsP+HSQBg==</latexit><latexit sha1_base64="UuWujcJ1qnBgRNBp8ukQAU/1iwM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m82GNRBI8t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeTcoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrupX6TR5HEc7gHC7Bg2uowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8Al62MxQ==</latexit>

F
<latexit sha1_base64="uMv5FUJHmHt3pFNm7BO6XhGtAXY=">AAAB6HicbZC7SwNBEMbnfMbzFbW0WQyCVbiz0UYMCmKZgHlAcoS9zVyyZm/v2N0TQgjY21goYus/Y2/nf+PmUWjiBws/vm+GnZkwFVwbz/t2lpZXVtfWcxvu5tb2zm5+b7+mk0wxrLJEJKoRUo2CS6wabgQ2UoU0DgXWw/71OK8/oNI8kXdmkGIQ067kEWfUWKty084XvKI3EVkEfwaFy0/34hEAyu38V6uTsCxGaZigWjd9LzXBkCrDmcCR28o0ppT1aRebFiWNUQfDyaAjcmydDokSZZ80ZOL+7hjSWOtBHNrKmJqens/G5n9ZMzPReTDkMs0MSjb9KMoEMQkZb006XCEzYmCBMsXtrIT1qKLM2Nu49gj+/MqLUDst+l7Rr3iF0hVMlYNDOIIT8OEMSnALZagCA4QneIFX5955dt6c92npkjPrOYA/cj5+AAh4jpM=</latexit><latexit sha1_base64="HEQ4IExNQzo4E9k8+oDEYThRsbY=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjW7EoiAuW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK0+jHs34ts4vSy09YeBj/8/hznnBAlnSrvut5VbWl5ZXcuv2xubW9s7hd29uopTSbFGYx7LZkAUciawppnm2Ewkkijg2AgGV+O8cY9SsVjc6mGCfkR6goWMEm2s6nWnUHRL7kTOIngzKF582OfJ+5dd6RQ+292YphEKTTlRquW5ifYzIjWjHEd2O1WYEDogPWwZFCRC5WeTQUfOkXG6ThhL84R2Ju7vjoxESg2jwFRGRPfVfDY2/8taqQ7P/IyJJNUo6PSjMOWOjp3x1k6XSaSaDw0QKpmZ1aF9IgnV5ja2OYI3v/Ii1E9Knlvyqm6xfAlT5eEADuEYPDiFMtxABWpAAeEBnuDZurMerRfrdVqas2Y9+/BH1tsP+fiQBw==</latexit><latexit sha1_base64="HEQ4IExNQzo4E9k8+oDEYThRsbY=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjW7EoiAuW7AXaEOZTE/asZNJmJkIJfQJ3LhQxK0+jHs34ts4vSy09YeBj/8/hznnBAlnSrvut5VbWl5ZXcuv2xubW9s7hd29uopTSbFGYx7LZkAUciawppnm2Ewkkijg2AgGV+O8cY9SsVjc6mGCfkR6goWMEm2s6nWnUHRL7kTOIngzKF582OfJ+5dd6RQ+292YphEKTTlRquW5ifYzIjWjHEd2O1WYEDogPWwZFCRC5WeTQUfOkXG6ThhL84R2Ju7vjoxESg2jwFRGRPfVfDY2/8taqQ7P/IyJJNUo6PSjMOWOjp3x1k6XSaSaDw0QKpmZ1aF9IgnV5ja2OYI3v/Ii1E9Knlvyqm6xfAlT5eEADuEYPDiFMtxABWpAAeEBnuDZurMerRfrdVqas2Y9+/BH1tsP+fiQBw==</latexit><latexit sha1_base64="XFqyBFTgCEUxwJTuQd64ewaUeqA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m82GNREI8t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FipeTcoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ1P+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrupX6TR5HEc7gHC7Bg2uowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AmTGMxg==</latexit>

W
<latexit sha1_base64="SgWXombg1msUYlBJWSd7nhjmw3I=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zVyyZm/v2N0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIrg2rvvt5FZW19Y38puFre2d3b3i/kFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsObSd58QKV5LO/MKEE/on3JQ86osVat2S2W3LI7FVkGbw6lq8/C5SMAVLvFr04vZmmE0jBBtW57bmL8jCrDmcBxoZNqTCgb0j62LUoaofaz6aBjcmKdHgljZZ80ZOr+7shopPUoCmxlRM1AL2YT87+snZrwws+4TFKDks0+ClNBTEwmW5MeV8iMGFmgTHE7K2EDqigz9jYFewRvceVlaJyVPbfs1dxS5RpmysMRHMMpeHAOFbiFKtSBAcITvMCrc+88O2/O+6w058x7DuGPnI8fIjyOpA==</latexit><latexit sha1_base64="So0n/WFrGezzh4Ql0YSNr0dJmr0=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxVqXfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfK/oVr1C6gqlycAhHcAI+nEEJbqAMVWCA8ABP8OzcOY/Oi/M6LV1yZj0H8EfO2w8Ty5AY</latexit><latexit sha1_base64="So0n/WFrGezzh4Ql0YSNr0dJmr0=">AAAB6HicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLFMwFwgCWF2cjYZMzu7zMwKYckT2FgoYqsPY28jvo2TS6GJPwx8/P85zDknSATXxvO+naXlldW19dyGu7m1vbOb39uv6ThVDKssFrFqBFSj4BKrhhuBjUQhjQKB9WBwPc7r96g0j+WtGSbYjmhP8pAzaqxVqXfyBa/oTUQWwZ9B4fLDvUjev9xyJ//Z6sYsjVAaJqjWTd9LTDujynAmcOS2Uo0JZQPaw6ZFSSPU7Wwy6IgcW6dLwljZJw2ZuL87MhppPYwCWxlR09fz2dj8L2umJjxvZ1wmqUHJph+FqSAmJuOtSZcrZEYMLVCmuJ2VsD5VlBl7G9cewZ9feRFqp0XfK/oVr1C6gqlycAhHcAI+nEEJbqAMVWCA8ABP8OzcOY/Oi/M6LV1yZj0H8EfO2w8Ty5AY</latexit><latexit sha1_base64="9SEGhucspoU8Qdg45nZgK4r6jcA=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVanUG15tbdBcg68QpSgwLNQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni0Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxrMuQKmRFTSyhT3N5K2JgqyozNpmJD8FZfXiftq7rn1r2WW2vcFnGU4QzO4RI8uIYG3EMTfGCA8Ayv8OY8Oi/Ou/OxbC05xcwp/IHz+QOy9YzX</latexit>

…

Position Prediction

Word Prediction

…

(a)
<latexit sha1_base64="282JJehD7WAjx0hpBWFCbBzguNs=">AAAB6nicbVDLSgNBEOz1GeNr1aOXwSDES9j1oseAF48JmgckS5id9CZDZmeXmVkhLPkELx4U8eqH+A3e/As/wcnjoIkFDUVVN91dYSq4Np735aytb2xubRd2irt7+weH7tFxUyeZYthgiUhUO6QaBZfYMNwIbKcKaRwKbIWjm6nfekCleSLvzTjFIKYDySPOqLHSXZle9NySV/FmIKvEX5BS1a1/fwBAred+dvsJy2KUhgmqdcf3UhPkVBnOBE6K3UxjStmIDrBjqaQx6iCfnToh51bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ62ZuK/3mdzETXQc5lmhmUbL4oygQxCZn+TfpcITNibAllittbCRtSRZmx6RRtCP7yy6ukeVnxvYpft2l4MEcBTuEMyuDDFVThFmrQAAYDeIRneHGE8+S8Om/z1jVnMXMCf+C8/wChyI+F</latexit><latexit sha1_base64="NcIupzmf3RhxzTFJaklXvkry3Y0=">AAAB6nicbVC7SgNBFL0bXzG+Vu20GQxCbMKujZYBGwuLBM0DkiXMTmaTIbMzy8ysEJZ8gdhYKGLrn/gHdv6Fn+DkUWjigQuHc+7l3nvChDNtPO/Lya2srq1v5DcLW9s7u3vu/kFDy1QRWieSS9UKsaacCVo3zHDaShTFcchpMxxeTfzmPVWaSXFnRgkNYtwXLGIEGyvdlvBZ1y16ZW8KtEz8OSlW3Nr3x83RQ7XrfnZ6kqQxFYZwrHXb9xITZFgZRjgdFzqppgkmQ9ynbUsFjqkOsumpY3RqlR6KpLIlDJqqvycyHGs9ikPbGWMz0IveRPzPa6cmugwyJpLUUEFmi6KUIyPR5G/UY4oSw0eWYKKYvRWRAVaYGJtOwYbgL768TBrnZd8r+zWbhgcz5OEYTqAEPlxABa6hCnUg0IdHeIYXhztPzqvzNmvNOfOZQ/gD5/0H55aQeQ==</latexit><latexit sha1_base64="NcIupzmf3RhxzTFJaklXvkry3Y0=">AAAB6nicbVC7SgNBFL0bXzG+Vu20GQxCbMKujZYBGwuLBM0DkiXMTmaTIbMzy8ysEJZ8gdhYKGLrn/gHdv6Fn+DkUWjigQuHc+7l3nvChDNtPO/Lya2srq1v5DcLW9s7u3vu/kFDy1QRWieSS9UKsaacCVo3zHDaShTFcchpMxxeTfzmPVWaSXFnRgkNYtwXLGIEGyvdlvBZ1y16ZW8KtEz8OSlW3Nr3x83RQ7XrfnZ6kqQxFYZwrHXb9xITZFgZRjgdFzqppgkmQ9ynbUsFjqkOsumpY3RqlR6KpLIlDJqqvycyHGs9ikPbGWMz0IveRPzPa6cmugwyJpLUUEFmi6KUIyPR5G/UY4oSw0eWYKKYvRWRAVaYGJtOwYbgL768TBrnZd8r+zWbhgcz5OEYTqAEPlxABa6hCnUg0IdHeIYXhztPzqvzNmvNOfOZQ/gD5/0H55aQeQ==</latexit><latexit sha1_base64="fIGXaRFLss1xFgKurVPdeLoqlJM=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm7Bno2XAxjKi+YDkCHubSbJkb+/Y3RPCkZ9gY6GIrb/Izn/jJrlCEx8MPN6bYWZemEhhLKXfXmFjc2t7p7hb2ts/ODwqH5+0TJxqjk0ey1h3QmZQCoVNK6zETqKRRaHEdji5nfvtJ9RGxOrRThMMIjZSYig4s056qLLLfrlCa3QBsk78nFQgR6Nf/uoNYp5GqCyXzJiuTxMbZExbwSXOSr3UYML4hI2w66hiEZogW5w6IxdOGZBhrF0pSxbq74mMRcZMo9B1RsyOzao3F//zuqkd3gSZUElqUfHlomEqiY3J/G8yEBq5lVNHGNfC3Ur4mGnGrUun5ELwV19eJ62rmk9r/j2t1GkeRxHO4Byq4MM11OEOGtAEDiN4hld486T34r17H8vWgpfPnMIfeJ8/ggGNNA==</latexit>

(b)
<latexit sha1_base64="TY/LbeBHIxrBTnqAw4a9X8UHtFM=">AAAB6nicbVDLSgNBEOz1GeNr1aOXwSDES9j1oseAF48JmgckS5id9CZDZmeXmVkhLPkELx4U8eqH+A3e/As/wcnjoIkFDUVVN91dYSq4Np735aytb2xubRd2irt7+weH7tFxUyeZYthgiUhUO6QaBZfYMNwIbKcKaRwKbIWjm6nfekCleSLvzTjFIKYDySPOqLHSXTm86Lklr+LNQFaJvyClqlv//gCAWs/97PYTlsUoDRNU647vpSbIqTKcCZwUu5nGlLIRHWDHUklj1EE+O3VCzq3SJ1GibElDZurviZzGWo/j0HbG1Az1sjcV//M6mYmug5zLNDMo2XxRlAliEjL9m/S5QmbE2BLKFLe3EjakijJj0ynaEPzll1dJ87LiexW/btPwYI4CnMIZlMGHK6jCLdSgAQwG8AjP8OII58l5dd7mrWvOYuYE/sB5/wGjTY+G</latexit><latexit sha1_base64="SVs4Ppr5xYUt4bgzNkXsuF7L3yw=">AAAB6nicbVC7SgNBFL0bXzG+Vu20GQxCbMKujZYBGwuLBM0DkiXMTmaTIbMzy8ysEJZ8gdhYKGLrn/gHdv6Fn+DkUWjigQuHc+7l3nvChDNtPO/Lya2srq1v5DcLW9s7u3vu/kFDy1QRWieSS9UKsaacCVo3zHDaShTFcchpMxxeTfzmPVWaSXFnRgkNYtwXLGIEGyvdlsKzrlv0yt4UaJn4c1KsuLXvj5ujh2rX/ez0JEljKgzhWOu27yUmyLAyjHA6LnRSTRNMhrhP25YKHFMdZNNTx+jUKj0USWVLGDRVf09kONZ6FIe2M8ZmoBe9ifif105NdBlkTCSpoYLMFkUpR0aiyd+oxxQlho8swUQxeysiA6wwMTadgg3BX3x5mTTOy75X9ms2DQ9myMMxnEAJfLiAClxDFepAoA+P8AwvDneenFfnbdaac+Yzh/AHzvsP6RuQeg==</latexit><latexit sha1_base64="SVs4Ppr5xYUt4bgzNkXsuF7L3yw=">AAAB6nicbVC7SgNBFL0bXzG+Vu20GQxCbMKujZYBGwuLBM0DkiXMTmaTIbMzy8ysEJZ8gdhYKGLrn/gHdv6Fn+DkUWjigQuHc+7l3nvChDNtPO/Lya2srq1v5DcLW9s7u3vu/kFDy1QRWieSS9UKsaacCVo3zHDaShTFcchpMxxeTfzmPVWaSXFnRgkNYtwXLGIEGyvdlsKzrlv0yt4UaJn4c1KsuLXvj5ujh2rX/ez0JEljKgzhWOu27yUmyLAyjHA6LnRSTRNMhrhP25YKHFMdZNNTx+jUKj0USWVLGDRVf09kONZ6FIe2M8ZmoBe9ifif105NdBlkTCSpoYLMFkUpR0aiyd+oxxQlho8swUQxeysiA6wwMTadgg3BX3x5mTTOy75X9ms2DQ9myMMxnEAJfLiAClxDFepAoA+P8AwvDneenFfnbdaac+Yzh/AHzvsP6RuQeg==</latexit><latexit sha1_base64="Q9Q3RlmsHuz9bAIr9Qt5YJQR75o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm7Bno2XAxjKi+YDkCHubSbJkb+/Y3RPCkZ9gY6GIrb/Izn/jJrlCEx8MPN6bYWZemEhhLKXfXmFjc2t7p7hb2ts/ODwqH5+0TJxqjk0ey1h3QmZQCoVNK6zETqKRRaHEdji5nfvtJ9RGxOrRThMMIjZSYig4s056qIaX/XKF1ugCZJ34OalAjka//NUbxDyNUFkumTFdnyY2yJi2gkuclXqpwYTxCRth11HFIjRBtjh1Ri6cMiDDWLtSlizU3xMZi4yZRqHrjJgdm1VvLv7ndVM7vAkyoZLUouLLRcNUEhuT+d9kIDRyK6eOMK6Fu5XwMdOMW5dOyYXgr768TlpXNZ/W/HtaqdM8jiKcwTlUwYdrqMMdNKAJHEbwDK/w5knvxXv3PpatBS+fOYU/8D5/AIOGjTU=</latexit>

(c)
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Figure 2: The overall framework of the proposed Transformer-InDIGO which includes (a) the word &
position prediction module; (b) the one step decoding with position updating; (c) final decoding output by
reordering. The black-white blocks represent the relative position matrix.

absolute-position-based positional encodings are
inefficient as mentioned in Section 3.2, in that abso-
lute positions are changed during decoding, invali-
dating the previous hidden states. In contrast, we
adapt Shaw et al. (2018) to use relative positions in
self-attention. Different from Shaw et al. (2018), in
which a clipping distance d (usually d ≥ 2) is set
for relative positions, our relative-position repre-
sentations only preserve d = 1 relations (Eq. (3)).

Each attention head in a multi-head self-attention
module of Transformer-InDIGO takes the hidden
states of a partial sequence y0:t, denoted as U =
(u0, ...,ut), and its corresponding relative position
matrix Rt as input, where each input state ui ∈
Rdmodel . The logit ei,j for attention is computed as:

ei,j =

(
u>i Q

)
·
(
u>j K +A[ri,j+1]

)>
√
dmodel

, (7)

where Q,K ∈ Rdmodel×dmodel and A ∈ R3×dmodel

are parameter matrices. A[ri,j+1] is the row vector
indexed by ri,j +1, which biases all the input keys
based on the relative position, ri,j .

Word & Position Prediction Like the vanilla
Transformer, we take the representations from the
last layer of self-attention, H = (h0, ...,ht) and
H ∈ Rdmodel×(t+1), to predict both the next word
yt+1 and its position vector rt+1 in two stages
based on the following factorization:

p(yt+1, rt+1|H)=p(yt+1|H) · p(rt+1|yt+1, H)

It can also be factorized as predicting the position
before predicting the next word, yet our prelimi-
nary experiments show that predicting the word
first works slightly better. The prediction module

for word & position prediction are shown in Fig-
ure 2(a).

First, we predict the next word yt+1 from the
categorical distribution pword(y|H) as:

pword(y|H) = softmax
(
(h>t F ) ·W>

)
, (8)

where W ∈ RdV×dmodel is the embedding matrix
and dV is the size of vocabulary. We linearly project
the last representation ht using F ∈ Rdmodel×dmodel

for querying W . Then, as shown in Eq. (6), the pre-
diction of the next position is done by performing
insertion operations to existing words which can
be modeled similarly to Pointer Networks (Vinyals
et al., 2015). We predict a pointer kt+1 ∈ [0, 2t+1]
based on:

ppointer(k|yt+1, H) =

softmax

(
(h>t E +W[yt+1]) ·

[
H>C
H>D

]>)
,

(9)

where C,D,E ∈ Rdmodel×dmodel and W[yt+1] is the
embedding of the predicted word. C,D are used
to obtain the left and right keys, respectively, con-
sidering that each word has two “keys” (its left
and right) for inserting the generated word. The
query vector is obtained by adding up the word em-
bedding W[yt+1], and the linearly projected state,
h>t E. The resulting relative-position vector, rt+1

is computed using kt+1 according to Eq. (6). We
manually set ppointer(0|·) = ppointer(2 + t|·) = 0 to
avoid any word from being inserted to the left of
〈s〉 and the right of 〈/s〉.

Position Updating As mentioned in Sec. 3.1, we
update the relative position representation Rt with



Pre-defined Order Descriptions

Left-to-right (L2R) Generate words from left to right. (Wu et al., 2018)
Right-to-left (R2L) Generate words from right to left. (Wu et al., 2018)

Odd-Even (ODD) Generate words at odd positions from left to right, then generate even positions. (Ford et al., 2018)
Balanced-tree (BLT) Generate words with a top-down left-to-right order from a balanced binary tree. (Stern et al., 2019)
Syntax-tree (SYN) Generate words with a top-down left-to-right order from the dependency tree. (Wang et al., 2018b)
Common-First (CF) Generate all common words first from left to right, and then generate the others. (Ford et al., 2018)
Rare-First (RF) Generate all rare words first from left to right, and then generate the remaining. (Ford et al., 2018)

Random (RND) Generate words in a random order shuffled every time the example was loaded.

Table 1: Descriptions of the pre-defined orders used in this work. Major references that have explored
these generation orders with different models and applications are also marked.

the predicted rt+1. Because updating the relative
positions will not change the pre-computed relative-
position representations, Transformer-InDIGO can
reuse the previous hidden states in the next decod-
ing step the same as the vanilla Transformer.

4.2 Learning

Training requires maximizing the marginalized
likelihood in Eq. (2). Yet this is intractable since
we need to enumerate all of the T ! permutations of
tokens. Instead, we maximize the evidence lower-
bound (ELBO) of the original objective by intro-
ducing an approximate posterior distribution of
generation orders q(π|x,y), which provides the
probabilities of latent generation orders based on
the ground-truth sequences x and y:

LELBO = E
π∼q

log pθ(yπ|x) +H(q)

= E
r2:T+1∼q

T+1∑
t=1

log pθ(yt+1|y0:t, r0:t, x1:T ′)︸ ︷︷ ︸
Word Prediction Loss

+
T∑
t=1

log pθ(rt+1|y0:t+1, r0:t, x1:T ′)︸ ︷︷ ︸
Position Prediction Loss

+H(q),

(10)
where π = r2:T+1, sampled from q(π|x,y), is
represented as relative positions. H(q) is the en-
tropy term which can be ignored if q is fixed during
training. Eq. (10) shows that given a sampled or-
der, the learning objective is divided into word &
position objectives. For calculating the position
prediction loss, we aggregate the two probabilities
corresponding to the same position by

pθ(rt+1|·) = ppointer(k
l|·) + ppointer(k

r|·), (11)

where ppointer(k
l|·) and ppointer(k

r|·) are calculated
simultaneously from the same softmax function in

Eq. (9). kl, kr(kl 6= kr) represent the keys corre-
sponding to the same relative position.

Here, we study two types of q(π|x,y):

Pre-defined Order If we already possess some
prior knowledge about the sequence, e.g., the L2R
order is proven to be a strong baseline in many
scenarios, we assume a Dirac-delta distribution
q(π|x,y) = δ(π = π∗(x,y)), where π∗(x,y))
is a predefined order. In this work, we study a set of
pre-defined orders which can be found in Table. 1,
for evaluating their effect on generation.

Searched Adaptive Order (SAO) We choose
the approximate posterior q as the point estima-
tion that maximizes log pθ(yπ|x), which can also
be seen as the maximum-a-posteriori (MAP) esti-
mation on the latent order π. In practice, we ap-
proximate these generation orders π through beam-
search (Pal et al., 2006). Unlike the original beam-
search for autoregressive decoding that searches in
the sequence space to find the sequence maximiz-
ing the probability shown in Eq. 1, we search in the
space of all the permutations of the target sequence
to find π maximising Eq. 2, as all the target tokens
are known in advance during training.

More specifically, we maintain B sub-sequences
with the maximum probabilities using a set B at
each step t. For every sub-sequence y(b)0:t ∈ B, we
evaluate the probabilities of every possible choice
from the remaining words y′ ∈ y \ y(b)0:t and its
position r′. We calculate the cumulative likelihood
for each y′, r′, based on which we select top-B sub-
sequences as the new set B for the next step. After
obtaining the B generation orders, we optimize our
objective as an average over these orders:

LSAO =
1

B

∑
π∈B

log pθ(yπ|x) (12)



where we assume q(π|x,y) =
{
1/B π ∈ B
0 otherwise

.

Beam Search with Dropout The goal of beam
search is to approximately find the most likely
generation orders, which limits learning from ex-
ploring other generation orders that may not be
favourable currently but may ultimately be deemed
better. Prior research (Vijayakumar et al., 2016)
also pointed out that the search space of the stan-
dard beam-search is restricted. We encourage ex-
ploration by injecting noise during beam search
(Cho, 2016). Particularly, we found it effective to
keep the dropout on (e.g., dropout = 0.1).

Bootstrapping from a Pre-defined Order Dur-
ing preliminary experiments, sequences returned
by beam-search were often degenerated by always
predicting common or functional words (e.g., “the”,
“,”, etc.) as the first several tokens, leading to in-
ferior performance. We conjecture that is due to
the fact that the position prediction module learns
much faster than the word prediction module, and
it quickly captures spurious correlations induced
by a poorly initialized model. It is essential to bal-
ance the learning progress of these modules. To
do so, we bootstrap learning by pre-training the
model with a pre-defined order (e.g., L2R), before
training with beam-searched orders.

4.3 Decoding

As for decoding, we directly follow Algorithm 1
to sample or decode greedily from the proposed
model. However, in practice beam-search is im-
portant to explore the output space for neural au-
toregressive models. In our implementation, we
perform beam-search for InDIGO as a two-step
search. Suppose the beam size B, at each step, we
do beam-search for word prediction and then with
the searched words, try out all possible positions
and select the top-B sub-sequences. In preliminary
experiments, we also tried doing beam-search for
word and positions simultaneously with their joint
probability. However, it did not seem helpful.

5 Experiments

We evaluate InDIGO extensively on four challeng-
ing sequence generation tasks: word order recov-
ery, machine translation, natural language to code
generation (NL2Code, Ling et al., 2016) and image
captioning. We compare our model trained with the
pre-defined orders and the adaptive orders obtained

Dataset Train Dev Test Length

WMT16 Ro-En 620k 2000 2000 26.48
WMT18 En-Tr 207k 3007 3000 25.81
KFTT En-Ja 405k 1166 1160 27.51
Django 16k 1000 1801 8.87
MS-COCO 567k 5000 5000 12.52

Table 2: Dataset statistics for the machine transla-
tion, code generation and image captioning tasks.
Length represents the average number of tokens for
target sentences of the training set.

by beam-search. We use the same architecture for
all orders including the standard L2R order.

5.1 Experimental Settings
Dataset The machine translation experiments are
conducted on three language pairs for studying
how the decoding order influences the translation
quality of languages with diversified characteris-
tics: WMT’16 Romanian-English (Ro-En),2 WMT
18 English-Turkish (En-Tr)3 and KFTT English-
Japanese (En-Ja, Neubig, 2011) 4 The English
part of the Ro-En dataset is used for the word
order recovery task. For the NL2Code task, We
use the Django dataset (Oda et al., 2015)5 and
the MS COCO (Lin et al., 2014) with the stan-
dard split (Karpathy and Fei-Fei, 2015) for the
NL2Code task and image captioning, respectively.
The dataset statistics are shown in Table 2.

Preprocessing We apply the Moses tokeniza-
tion6 and normalization on all the text datasets ex-
cept for codes. We perform 32, 000 joint BPE (Sen-
nrich et al., 2016) operations for the MT datasets,
while using all the unique words as the vocabulary
for NL2Code. For image captioning, we follow the
same procedure as described by Lee et al. (2018),
where we use 49 512-dimensional image feature
vectors (extracted from a pretrained ResNet-18 (He
et al., 2016)) as the input to the Transformer en-
coder. The image features are fixed during training.

Models We set dmodel = 512, dhidden = 2048,
nheads = 8, nlayers = 6, lrmax = 0.0005,
warmup = 4000 and dropout = 0.1 throughout
all the experiments. The source and target embed-
ding matrices are shared except for En-Ja, as our

2 http://www.statmt.org/wmt16/translation-task.html
3 http://www.statmt.org/wmt18/translation-task.html
4http://www.phontron.com/kftt/.
5 https://github.com/odashi/ase15-django-dataset
6 https://github.com/moses-smt/mosesdecoder

http://www.statmt.org/wmt16/translation-task.html
http://www.statmt.org/wmt18/translation-task.html
http://www.phontron.com/kftt/
https://github.com/odashi/ase15-django-dataset
https://github.com/moses-smt/mosesdecoder


Order WMT16 Ro→ En WMT18 En→ Tr KFTT En→ Ja
BLEU Ribes Meteor TER BLEU Ribes Meteor TER BLEU Ribes Meteor TER

RND 20.20 79.35 41.00 63.20 03.04 55.45 19.12 90.60 17.09 70.89 35.24 70.11

L2R 31.82 83.37 52.19 50.62 14.85 69.20 33.90 71.56 30.87 77.72 48.57 59.92
R2L 31.62 83.18 52.09 50.20 14.38 68.87 33.33 71.91 30.44 77.95 47.91 61.09
ODD 30.11 83.09 50.68 50.79 13.64 68.85 32.48 72.84 28.59 77.01 46.28 60.12
BLT 24.38 81.70 45.67 55.38 08.72 65.70 27.40 77.76 21.50 73.97 40.23 64.39
SYN 29.62 82.65 50.25 52.14 – –
CF 30.25 83.22 50.71 50.72 12.04 67.61 31.18 74.75 28.91 77.06 46.46 61.56
RF 30.23 83.29 50.72 51.73 12.10 67.44 30.72 73.40 27.35 76.40 45.15 62.14

SAO 32.47 84.10 53.00 49.02 15.18 70.06 34.60 71.56 31.91 77.56 49.66 59.80

Table 3: Results of translation experiments for three language pairs in different decoding orders. Scores
are reported on the test set with four widely used evaluation metrics (BLEU↑, Meteor↑, TER↓ and Ribes↑).
We do not report models trained with SYN order on En-Tr and En-Ja due to the lack of reliable dependency
parsers. The statistical significance analysis6 between the outputs of SAO and L2R are conducted using
BLEU score as the metric, and the p-values are ≤ 0.001 for all three language pairs.

1 3 5 7 9 11 13 15 17 19
decoding beam size

29
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Figure 3: The BLEU scores on the test set for word
order recovery with various decoding beam sizes.

preliminary experiments showed that keeping the
embeddings not shared significantly improves the
translation quality. Both the encoder and decoder
use relative positions during self-attention except
for the word order recovery experiments (where the
position embedding is removed in the encoder, as
there is no ground-truth position information in the
input.) We do not introduce task-specific modules
such as copying mechanism (Gu et al., 2016).

Training When training with the pre-defined or-
ders, we reorder words of each training sequence
in advance accordingly which provides supervision
of the ground-truth positions that each word should
be inserted. We test the pre-defined orders listed in
Table 1. The SYN orders were generated according
to the dependency parse obtained by a dependency
parse parser from Spacy (Honnibal and Montani,
2017) following a parent-to-children left-to-right
order. The CF & RF orders are obtained based on

vocabulary cut-off so that the number of common
words and the number of rare words are approxi-
mately the same (Ford et al., 2018). We also con-
sider on-the-fly sampling a random order for each
sentence as the baseline (RND). When using L2R
as the pre-defined order, Transformer-InDIGO is
almost equivalent to the vanilla Transformer, as the
position prediction simply learns to predict the next
position as the left of the 〈s〉 symbol. The only dif-
ference is that it enhances the vanilla Transformer
with a small number of additional parameters for
the position prediction.

We also train Transformer-InDIGO using the
searched adaptive order (SAO) where we set the
beam size to 8. In default, models trained with
SAO are bootstrapped from a slightly pre-trained
(6,000 steps) model in L2R order.

Inference During the test time, we do beam-
search as described in Sec. 4.3. We observe from
our preliminary experiments that models trained
with different orders (either pre-defined or SAO)
have very different optimal beam sizes for decod-
ing. Therefore, we perform sensitivity studies, in
which the beam sizes vary from 1 ∼ 20 and pick
the beam size with the highest BLEU score on the
validation set for each particular model.

5.2 Results and Analysis
Word Order Recovery Word order recovery
takes a bag of words as input and recovers its origi-
nal word order, which is challenging as the search
space is factorial. We do not restrict the vocabulary
of the input words. We compare our model trained
with the L2R order and eight searched adaptive



Model Django MS-COCO
BLEU Accuracy BLEU CIDEr-D

L2R 36.74 13.6% 22.12 68.88
SAO 42.33 16.3% 22.58 69.42

Table 4: Results on the official test sets for both
code generation and image captioning tasks.

Model Variants dev test

Baseline L2R 32.53 31.82
SAO default 33.60 32.47

no bootstrap 32.86 31.88
no bootstrap, no noise 32.64 31.72
bootstrap from R2L order 33.12 32.02
bootstrap from SYN order 33.09 31.93

Stern et al. (2019) - Uniform 29.99 28.52
Stern et al. (2019) - Binary 32.27 30.66

Table 5: Ablation study for machine translation on
WMT16 Ro-En. Results of Stern et al. (2019) are
based on greedy decoding with the EOS penalty.

orders (SAO) from beam search for word order re-
covery. The BLEU scores over various beam sizes
are shown in Figure 3. The model trained with
SAO lead to higher BLEU scores over that trained
with L2R with a gain up to 3 BLEU scores. Fur-
thermore, increasing the beam size brings more im-
provements for SAO compared to L2R, suggesting
that InDIGO produces more diversified predictions
so that it has higher chances to recover the order.

Machine Translation As shown in Table 3, we
compare our model trained with pre-defined orders
and the searched adaptive orders (SAO) with vary-
ing setups. We use four evaluation metrics includ-
ing BLEU (Papineni et al., 2002), Ribes (Isozaki
et al., 2010), Meteor (Banerjee and Lavie, 2005)
and TER (Snover et al., 2006) to avoid using a
single metric that might be in favor of a particu-
lar generation order. Most of the pre-defined or-
ders (except for the random order and the balanced
tree (BLT) order) perform reasonably well with In-
DIGO on the three language pairs. The best score
with a predefined word ordering is reached by the
L2R order among the pre-defined orders except for
En-Ja, where the R2L order works slightly better
according to Ribes. This indicates that in machine
translation, the monotonic orders are reasonable
and reflect the languages. ODD, CF and RF show

Model Training (b/s) Decoding (ms/s)

L2R 4.21 12.3
SAO (b = 1) 1.12 12.5
SAO (b = 8) 0.58 12.8

Table 6: Comparison of the pre-defined order (L2R)
with the searched adaptive order (using beam sizes
1 and 8) on running time, where b/s is batches per
second and ms/s is ms per sentence. All experi-
ments are conducted on 8 Nvidia V100 GPUs with
2000 tokens per GPU. Decoding speed is reported
based on greedy decoding (beam size = 1).

similar performance, which is below the L2R and
R2L orders by around 2 BLEU scores. The tree-
based orders, such as the SYN and BLT orders do
not perform well, indicating that predicting words
following a syntactic path is not preferable. On
the other hand, Table 3 shows that the model with
SAO achieves competitive and even statistically
significant improvements over the L2R order. The
improvements are larger for Turkish and Japanese,
indicating that a flexible generation order may im-
prove the translation quality for languages with
different syntactic structures from English.

Code Generation The goal of this task is to gen-
erate Python code based on a natural language de-
scription, which can be achieved by using a stan-
dard sequence-to-sequence generation framework
such as the proposed Transformer-InDIGO. As
shown in Table 4, SAO works significantly better
than the L2R order in terms of both BLEU and ac-
curacy. This shows that flexible generation orders
are more preferable in code generation.

Image Captioning For the captioning task, one
caption is generated per image and is compared
against five human-created captions during testing.
As show in Table 4, we observe that SAO obtains
higher BLEU and CIDEr-D (Vedantam et al., 2015)
compared to the L2R order, and it implies that
better captions are generated with different orders.

5.3 Ablation Study
Model Variants Table 5 shows the results of the
ablation studies using the machine translation task.
SAO without bootstrapping nor beam-search de-
generates by approximate 1 BLEU score on Ro-En,
demonstrating the effectiveness of these two meth-
ods. We also test SAO by bootstrapping from a
model trained with a R2L order as well as a SYN
order, which obtains slightly worse yet compara-



[Input] there are many shrines nation@@ wide with the same name .

[Ground Truth]  ࣈݱ�ࢵق�ݷ�##ݶ��΄�ᐟᐒ�͢�ਂͯ�ࣁΡ�̶

�V!���V!

�V!���V!�̶

�V!���V!�̶ࢵق�

�V!���V!�̶ࢵق

�V!���V!�̶ࢵق��ग़ͥ

�V!���V!�̶ࢵق��ग़ͥ�ਂࣁ

�V!���V!�̶ࢵق��ग़ͥ�ਂͯ�ࣁΡ
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�V!���V!�̶ࢵق��ग़ͥ�ਂͯ�ࣁΡݷ�##ݶ��΄�ᐟᐒ�΅

[Output]  �V!ࢵق��ݷ�##ݶ��΄�ᐟᐒ�΅�ग़ͥ�ਂͯ�ࣁΡ���̶��V!�

�(QG�RI�'HFRGLQJ!�

Figure 4: An instantiated concrete example of the decoding process using InDIGO sampled from the
En-Ja translation datset. The final output is reordered based on the predicted relative-position matrix.

ble results compared to bootstrapping from L2R.
This suggests that the SAO algorithm is quite ro-
bust with different bootstrapping methods, and L2R
bootstrapping performs the best. In addition, we
re-implement a recent work (Stern et al., 2019),
which adopts a similar idea of generating sequences
through insertion operations for machine transla-
tion. We use the best settings of their algorithm,
i.e., training with binary-tree/uniform slot-losses
and slot-termination, while removing the knowl-
edge distillation for a fair comparison with ours.
Our model obtains better performance compared
to Stern et al. (2019) on WMT16 Ro-En.

Running Time As shown in Table 6, InDIGO
decodes sentences as efficient as the standard L2R
autoregressive models. However, it is slower in

terms of training time using SAO as the supervi-
sion, as additional efforts are needed to search the
generation orders, and it is difficult to parallelize
the SAO. SAO with beam sizes 1 and 8 are 3.8 and
7.2 times slower compared to L2R, respectively,
yet enlarging beam sizes won’t affect the decoding
time. We will investigate off-line searching meth-
ods to speed up SAO training and make InDIGO
more scalable in the future.

5.4 Visualization

Relative-Position Matrix In Figure 4, we show
an instantiated example produced by InDIGO,
which is randomly sampled from the validation set
of the KFTT En-Ja dataset. The relative-position
matrices (Rt) and their corresponding absolute po-
sitions (zt) are shown at each step. We argue that



WMT16 Ro-En[source]   acestia dezvaluie secre@@ tele pant@@ om@@ im@@ ei lor la bbc break@@ fast .
[target]   they reveal their pan@@ to secre@@ ts to bbc break@@ fast .

— InDIGO learned from Pre-defined R2L Order
.
fast .
break@@ fast .
bbc break@@ fast .
the bbc break@@ fast .
at the bbc break@@ fast .

ts at the bbc break@@ fast .
secre@@ ts at the bbc break@@ fast .
their secre@@ ts at the bbc break@@ fast .
reveal their secre@@ ts at the bbc break@@ fast .
they reveal their secre@@ ts at the bbc break@@ fast .

they reveal the secre@@ ts of their sho@@ es
they reveal the secre@@ ts of their sho@@ es to 
they reveal the secre@@ ts of their sho@@ es to the 
they reveal the secre@@ ts of their sho@@ es to the bbc 
they reveal the secre@@ ts of their sho@@ es to the bbc break@@ 
they reveal the secre@@ ts of their sho@@ es to the bbc break@@ fast
they reveal the secre@@ ts of their sho@@ es to the bbc break@@ fast .

— InDIGO learned from Pre-defined L2R Order
they
they reveal 
they reveal the 
they reveal the secre@@ 
they reveal the secre@@ ts 
they reveal the secre@@ ts of
they reveal the secre@@ ts of their
they reveal the secre@@ ts of their sho@@ 

— InDIGO learned from Pre-defined SYN Order
reveal
they reveal
they reveal secre@@
they reveal secre@@ ts
they reveal secre@@ ts .
they reveal the secre@@ ts .
they reveal the secre@@ ts of .

they reveal the secre@@ ts of sho@@ .
they reveal the secre@@ ts of sho@@ e .
they reveal the secre@@ ts of their sho@@ e .
they reveal the secre@@ ts of their sho@@ e in .
they reveal the secre@@ ts of their sho@@ e in break@@ .
they reveal the secre@@ ts of their sho@@ e in break@@ fast .
they reveal the secre@@ ts of their sho@@ e in bbc break@@ fast .

— InDIGO learned from Searched Adaptive Order (SAO)
.
the .
the bbc .
the bbc break@@ .
the bbc break@@ fast .
they the bbc break@@ fast .
they the the bbc break@@ fast .
they the secre@@ the bbc break@@ fast .

they the secre@@ ts the bbc break@@ fast .
they the secre@@ ts of the bbc break@@ fast .
they the secre@@ ts of their the bbc break@@ fast .
they the secre@@ ts of their sho@@ the bbc break@@ fast .
they the secre@@ ts of their sho@@ e the bbc break@@ fast .
they the secre@@ ts of their sho@@ e at the bbc break@@ fast .
they reveal the secre@@ ts of their sho@@ e at the bbc break@@ fast .

— InDIGO learned from Pre-defined RF Order
reveal
reveal secrecy
reveal secrecy sho@@
reveal secrecy sho@@ es
reveal secrecy sho@@ es bbc
reveal secrecy sho@@ es bbc break@@
reveal secrecy sho@@ es bbc break@@ fast

they reveal secrecy sho@@ es bbc break@@ fast
they reveal the secrecy sho@@ es bbc break@@ fast 
they reveal the secrecy of sho@@ es bbc break@@ fast 
they reveal the secrecy of their sho@@ es bbc break@@ fast 
they reveal the secrecy of their sho@@ es at bbc break@@ fast 
they reveal the secrecy of their sho@@ es at the bbc break@@ fast
they reveal the secrecy of their sho@@ es at the bbc break@@ fast .

[caption-1]   a tall woman is standing in a small kitchen
[caption-2]   a girl is standing in a kitchen with a mug in her hands .
[caption-3]   woman in knitted jump pants and yellow slee@@ v@@ eless top , in kitchen 
scene with matching yellow tone area .
[caption-4]   a woman standing in a kitchen near a refrigerator and a stove
[caption-5]   a woman with pi@@ g@@ tails is standing in a kitchen .

— InDIGO learned from Pre-defined L2R Order
a 
a man 
a man standing
a man standing in
a man standing in a

a man standing in a kitchen 
a man standing in a kitchen holding
a man standing in a kitchen holding a
a man standing in a kitchen holding a banana
a man standing in a kitchen holding a banana .

— InDIGO learned from Searched Adaptive Order (SAO)
a 
a woman 
a woman standing
a woman standing in 
a woman standing in front
a woman standing in front of

a woman standing in front of a
a woman standing in front of a refrigerator
a woman standing in front of a refrigerator .
a woman in standing in front of a refrigerator .
a woman in a standing in front of a refrigerator .
a woman in a kitchen standing in front of a refrigerator .

MS-COCO

[source instruction]  if tok starts with _STR:0_ ,
[target Python code]  if tok . startswith ( ' _STR:0_ ' ) :

— InDIGO learned from Searched Adaptive Order (SAO)
if 
if parser
if parser .
if parser . (

if parser . ( '
if parser . ( ' ' 
if parser . ( ' ' )
if parser . ( ' ' ) :

Django

if parser . ( ' _STR:0_ ' ) :
if parser . startswith ( ' _STR:0_ ' ) :

Figure 5: Examples randomly sampled from three tasks that are instructed to decode using InDIGO with
various learned generation order. Words in red and underlined are the inserted token at each step. For
visually convenience, we reordered all the partial sequences to its correct positions at each decoding step.



relative-position matrices are flexible to encode po-
sition information, and its append-only property
enables InDIGO to reuse previous hidden states.

Case Study We demonstrate how InDIGO works
by uniformly sampling examples from the valida-
tion sets for machine translation (Ro-En), image
captioning and code generation. As shown in Fig-
ure 5, the proposed model generates sequences in
different orders based on the order used for learn-
ing (either pre-defined or SAO). For instance, the
model generates tokens approximately following
the dependency parse wheb we used the SYN order
for the machine translation task. On the other hand,
the model trained using the RF order learns to first
produce verbs and nouns first, before filling up the
sequence with remaining functional words.

We observe several key characteristics about the
inferred orders of SAO by analyzing the model’s
output for each task: (1) For machine translation,
the generation order of an output sequence does not
deviate too much from L2R. Instead, the sequences
are shuffled with chunks, and words within each
chunk are generated in a L2R order; (2) In the
examples of image captioning and code generation,
the model tends to generate most of the words in
the L2R order and insert a few words afterward
in certain locations. Moreover, we provide more
examples in the appendix.

6 Related Work

Decoding for Neural Models Neural autoregres-
sive modelling has become one of the most success-
ful approaches for generating sequences (Sutskever
et al., 2011; Mikolov, 2012), which has been widely
used in a range of applications, such as machine
translation (Sutskever et al., 2014), dialogue re-
sponse generation (Vinyals and Le, 2015), im-
age captioning (Karpathy and Fei-Fei, 2015) and
speech recognition (Chorowski et al., 2015). An-
other stream of work focuses on generating a se-
quence of tokens in a non-autoregressive fashion
(Gu et al., 2018; Lee et al., 2018; van den Oord
et al., 2018), in which the discrete tokens are gen-
erated in parallel. Semi-autoregressive modelling
(Stern et al., 2018; Wang et al., 2018a) is a mix-
ture of the two approaches, while largely adhering
to left-to-right generation. Our method is differ-
ent from these approaches as we support flexible
generation orders, while decoding autoregressively.

Non-L2R Orders Previous studies on genera-
tion order of sequences mostly resort to a fixed
set of generation orders. Wu et al. (2018) empir-
ically show that R2L generation outperforms its
L2R counterpart in a few tasks. Ford et al. (2018)
devises a two-pass approach that produces partially-
filled sentence “templates” and then fills in missing
tokens. Zhu et al. (2019) also proposes to generate
tokens by first predicting a text template and infill
the sentence afterwards while in a more general
way. Mehri and Sigal (2018) proposes a middle-
out decoder that firstly predicts a middle-word and
simultaneously expands the sequence in both direc-
tions afterwards. Previous studies also focused on
decoding in a bidirectional fashion such as (Sun
et al., 2017; Zhou et al., 2019a,b). Another line
of work models sequence generation based on syn-
tax structures (Yamada and Knight, 2001; Char-
niak et al., 2003; Chiang, 2005; Emami and Je-
linek, 2005; Zhang et al., 2016; Dyer et al., 2016;
Aharoni and Goldberg, 2017; Wang et al., 2018b;
Eriguchi et al., 2017). In contrast, Transformer-
InDIGO supports fully flexible generation orders
during decoding.

There are two concurrent work (Welleck et al.,
2019; Stern et al., 2019), which study sequence gen-
eration in a non-L2R order. Welleck et al. (2019)
propose a tree-like generation algorithm. Unlike
this work, the tree-based generation order only pro-
duces a subset of all possible generation orders
compared to our insertion-based models. Further,
Welleck et al. (2019) find L2R is superior to their
learned orders on machine translation tasks, while
transformer-InDIGO with searched adaptive orders
achieves better performance. Stern et al. (2019)
propose a very similar idea of using insertion oper-
ations in Transformer for machine translation. The
major difference is that they directly use absolute
positions, while ours utilizes relative positions. As
a result, their model needs to re-encode the partial
sequence at every step, which is computationally
more expensive. In contrast, our approach does not
necessitate re-encoding the entire sentence during
generation. In addition, knowledge distillation was
necessary to achieve good performance in Stern
et al. (2019), while our model is able to match the
performance of L2R even without bootstrapping.

7 Conclusion

We have presented a novel approach – InDIGO –
which supports flexible sequence generation. Our



model was trained with either pre-defined orders
or searched adaptive orders. In contrast to conven-
tional neural autoregressive models which often
generate from left to right, our model can flexibly
generate a sequence following an arbitrary order.
Experiments show that our method achieved com-
petitive or even better performance compared to the
conventional left-to-right generation on four tasks,
including machine translation, word order recovery,
code generation and image captioning.

For future work, it is worth exploring a trainable
inference model to directly predict the permuta-
tion (Mena et al., 2018) instead of beam-search.
Also, the proposed InDIGO could be extended for
post-editing tasks such as automatic post-editing
for machine translation (APE) and grammatical
error correction (GEC) by introducing additional
operations such as “deletion” and “substitution”.
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