
Fast Diffraction Pathfinding for Dynamic Sound Propagation

CARL SCHISSLER, GREGOR MÜCKL, and PAUL CALAMIA, Facebook Reality Labs Research, USA

In the context of geometric acoustic simulation, one of the more perceptually
important yet difficult to simulate acoustic effects is diffraction, a phenom-
enon that allows sound to propagate around obstructions and corners. A
significant bottleneck in real-time simulation of diffraction is the enumer-
ation of high-order diffraction propagation paths in scenes with complex
geometry (e.g. highly tessellated surfaces). To this end, we present a dynamic
geometric diffraction approach that consists of an extensive mesh prepro-
cessing pipeline and complementary runtime algorithm. The preprocessing
module identifies a small subset of edges that are important for diffraction
using a novel silhouette edge detection heuristic. It also extends these edges
with planar diffraction geometry and precomputes a graph data structure
encoding the visibility between the edges. The runtime module uses bidi-
rectional path tracing against the diffraction geometry to probabilistically
explore potential paths between sources and listeners, then evaluates the
intensities for these paths using the Uniform Theory of Diffraction. It uses
the edge visibility graph and the A* pathfinding algorithm to robustly and
efficiently find additional high-order diffraction paths. We demonstrate how
this technique can simulate 10th-order diffraction up to 568 times faster than
the previous state of the art, and can efficiently handle large scenes with
both high geometric complexity and high numbers of sources.

CCS Concepts: • Computing methodologies→ Real-time simulation; Ray
tracing; Mesh geometry models.

Additional Key Words and Phrases: diffraction, geometry, acoustics, sound
propagation

ACM Reference Format:
Carl Schissler, Gregor Mückl, and Paul Calamia. 2021. Fast Diffraction
Pathfinding for Dynamic Sound Propagation. ACM Trans. Graph. 40, 4, Arti-
cle 138 (August 2021), 21 pages. https://doi.org/10.1145/3450626.3459751

1 INTRODUCTION
In order to generate a convincing simulation of reality, the senses
must be provided with plausible recreations of the real world. For
virtual reality (VR) and augmented reality (AR) applications, high-
quality audio is especially important to create immersion and a
sense of presence [Hendrix and Barfield 1996]. Audio sources must
be rendered in a way that seems plausible to the user, i.e. where the
percept matches the user’s expectation [Lindau and Weinzierl 2012].
This involves simulating how the sounds emitted by sources interact
with the virtual environment through reverberation, reflections, and
diffraction, among other acoustic phenomena. To create a spatial
percept for virtual audio, directional filtering with the user’s head-
related transfer function (HRTF) must also be applied. In AR, the
environment is real rather than virtual, meaning that any divergence
between the simulation and the user’s immediate surroundings will

Authors’ address: Carl Schissler, carl.schissler@fb.com; Gregor Mückl; Paul Calamia,
pcalamia@fb.com, Facebook Reality Labs Research, Redmond, WA, USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
0730-0301/2021/8-ART138
https://doi.org/10.1145/3450626.3459751

interfere with the plausibility of virtual sound sources [Werner et al.
2016].
One of the more difficult to simulate yet perceptually impor-

tant acoustic effects in a geometric acoustics (GA) framework is
diffraction [Torres et al. 2001]. Diffraction is a wave scattering phe-
nomenon that occurs when sound interacts with a feature in the
environment whose size is similar to the wavelength. With proper
simulation of diffraction, sources that become occluded from view
are still audible but become low-pass filtered. In a GA simulation
that does not handle diffraction, occluded sources will be abruptly
silenced, resulting in a jarring unnatural transition that has the
potential to break the perceived plausibility of the auralization.

In this work, we present a new efficient approach for simulating
diffraction within a real-time GA framework that allows for dy-
namic motion of rigid geometry and for high-order diffraction (i.e.
diffraction over a series of several edges). In contrast to much of the
previous work on diffraction, we focus on a particular subset of the
diffraction problem: the simulation of direct diffraction only. Direct
diffraction is defined as diffraction that occurs directly between a
source and listener with no reflections involved. With this restric-
tion, our approach is still able to simulate perceptually-important
features, particularly the smooth transition from unoccluded to
occluded state, while ignoring more complex paths which can be
difficult to identify but contribute less to the overall sound field.
Our approach is intended for VR and AR applications with little
compute available for acoustic simulation, and as a result it puts
more focus on runtime performance and perceptual quality than on
objective physical accuracy. The main contributions include:

(1) Amesh preprocessing approach that extracts a reduced subset
of silhouette diffraction edges and augments the mesh with
diffraction flag geometry. (Section 4)

(2) A runtime approach for efficiently finding high-order diffrac-
tion paths using stochastic bidirectional path tracing and a
persistent cache of paths. (Section 5)

(3) A complementary approach that uses a precomputed edge-
to-edge visibility graph and the A* algorithm to quickly find
high-order diffraction paths. (Section 5.4)

We have evaluated this diffraction approach in a variety of com-
plex virtual and real environments that are typical of games, VR,
and AR. Our technique is able to simulate diffraction using 0.14ms−
7.5ms per source, and the preprocessing time is less than a minute
for scenes with millions of triangles. Compared to previous meth-
ods, the runtime is 2.7 to 568 times faster per source for 10th-order
diffraction. Our approach is also significantly more robust to difficult
geometric input and scales better to high diffraction order.

2 BACKGROUND

2.1 Sound Propagation
There exist many techniques to simulate the propagation of sound.
The most accurate are based on solving the acoustic wave equation,

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459751
https://doi.org/10.1145/3450626.3459751

138:2 • Carl Schissler, Gregor Mückl, and Paul Calamia

i.e. the so-calledwave-basedmethods. These include the Finite Differ-
ence Time Domain (FDTD) method, Finite Element Method (FEM),
and the Boundary Element Method (BEM). While accurate, these
approaches are generally very computationally intensive and as a
result are limited to precomputation and static scenes [Raghuvanshi
and Snyder 2014; Raghuvanshi et al. 2017]. The other main class of
methods are the geometric acoustics (GA) algorithms [Savioja and
Svensson 2015]. These algorithms can simulate reflection, scattering,
and reverberation efficiently, but do not handle wave phenomena
like diffraction because they make the high-frequency assumption
that sound travels as a ray, not a wave. Despite this drawback,
GA methods are the most practical for applications where the en-
vironment may be dynamic such as with destructible geometry,
user-generated content, and moving geometry (e.g. doors).

2.2 Diffraction for Geometric Acoustics
Diffraction models that are applicable to GA generally consider the
case of diffraction over one or more edges of the scene geometry,
where the number of edges in a path is the diffraction order. Given
a source, listener, and sequence of diffraction edges, the Uniform
Theory of Diffraction (UTD) [Kouyoumjian and Pathak 1974; Tsin-
gos et al. 2001] can analytically compute an approximation for the
diffracted sound field. UTD is attractive for real-time simulation
because it is fast to evaluate, but has the drawback that it assumes
every edge to be infinitely long. This can cause UTD to produce
implausible results. On the other hand, the Biot-Tolstoy-Medwin
(BTM) diffraction method [Svensson et al. 1999; Calamia and Svens-
son 2005] does not have this limitation, but requires significantly
more compute to evaluate.
An alterative approach is diffraction based on the uncertainty

principle (UP) [Stephenson 2010; Pohl 2014], which uses stochastic
ray tracing in a Monte Carlo integrator to compute the diffracted
sound field. UP is attractive because unlike UTD or BTM, it can be
easily integrated into existing path tracing algorithms. However, it
also has slow convergence that makes it unsuitable for real-time
applications. Other object-based diffraction approaches have used a
hybrid of precomputed wave simulation and ray tracing to simulate
sound scattering around objects [Yeh et al. 2013; Rungta et al. 2018].
Cowan et al. [2015] proposed an ad-hoc 2D rasterization-based
method for approximating occlusion that compares the diffracted
path length to the straight-line distance between the source and
listener. Recently, Pisha et al. [2020] described a diffraction model
that uses a dense volumetric sampling of rays around existing direct
and reflected propagation path segments to approximate the BTM
magnitude response.
For either UTD or BTM, the main computational challenge is

actually to find sequences of edges that can form valid diffraction
paths.ive The number of edges in a particular path is the diffrac-
tion order. High-order diffraction (i.e. more than order 1) involves
considering the interaction of every edge with every other edge re-
cursively, and is especially important when the source is in another
room than the listener. A naïve approach is to recursively consider
all pairs of edges, but this has complexity 𝑂 (𝑁𝑑), where 𝑁 is the
number of edges and 𝑑 is the maximum diffraction order.

Frustum and beam tracing have been used to find diffraction
paths more efficiently [Funkhouser et al. 2004; Chandak et al. 2008].
In these methods, frusta or beams are emitted from the source
and propagated through the environment to find paths. However,
these approaches have difficulty scaling to complex geometries or
to high diffraction order due to the large number of child beams
and time spent on intersection testing. On the other hand, Schissler
et al. [2014] used ray tracing from sources to detect first-order
diffraction edges, followed by a traversal of a precomputed edge-
to-edge visibility graph to find all diffraction paths originating at
those edges. This graph reduced the number of edges considered
and allowed computation of diffraction up to order 3 or 4 in real
time, but retains exponential algorithmic complexity.

2.3 Mesh Simplification for Acoustics
Compared to graphics rendering, room acoustic simulation is quite
tolerant to aggressive geometry simplification, provided that prop-
erties of the environment such as volume and surface area are pre-
served. This is in part due to the long wavelengths of low-frequency
sound, low spatial resolution of spatial audio as well as the diffuse
nature of late reverberation. Simplification also tends to increase
the size of planar surfaces relative to the wavelength, which may
improve accuracy for GA [Savioja and Svensson 2015].
Joslin and Magnenat-Thalmann [2003] proposed a method to

extract significant faces using a regular grid subdivision of the scene
followed by clustering and bounding box fitting to approximate the
input geometry. This method is able to drastically reduce the number
of faces in a mesh but it does not preserve details, topology, or scene
volume. On the other hand, Siltanen et al. [2008] used a remeshing
approach to first voxelize the scene and then extract an isosurface.
This isosurface extraction was followed by coplanar face merging
to reduce the number of faces, and post-processing to patch cracks
in the mesh surface.

Schissler et al. [2014] used a similar remeshing approach to sim-
plify the mesh, except that the edge collapse algorithm [Garland
and Heckbert 1997] was used instead of coplanar face merging.
This method also generated different geometry for each simulation
wavelength using proportionally-sized voxel grids, and applied a
parallel edge merging step to reduce the number of edges considered
for diffraction. Similarly, Pelzer and Vorländer [2010] performed
frequency-dependent simplification and used meshes with varying
level of detail to speed up real-time simulation. They also proposed
using time-dependent geometry, where lower levels of detail would
be used for higher-order (i.e. later) reflections. To reduce the number
of edges considered for diffraction, [Taylor et al. 2009] compared
the angle between adjacent faces to a threshold as a way to select
significant diffraction edges.

3 OVERVIEW
Our diffraction approach can be divided into preprocessing and
runtime stages. In the preprocessing stage, we apply a series of
operations to first simplify input meshes, then identify important
silhouette diffraction edges using a ray-based heuristic. We augment
the edges with additional diffraction geometry and also precompute
a visibility graph between the edges that is used to accelerate the

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

Fast Diffraction Pathfinding for Dynamic Sound Propagation • 138:3

Input Mesh Simplification Face Clustering
Edge Extraction

Silhouette Edge
Detection

Flag Construction Edge Visibility
Graph

Fig. 1. The main stages of our diffraction mesh preprocessing pipeline, shown here for the top floor of the Apartment 0 scene [Straub et al. 2019]. The detailed
input mesh is first simplified, then an initial set of diffraction edges is extracted by face clustering. After this, we keep only the edges that are classified as
silhouettes, then construct diffraction flag geometry from the final set of edges. The final step is to precompute a visibility graph between the edges, shown
here by red or blue lines between the edges.

runtime exploration of high-order diffraction paths. In the runtime
stage, we use bidirectional stochastic ray tracing to explore possible
diffraction paths, then validate those paths using robust visibility
tests. The resulting paths are stored in a persistent cache to add tem-
poral stability over successive simulation updates. We also utilize
the precomputed edge visibility graph and the A* pathfinding algo-
rithm [Hart et al. 1968] to efficiently and robustly find additional
high-order diffraction paths. The output of the runtime simula-
tion module is a collection of frequency-dependent room impulse
response parameters (e.g. diffraction path intensities/directions, re-
verberation time, reverberation level, etc.). These parameters are
the input to the audio rendering module which uses standard signal
processing techniques to auralize the impulse response parameters.
The final output audio is spatialized using the listener’s head-related
transfer function and then reproduced over headphones.

4 DIFFRACTION MESH PREPROCESSING
The four stages of our mesh preprocessing pipeline are summa-
rized in Figure 1. The input to the pipeline is the raw triangle mesh
with acoustic materials assigned to each triangle. In the first stage,
we apply standard mesh simplification algorithms to reduce the
input mesh complexity to a given error tolerance (Section 4.1). Next,
we identify a subset of the edges of the mesh that are relevant for
diffraction using a novel silhouette edge identification method and
apply additional post-processing to simplify and cluster the selected
edges (Section 4.2). The output of this stage is a collection of mesh
boundaries, i.e. sequences of edges that make up the same logical
diffraction edge. An important part of our approach is to decouple
the diffraction edges from the underlying surface geometry to re-
duce the number of edges considered for diffraction at runtime. In
the third stage, we augment the simplified mesh with additional
diffraction geometry (flags) that bisect the outside angle of each
boundary (Section 4.3). These flags are used at runtime to detect
when a ray passes nearby a diffraction edge, similar to the Uncer-
tainty Principle method [Stephenson 2010]. The final optional stage
of the pipeline involves precomputing a graph of edge-to-edge visi-
bility that can be used to accelerate pathfinding during the runtime
algorithm (Section 4.4). In the case of moving geometry, we apply
this pipeline separately to each rigid part of the scene.

4.1 Mesh Simplification
In the simplification stage of the preprocess, we apply standard
mesh simplification approaches to reduce the overall geometric
complexity. This hasmany benefits downstream in the other sections
of our approach. By reducing the number of triangles, the number
of edges that must be considered in the other preprocessing stages is
also reduced. An additional benefit is that after simplification some
geometric connectivity problems may be corrected (e.g. duplicated
vertices or edges). Simplification also improves the consistency of
the local mesh curvature and this helps with correct identification
of diffraction edges in Section 4.2.
Similar to Schissler et al. [2014], we make use of vertex weld-

ing and edge collapse operations. However, we forgo the use of
voxelization and marching cubes due to the artifacts that can be
introduced when using large voxels, as well as their tendency to
actually increase the number of diffraction edges by beveling sharp
corners after surface reconstruction.

Vertex welding is applied by greedily clustering each vertex with
its neighbors within a certain tolerance distance 𝜖𝑤𝑒𝑙𝑑 = 0.001m.
We use a spatial hashing approach to implement this with 𝑂 (𝑁)
time complexity [Hradek et al. 2003]. Our implementation of the
edge collapse algorithm is similar to the standard approach [Garland
and Heckbert 1997], but with a few extensions. First, we limit the
maximum amount of error that can be introduced in triangle normals
to 𝜖𝑛 = 10◦, while the original algorithm only prevents flipping of
triangles (𝜖𝑛 = 90◦). This helps to preserve the overall shape of the
mesh better, particularly at the silhouette edges and mesh corners
which are important for diffraction. We also prevent simplification
across acoustic material boundaries.

4.2 Diffraction Edge Extraction
4.2.1 Initial Edge Selection. The first step in the edge extraction
pipeline is to determine which edges in a mesh are relevant for
diffraction. If too few edges are selected, it can cause some diffraction
paths to be missed, resulting in abrupt occlusion. It is also important
to use only the edges that can produce significant diffraction in
order to get the best performance, but identifying those edges is a
non-trivial task.

In general, edges that are between two faces with similar normals
are unlikely to produce any significant diffraction. Due to this, pre-
vious GA approaches have used metrics like the dihedral angle to

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

138:4 • Carl Schissler, Gregor Mückl, and Paul Calamia

Cluster i Cluster j

cone i,j

θn,i

ai
→ aj

→ → xi
→ xj

aij =xi +xj
→ → →

θn,j

θn,ij

Fig. 2. The cone merging process used to determine if two clusters 𝑖 and 𝑗

can be combined. The opening angle, \ ®𝑛,𝑖 𝑗 , of the merged cone is compared
to a threshold to determine if 𝑖 and 𝑗 should be merged.

classify edges as diffracting [Taylor et al. 2009; Schissler et al. 2014].
In this approach, the angle between adjacent face normals, \𝑠 , is
compared to a threshold angle, 𝜖\ , to determine if the shared edge
is a diffraction edge. If \𝑠 is greater than 𝜖\ , that edge is classified
as a diffraction edge. However, this can greatly overestimate the
number of diffraction edges for highly-tessellated curved surfaces
because it uses only local information. This is especially problematic
for highly tessellated meshes or curved surfaces that have \𝑠 close
to 0. In such meshes, the value of 𝜖\ must be close to 0 to find all
relevant edges. However, this causes many extraneous edges to also
be selected, resulting in poor runtime performance. In general, it is
difficult to find a value of 𝜖\ that works robustly for all inputs.
To address this limitation, we propose a novel diffraction edge

identification method that is based on face normal clustering. We
adapt the Felzenszwalb graph segmentation algorithm [Felzenszwalb
and Huttenlocher 2004] to this task, where in this case the graph is
the face adjacency graph. The purpose of this algorithm is to cluster
adjacent faces that have similar surface normals. The boundaries be-
tween the face clusters are then used as the initial set of diffraction
edges. Compared to existing approaches based on local curvature,
ours works well on meshes with any level of tessellation.
The algorithm begins by computing the weight for each edge

between adjacent faces in the face adjacency graph. We propose
using the cosine of the angle between each pair of adjacent face
normals,𝑤 (𝑓𝑖 , 𝑓𝑗) = cos(\𝑠) = ®𝑛𝑖 · ®𝑛 𝑗 . Next, these weights are sorted
in decreasing order, such that face pairs that have more similar
normals come first. Each face in the mesh is initially assigned to
its own unique cluster, where each cluster maintains information
about the distribution of surface normals for faces that belong to the
cluster.We represent this normal distribution using a conewhere the
axial direction ®𝑎 approximates the average normal and the opening
angle \ ®𝑛 approximates the spread of normals within the cluster.
The algorithm proceeds by inspecting each face pair in order of
decreasing weight and evaluating whether or not the clusters that
the faces belong to can be merged.

To determine if merging two clusters is possible, we first compute
the merged normal cone for the two clusters, i.e. the smallest cone
that contains both merged cones. Given two cones 𝑖 and 𝑗 , this
can be efficiently approximated by first computing the vector ®𝑥𝑖 on
the boundary of cone 𝑖 that has the greatest angle with the axis of
cone 𝑗 , and vice versa to yield ®𝑥 𝑗 . The average of the two extreme
vectors is then used as the merged cone axis and the angle between

Curved Boundary 1st Pass 2nd Pass

split
point

Fig. 3. An illustration of the recursive curve splitting process described in
Section 4.2.2. Curved boundaries are subdivided until the aspect ratio of
the bounding cylinder drops below a threshold. The final approximately-
collinear boundaries are treated as individual proxy diffraction edges.

them is used as the opening angle of the cone, \ ®𝑛 . This process is
shown in Figure 2. The clusters are then merged if \ ®𝑛 is less than
the merging threshold for either cluster. The merging threshold is
maintained separately for each cluster and is initially set to 𝜏 = 𝜖\ at
the beginning of the algorithm, where 𝜖\ is the minimum dihedral
angle to consider for diffraction. After two clusters are merged, the
resulting cluster’s threshold is increased according to the following
relation:

𝜏 (𝐹𝑖 ∪ 𝐹 𝑗) = \ ®𝑛 + 𝑘𝜖\

|𝐹𝑖 | + |𝐹 𝑗 |
(1)

where |𝐹𝑖 | and |𝐹 𝑗] represent the number of faces in the constituent
clusters, and where 𝑘 = 4 is a parameter that controls the scale of
the clusters. This has the effect of requiring stronger evidence for a
boundary between small clusters.

The final step of the face clustering algorithm is to merge clusters
smaller than a certain threshold with adjacent larger clusters. This
is necessary in the case of noisy mesh data such as that from 3D
reconstructions where there may be occasional small clusters that
are not included in the cluster for a large flat wall. For each cluster
that is considered too small (e.g. area less than 0.1m2), we merge
it into the neighboring cluster that has the most similar average
surface normal.
Once the face clusters are computed, we extract the boundaries

between the clusters as the initial set of diffraction edges. Each
boundary is a set of edges that have adjacent faces belonging to
the same 2 clusters. These boundaries are then provided to the next
stage of the preprocessing pipeline.

4.2.2 Curved Boundary Splitting. Since the face clusters in the pre-
vious step can have any shape, there is no restriction on the collinear-
ity of the edges that make up a cluster boundary. This is in conflict
with our final goal of turning each boundary into a single straight
diffraction edge. To handle this problem, we propose a simple ap-
proach for splitting mesh boundaries into collinear segments.

For each boundary, we first calculate a bounding cylinder of the
vertices, where the axis of the cylinder represents the dominant di-
rection of the boundary and the radius is a measure of how collinear
the vertices are. The cylinder’s axis is defined by the two vertices in
the boundary that are farthest apart, while the radius of the cylinder
is given by the maximum distance of a boundary vertex from the
axis line segment. This cylinder is used to determine whether or
not a boundary should be split into more than one boundary.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

Fast Diffraction Pathfinding for Dynamic Sound Propagation • 138:5

S

L

flag

fshadow

f1

n1
→ n0

→

h →

dflag
Conservative shadow region

Shadow region

edge v0v1

∊h

∊f

ne
→

pref
→

f0

t0
→ t1

→

θs

nshadow
→

→ →

θs

Fig. 4. A cross-section view of the geometry for a single diffraction edge.
The edge axis is perpendicular to the image. The edge is shared by faces 𝑓0
and 𝑓1 that have face normals ®𝑛0 and ®𝑛1. The exterior angle between 𝑓0 and
𝑓1 is bisected by edge normal ®𝑛𝑒 and a planar diffraction flag that extends
a distance 𝑑𝑓 𝑙𝑎𝑔 from the edge. The grey-shaded areas are the conservative
shadow regions that are defined by the planes of 𝑓0 and 𝑓1. The red-shaded
area is the shadow region for a particular listener position. It is bounded by
the horizon plane and plane of face 𝑓𝑠ℎ𝑎𝑑𝑜𝑤 . The horizon plane, with normal
vector ®ℎ, is defined by the edge vertices and the reference point ®𝑝𝑟𝑒𝑓 , which
corresponds to a source, listener, or point on a previous diffraction edge.
Also visible are the epsilons 𝜖ℎ and 𝜖𝑓 that extend the shadow region on the
horizon and face sides. These extra tolerances enable smoother transitions
between direct and diffracted state (see Section 5.2.2).

We propose that a boundary should be split if the aspect ratio
of its bounding cylinder

(
2𝑟
ℎ

)
is more than a certain threshold, e.g.

0.025. The splitting point is chosen to be the boundary vertex that is
farthest from the cylinder’s axis, while the edges that are on either
side of the split are placed into one of the two resulting boundaries.
These new boundaries are then recursively split until their aspect
ratio falls below the threshold. This process is illustrated in Figure 3.
The output of this stage is a collection of mesh boundaries that are
known to be approximately straight.

4.2.3 Silhouette Edges. Similar to previous GA diffraction methods
[Tsingos et al. 2001; Schissler et al. 2014], we only consider the
diffraction that occurs in the shadow region of an edge. This means
that the only edges that can produce diffraction are silhouette edges,
i.e. those edges that can cast a “shadow" when illuminated from a
point in the conservative shadow region (see Figure 4).
In this section we present a novel approach to reliably identify

these silhouette edges. Our approach utilizes global information
about the structure of the mesh acquired through stochastic ray
tracing from points on an edge to determine whether or not a given
edge is a silhouette. Our approach is based on the observation that
in order for an edge to contribute to diffraction, it must be able to
cast a shadow, and that a source or listener with non-zero size must
be able to go into the conservative shadow region on both sides of
the edge. The main idea is that if there are other parts of the mesh
that completely obstruct one or both sides of a given edge such that

u0 = 0

u0 = θs

θr

-θr

u1 = 0

v0

v1

Fig. 5. The probability density function used to generate rays in the silhou-
ette edge detection algorithm (Section 4.2.3) and diffraction visibility graph
computation (Section 4.4).

no sound source or listener can form a shadowed path over the edge,
that edge cannot produce any diffraction paths.

This information can be determined approximately by stochastic
ray tracing in the conservative shadow regions (CSR) of each edge
(see Figure 4). We emit rays that randomly sample the CSR from
uniformly-sampled random points on the edge. The number of
rays traced for an edge, 𝑁𝑠𝑎𝑚𝑝 , is determined by its length and the
angular size of the CSR:

𝑁𝑠𝑎𝑚𝑝 = min
(
𝑁𝑚𝑎𝑥
𝑠𝑎𝑚𝑝 ,

∥®𝑣1 − ®𝑣0∥2
ℎ𝑑

\𝑠

ℎ\

)
(2)

where \𝑠 = cos−1 (®𝑛0 · ®𝑛1) is the angular size of the CSR, ℎ𝑑 = 0.1m
is the distance sampling resolution, and ℎ\ = 5◦ is the angular
sampling resolution. In practice, 𝑁𝑠𝑎𝑚𝑝 is limited to a reasonable
maximum value, e.g. 104, to prevent spending too much time on
very long edges.

To sample the outgoing ray direction, we use a uniform spherical
distribution that has been modified to generate rays in a wedge
shape, as shown in Figure 5. The outgoing ray direction in the local
tangent space is given by:

®𝑟𝑑 =

(
𝑢0,

√︃
1 − 𝑢20 sin𝑢1,

√︃
1 − 𝑢20 cos𝑢1

)
(3)

where 𝑢0 is a uniform random variable in the range [0, \𝑠), and
𝑢1 is a uniform random variable in the range [− sin\𝑟 , sin\𝑟]. The
parameter \𝑟 = 30◦ controls the amount of spreading of the rays in
the direction of the edge axis. For example, \𝑟 = 0 would generate
rays that are always perpendicular to the edge. Once the local ray
direction is generated, it is rotated to mesh space by applying the
orthonormal rotation matrix R𝑖 =

[
®𝑣1−®𝑣0

∥®𝑣1−®𝑣0 ∥2 , ®𝑛𝑖 , ®𝑡𝑖
]
, where 𝑖 is the

face index.
In our approach, we classify an edge as silhouette if both sides

of the CSR have at least 𝑁𝑣𝑎𝑙𝑖𝑑 = 1 rays that don’t hit anything
within a certain distance, 𝑑𝑠 . We use this information as a proxy for
whether or not a source or listener can be occluded by the edge. The
distance 𝑑𝑠 is proportional to the diameter of a source or listener,
𝑑𝑠 . In other words, as a source or listener grows bigger, an edge
must protrude further from the nearby geometry to produce any
diffraction. 𝑑𝑠 is a parameter of our algorithm that controls how

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

138:6 • Carl Schissler, Gregor Mückl, and Paul Calamia

(a)

(b) ds

ds

edge

edge

u0

Fig. 6. An illustration of the silhouette edge heuristic for two edges. The
yellow circle represents a sound source or listener with diameter 𝑑𝑠 , and
the red rays represent random rays generated according to Equation 3.
Edge (a) is not a silhouette edge because the circle cannot be placed where
it is completely occluded by the edge. This is because all of the rays hit
another face before traveling distance 𝑑𝑠 . Edge (b) however is classified as
a silhouette edge because at least 𝑁𝑣𝑎𝑙𝑖𝑑 rays were able to travel for a least
distance 𝑑𝑠 and because the circle can be occluded by the edge. Note that
both edges pass this heuristic for the other side of the edge, but only (b)
passes on both sides.

aggressive the silhouette edge detection is. We use 𝑑𝑠 = 0.25m,
which roughly corresponds to the size of a human head. In Figure 6
we show an example of this heuristic for two different edges.

In order for our approach to work correctly, the value of 𝑑𝑠 must
increase for rays that are closer to the CSR boundary. If 𝑑𝑠 did not
increase for rays near the CSR boundary, edge (a) in Figure 6 would
be erroneously classified as a silhouette edge. To address this, we
calculate the value of 𝑑𝑠 for each ray using the following relation:

𝑑𝑠 =
𝑑𝑠

max(cos(𝑢0), 𝜖)
. (4)

This causes the threshold distance to increase substantially for rays
that have large 𝑢0.

To summarize, our silhouette detection algorithm inspects every
input edge and traces rays to determine if that edge is a silhouette.
If at least 𝑁𝑣𝑎𝑙𝑖𝑑 rays on both sides of an edge are able to travel a
distance of at least 𝑑𝑠 before hitting other geometry, then that edge
is classified as a silhouette.

4.3 Diffraction Geometry Construction
In this stage of the preprocessing pipeline, we take the final set
of silhouette mesh boundaries produced in the previous stage and
construct additional diffraction geometry that is used at runtime to
detect when a ray passes near an edge. This idea is inspired by the
Uncertainty Principle (UP) diffraction approach [Stephenson 2004,
2010]. Stephenson et al. proposed augmenting the main geometry
with so-called diffraction flags - quadrilaterals that bisect the outside
angle of diffraction edges and protrude a distance proportional to
the wavelength of the lowest frequency band, e.g. 𝑑𝑓 𝑙𝑎𝑔 = 6_.
We construct a similar set of diffraction flags but do not require

any particular flag length, 𝑑𝑓 𝑙𝑎𝑔 , because the accuracy of our diffrac-
tion approach does not depend on the flag length due to the use of
the analytical UTD diffraction model. On the other hand, changing
the flag length changes the diffracted sound intensity for UP because

Edge Normal Flags Vertex Normal Flags

Fig. 7. The difference between diffraction flags generated using vertex nor-
mals versus flags generated using edge normals. Vertex normals produce
flags without gaps, thereby increasing the probability of ray-flag intersec-
tions for locally-convex geometry.

in that model the flag is an integral domain. In our approach, the
length of the diffraction flags controls how likely it is for a ray to in-
tersect a flag and find diffraction paths over the associated edge. We
use 𝑑𝑓 𝑙𝑎𝑔 = 1.0m as a reasonable tradeoff between finding enough
diffraction paths and spending too much time on ray-versus-flag
intersection tests for rays as they traverse the scene. For example,
with the UP approach, a simulation with lowest frequency band of
63Hz would require flags of length 33m. In complex scenes, this
becomes problematic for performance because of numerous over-
lapping flags.

The first step of this stage is to convert the input mesh boundaries,
each made up of one or more edges, into singular diffraction edges
that act as proxies for the underlying surface geometry. In this way,
we decouple the surface geometry representation from the edges
used to compute diffraction effects. Each roughly collinear mesh
boundary is approximated with a single straight edge. We apply the
approach discussed in Section 4.2.2 a second time to compute the
best-fitting proxy edge for a mesh boundary. Another issue is the
calculation of the local geometric information needed for diffraction,
namely the adjacent face normals of the proxy edge. To do this, we
compute the area-weighted average of the face normals on each
side of the boundary after assigning each adjacent face to one side
or another based on the similarity of its normal vector to the faces
processed so far.
The second task of this stage is to determine where to place the

two far vertices for each flag. The simplest approach is to place the
far vertices at distance 𝑑𝑓 𝑙𝑎𝑔 from each edge vertex in the direction
of the edge normal, e.g. ®𝑣𝑖 + ®𝑛𝑒𝑑𝑓 𝑙𝑎𝑔 . This works well in many cases,
but can fail with certainmeshes. Consider the diffraction edges at the
top ring of a tessellated cylinder, as shown in Figure 7. Placing the
far vertices along the edge normal produces many gaps in the ring
of flags that may reduce the effectiveness of the runtime diffraction
algorithm. To remedy this, we propose using the vertex normals
rather than the edge normal to determine the far vertex locations,
e.g. ®𝑣𝑖 + ®𝑛𝑣𝑖𝑑𝑓 𝑙𝑎𝑔 . The exception is that if both vertex normals point
toward the center of the edge, we use the edge normal instead. This
tends to use vertex normals on the convex parts of the mesh and
edge normals on the concave parts.
To support intersecting rays against either the surface mesh or

the flags, we put the additional flag geometry in a separate mesh and

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

Fast Diffraction Pathfinding for Dynamic Sound Propagation • 138:7

acceleration structure with the same transformation as the surface
mesh. A bitmask is then used by the ray tracer to select what type(s)
of geometry each ray should intersect with. This is required because
flags should not interfere with next event estimation in the path
tracer or line-of-sight checks in the runtime diffraction algorithm.

4.4 Diffraction Graph
The last stage of our preprocessing pipeline is to build a separate
directed edge-to-edge visibility graph between the final set of diffrac-
tion edges for each rigid mesh in the scene. It is used in the runtime
graph traversal algorithm to speed up the search for diffraction paths
(Section 5.4). The data structure itself is similar to the visibility graph
from [Schissler et al. 2014], i.e. a flat array of edge neighbor indices,
but we generate the graph in a different way that scales better to
complex scenes with many edges. The graph computation algorithm
from [Schissler et al. 2014] scales poorly because it considers all
pairs of diffraction edges in the mesh, i.e. it is an 𝑂 (𝑁 2) algorithm,
while in practice most edges can only diffract with a few neighbors.
In addition, their approach only traced a single ray between the
midpoints of each pair of edges. This may have caused some edge
pairs to be erroneously discarded because it did not consider partial
visibility.

In contrast, our graph generation algorithm handles approxi-
mate partial visibility and has𝑂 (𝑁) time complexity. We utilize the
diffraction flag geometry from Section 4.3 along with stochastic ray
tracing to determine whether or not edges are mutually visible. For
each edge 𝑒𝑖 in the mesh, we emit random rays in the conservative
shadow regions according to the same distribution used to generate
silhouette rays (Section 4.2.3), but with \𝑟 = 60◦. These rays are
then intersected with the surface mesh to find the ray endpoint at
distance 𝑑𝑚𝑎𝑥 . Then, the same ray is intersected with the diffraction
flags to find all hits along the ray up to distance 𝑑𝑚𝑎𝑥 . For each flag
intersection, we check to see if the associated edge, 𝑒 𝑗 , is in the CSR
of the edge 𝑒𝑖 that emitted the rays. This condition is met when the
signed distance of an edge endpoint to the face planes of the other
edge is more than −𝜖𝑓 for one plane and less than 𝜖𝑓 for the other.
This is similar to the culling test proposed in [Schissler et al. 2014],
but with additional tolerance 𝜖𝑓 that prevents edge pairs that share
a face plane from being discarded. If this succeeds, a directed link is
added to the graph from edge 𝑒𝑖 to edge 𝑒 𝑗 .
Another improvement we make to the graph data structure is

to partition the links originating from a given edge into two sets
corresponding to the two sides (i.e. CSR) of the edge that generated
the connections. By partitioning the outgoing links in this way, the
graph search algorithm in Section 5.4 can be sped up by about a
factor of 2. For example, if the current position of the diffraction
graph search is on one side of the edge, it only has to explore neigh-
boring edges that were visible to the far side of the edge because
the other edges would not be able to form valid diffraction paths.
An example diffraction graph is shown in Figure 1, where we color
the connections between edges with either red or blue to show how
the outgoing connections are partitioned for each diffraction edge.

5 DIFFRACTION RUNTIME
The runtime part of our diffraction approach considers the prob-
lem of finding direct diffraction paths between every source and
listener in the scene each time the simulation is updated. Our ap-
proach is based on the idea of intersecting rays with additional
diffraction flag geometry, originally proposed for the UP diffrac-
tion method [Stephenson 2004]. However, in contrast to the UP
approach, we don’t rely on stochastic ray tracing to directly calcu-
late the diffraction path intensity. Rather, we use a UP-like approach
to find sequences of diffraction edges in a random ray traversal,
but instead use the UTD diffraction model to analytically compute
the path intensity. We also maintain a persistent cache of these
paths over the course of the simulation to improve the temporal
coherence (Section 5.3), and propose a graph traversal algorithm to
find high-order paths more quickly (Section 5.4).
Our approach has several advantages over previous methods.

First, like UP, its time complexity does not scale exponentially with
the maximum diffraction order and it can be easily integrated into
existing acoustic path tracers. This enables very high-order diffrac-
tion (e.g. order 10) to be calculated with good performance, even in
scenes with high geometric detail. Second, unlike UP, the degree of
convergence of the results does not depend on the number of rays
traced. Third, our approach is able to efficiently handle diffraction
between multiple dynamic objects.

5.1 Ray Tracing
At the core of our runtime system is a bidirectional path tracer
(BDPT) with multiple importance sampling [Veach 1997; Georgiev
2012; Cao et al. 2016]. We use this to compute early reflections
and to build an energy-decay histogram for the late reverb from
which frequency-dependent reverberation times can be determined.
Our diffraction approach is integrated within the path tracer and is
similarly bidirectional, meaning it can find diffraction paths starting
from either the listener or a source. This bidirectionality improves
the likelihood of finding paths in certain geometric configurations
where either source or listener is highly occluded.

In our path tracer, we consider diffraction only for subpaths orig-
inating at a source or listener that have not yet intersected any
surfaces. This is consistent with our restriction to only direct diffrac-
tion. For these subpaths, we intersect the constituent rays with both
surface geometry and diffraction flag geometry to find the nearest
intersection. If the intersection is with a surface mesh, we reflect
or transmit the ray according to the surface material and disable
intersections with further diffraction flags. Otherwise, the ray hit a
diffraction flag and remains a candidate for more diffraction events.
Since flags can stick through geometry, we trace an additional

ray from the ray vs. flag intersection point toward its projection on
the edge to verify that the edge is visible. If so, we try to find paths
to sources or listeners in the scene that are in the shadow region of
the edge. For each of these possible paths, we evaluate whether or
not diffraction over the edge is valid, given the sequence of previous
edges in the subpath. This is discussed in detail in Section 5.2. If a
precomputed diffraction graph is available for the intersected mesh,
we can also perform a deterministic graph search to find additional

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

138:8 • Carl Schissler, Gregor Mückl, and Paul Calamia

high-order diffraction paths (Section 5.4). This is analogous to deter-
ministic next event estimation in a path tracer. If the edge is not in
a valid configuration to produce diffraction, the ray continues past
the flag in its current direction without modification.
After any paths have been found for the current edge, we mod-

ify the outgoing ray direction to explore the scene further. One
possible ray distribution is the diffraction probability density func-
tion (DAPDF) proposed for the UP diffraction model, however we
found in practice that a simple lambertian distribution on the op-
posite side of the flag empirically finds more diffraction paths and
is faster to sample. Once the ray is redirected, we modify the ray’s
frequency-dependent energy according to the DAPDF. This mod-
ification ensures that the outgoing ray has the correct diffracted
energy for its direction, and also that further reflections of that
subpath are influenced by the diffraction that occurred earlier in
the path.
This repeats until a surface mesh is intersected or a maximum

number of diffractions occur, at which point the further rays for the
subpath are handled using standard BDPT.

5.2 Path Validation
5.2.1 Shadow Test. For diffraction to be possible, each diffraction
edge in a subpath must intersect the shadow region of the previous
edge, if one exists. The shadow region is defined as the intersection
of the two half-spaces corresponding to the shadow face plane and
the shadow horizon plane (see Figure 4). The shadow horizon plane
is defined by the diffraction edge vertices ®𝑣0, ®𝑣1 and the reference
point ®𝑝𝑟𝑒 𝑓 , which for the first edge is the source or listener position.
For diffraction beyond order 1, ®𝑝𝑟𝑒 𝑓 is the point on the previous
edge that creates the largest (i.e. closest to conservative) shadow
region. This can be determined by clipping the previous edge’s line
segment with the face planes of the current edge, so as to limit the
previous edge segment to only the part in the current edge’s CSR on
the non-shadowed side. If the previous edge is completely outside of
this region, diffraction cannot occur between the edges. Then, the
clipped endpoint that creates the shadow region with greatest angle
is chosen as ®𝑝𝑟𝑒 𝑓 and the horizon plane normal ®ℎ is calculated as
®ℎ = (®𝑣1 − ®𝑣0) ×

(
®𝑝𝑟𝑒 𝑓 − ®𝑣0

)
. Finally, we can use a few dot products

to check if the current edge intersects the shadow region for the
previous edge. Please refer to the supplemental material for details.
Once a potentially valid subpath is found, we can then check for
connections to sources or listeners that are in the shadow region of
the last edge using a similar shadow test.

5.2.2 Shadow Test Tolerances. We allow a tolerance of 𝜖ℎ = 1.0𝑚
for the horizon plane and 𝜖𝑓 = 0.1𝑚 for the shadow face plane,
as shown in Figure 4. The tolerance 𝜖𝑓 allows our approach to
find diffraction paths between coplanar edges without numerical
issues. It also avoids problems where the diffraction wedge geometry
doesn’t correspond exactly to the surface mesh. For instance, if the
averaged face normals for a proxy edge (Section 4.3) are slightly
wrong, the shadow testmight reject otherwise valid diffraction paths.
Introducing a face plane tolerance helps to avoid these geometric
issues.

S L

βmin

βmax

βvalid

BDPT subpath

apex apex

Fig. 8. An illustration of the soft visibility test for a 2nd-order diffraction
path. For small values of 𝛽 , the path is occluded by other nearby geometry
that is not marked as diffracting due to the silhouette test. We increase 𝛽
geometrically from 𝛽𝑚𝑖𝑛 until either it surpasses 𝛽𝑚𝑎𝑥 , or an unoccluded
path is found.

The purpose of the large horizon plane tolerance 𝜖ℎ is to antic-
ipate diffraction paths before they are needed and enable smooth
transitions between direct and diffracted sound. This is important
when a source or listener moves from the region where direct sound
is valid into the shadow region of an edge. Due to the random nature
of the rays, it’s possible that a ray may not immediately hit the flag
for the edge, resulting in a temporary gap in the audio until the
diffraction path is found. This phenomenon is more problematic
with high-order diffraction because those paths are much less likely
to be explored by random ray traversal. By anticipating diffraction
paths that may soon become valid, those paths are more likely to
be in the path cache when they are actually needed (i.e. when the
direct sound becomes occluded). In the case where direct sound is
unoccluded, these anticipated paths are not used for auralization.

5.2.3 Visibility Test. For each source or listener in the shadow re-
gion, we then check to see if that source or listener can form a valid
path back to the listener or source that emitted the subpath. We first
compute the apex points (points where diffraction occurs) on each
edge using the Newton’s method approach suggested by Tsingos
et al. [2001]. An important detail is that we clamp the points to be
on the edge’s line segment. This is needed for robust diffraction
around curved surfaces with many small edges. In such cases, the
apex point often is not between the edges’ endpoints, and rejecting
these paths would make the diffraction significantly less robust.
Once the apex points are determined, we then trace a series of

rays between the source, apex point(s), and listener to determine
if the path is blocked by other geometry. We bias each apex point
a variable distance 𝛽 out from the edge along the edge normal ®𝑛𝑒
to prevent self-intersection of rays with neighboring faces, and
also to implement a robust soft visibility test. The main idea of the
soft visibility test is that if all rays in the path are unoccluded for
some 𝛽 ∈ [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥], then that path is considered valid. The
procedure is to first set 𝛽 = 𝛽𝑚𝑖𝑛 and then trace rays between
all of the points along the path. If any rays are blocked, we then
geometrically increase 𝛽 by a factor of 2 and tracemore rays between
the new biased apex points. We repeat this until 𝛽 ≥ 𝛽𝑚𝑎𝑥 . If no

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

Fast Diffraction Pathfinding for Dynamic Sound Propagation • 138:9

𝛽 passed the visibility test, then the diffraction path is discarded.
We use 𝛽𝑚𝑖𝑛 = 0.01𝑚 and 𝛽𝑚𝑎𝑥 = 1.0𝑚. In Figure 8, we show an
example of where this approach helps find more diffraction paths,
such as when edges that were not marked as diffracting occlude the
rays between apex points.
After the visibility test is passed, we compute the frequency-

dependent intensity of the diffraction path using the UTD diffraction
model. We use the shadow boundary normalization scheme from
[Tsingos et al. 2001] to ensure that the diffraction intensity matches
the direct sound at the shadow boundary. Finally, we insert the path
into the diffraction path cache.

5.3 Diffraction Path Cache
An important part of our diffraction approach is the so-called diffrac-
tion cache. The purpose of this cache is to reduce unnatural variation
in the sound. The diffraction paths that are found on each simulation
update may be different because different random rays are traced.
This can lead to audible artifacts in real-time applications where
the number of rays is small. To address this, we leverage the idea
of a persistent cache of paths from [Schissler and Manocha 2011;
Schissler 2017] and adapt it to diffraction.

The cache contains diffraction edge sequences from previous time
steps that are known to be valid. The cache entries are stored in a
hash map data structure accessed by an integer key that is generated
from a hash of the source index, listener index, and edge indices
for a path. At the beginning of each time step, the cache entries are
revalidated using the approach from Section 5.2 and newly invalid
entries are discarded. During ray tracing, as new valid paths are
found, they are inserted into the cache. For explored paths that
are known to be invalid, we also insert a special invalid entry in
the cache to indicate that that edge sequence shouldn’t be checked
again this frame. We use the cache to avoid checking the same edge
sequences for diffraction more than once on each frame.
In scenes with many edges, the number of paths that are in the

cache can increase substantially. If the cache is too large, it can
slow down revalidation of the cached paths on the next simulation
update. For this reason, the cache also prioritizes the valid paths in
the cache based on the intensity of the loudest frequency band. We
use an additional min-heap data structure to dynamically rank the
paths as they are found and discard all except the top 𝑁 , where 𝑁 is
chosen to be proportional to the number of sources in the scene, e.g.
𝑁 = 20(#𝑠𝑜𝑢𝑟𝑐𝑒𝑠). If a new path is found and it is quieter than the
𝑁 th quietest path, we don’t add that path to the valid set (though
we still mark that path as explored on this frame). This effectively
enforces a maximum size for the set of valid paths in the cache
globally for all sources/listeners. While not directly perceptually-
motivated, this scheme produces an approximate kind of perceptual
prioritization, where if the scene is complex, the quietest paths will
be masked by the louder ones.

At the end of each time step, we inspect the contents of the cache
and pick the loudest single diffraction path for each source/listener
pair. The intensity and direction for this path is then used for the
final audio rendering whenever the direct sound is occluded (i.e.
the same interpolated delay line tap is used for direct sound and
diffraction to ensure smoothness).

The main reason we restrict the rendered output to just one
path is because it helps to overcome deficiencies with the UTD
diffraction model. UTD assumes every edge is infinitely long and
that the adjacent faces are also infinite. This assumption causes
UTD to produce a total diffracted sound field that is much too loud
in some geometric configurations, as shown by Figure 13. Since
UTD considers each path to be over an infinite edge, the sum of
diffraction contributions is not physically correct or plausible. By
picking the single loudest (usually shortest) path, we get a diffracted
sound field that is much closer to correct in these situations.

5.4 Diffraction Graph Traversal
While the approach proposed in the previous sections is viable alone,
its robustness and performance can be greatly improved by the use
of a precomputed edge-to-edge visibility graph similar to the one
from [Schissler et al. 2014]. This graph increases the likelihood
that we find valid high-order diffraction paths between sources
and listeners that are separated by complex (e.g. curved) geometry,
rather than relying on the random traversal of diffracted rays to find
high-order paths. However, unlike [Schissler et al. 2014], we do not
perform an exhaustive graph search each time a correctly-oriented
diffraction flag is intersected in the path tracer. Instead, we apply
the A* (A-star) algorithm from the agent navigation field [Hart et al.
1968] to find the shortest diffraction path through the graph starting
from the intersected flag. While this only finds one path through
the graph for each query, it tends to be a prominent path because
of distance attenuation.
The graph traversal begins whenever a diffraction flag with the

correct orientation (see Section 5.2.1) is intersected by a BDPT sub-
path. We do a separate traversal for each source or listener in the
scene that was not able to form a valid diffraction path directly over
the edge, i.e. we only perform the graph traversal when a lower-
order path was not found using the approach in Section 5.2.3. At
this point, we transform ®𝑝𝑟𝑒 𝑓 and the goal source or listener into
the mesh’s local space so that the search can operate locally to avoid
transforming vertices and normals. The search starts at the graph
node corresponding to the intersected flag. From there, we investi-
gate only the neighboring nodes that are on the opposite side of the
flag from ®𝑝𝑟𝑒 𝑓 , as discussed in Section 4.4.
For each neighbor, we compute the estimated distance from the

neighboring edge to the goal source or listener. This is the A* heuris-
tic that is used to rank potential paths through the graph. The choice
of heuristic influences which paths are prioritized. One possibility
would be to use the Euclidean distance from the neighbor’s midpoint
to the goal, however we found that this does not always find the
shortest path when edges are long because the midpoint may be
distant from the diffraction apex point. Instead of the midpoint, we
propose using the point on the neighboring edge that is closest to
the line between the source and listener.
Once the distance from the closest point on the neighbor to the

goal is determined, it is added to the shortest distance through the
graph from the starting edge to the current edge to yield the total
estimated distance for the neighbor. We discard any neighbors that
are in the A* closed set and which have distance estimates greater
than best path through the graph to that node, if the neighbor was

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

138:10 • Carl Schissler, Gregor Mückl, and Paul Calamia

previously visited. If a neighbor is not in the A* open set or has
a distance estimate lower than the best so far, we then check the
edge further to see if it is in a proper geometric configuration for
diffraction according to the approach from Section 5.2.1. If so, that
edge is inserted into the A* node heap.
Once all neighbors are either discarded or put into the A* heap,

we check the top of the heap (i.e. the node with smallest distance
estimate) to see if a valid diffraction path is formed from the starting
node to the top node. We first check to make sure the goal point is
inside the shadow region of the final edge. If this succeeds, the edge
sequence for the shortest path is reconstructed and transformed
into world space for the final path validation and visibility testing.
We then use the same approach from Section 5.2 to determine if
the path is valid. If so, that path is inserted into the cache and the
graph search terminates. Otherwise, the neighbors of that node are
investigated recursively.
This process repeats until a path is found or until a maximum

number of nodes has been visited. If no valid path through the graph
exists, which is sometimes the case with diffraction through complex
environments, A* degenerates to Djikstra’s algorithm and explores
the entire graph. By limiting the number of nodes that are visited,
we can avoid spending a lot of time searching the extraneous parts
of the graph when no path actually exists. We suggest using a limit
that is 2 − 3 times larger than the maximum diffraction order, e.g.
we use a limit of 30 nodes for diffraction up to order 10.

6 IMPLEMENTATION
The preprocessing module of our diffraction approach is highly par-
allel so that it can scale to very large meshes. We parallelize the edge
collapse simplification by splitting the mesh into disjoint sections
using a uniform grid. The edge collapse algorithm is applied sepa-
rately to each section in parallel, while avoiding simplification of
the border triangles. After all sections are simplified, the borders are
simplified in a final serial pass. The other parts of the preprocessing
pipeline are either serial (face clustering) or embarrassingly parallel
(e.g. silhouette edge detection, visibility graph computation). We
are careful to reduce the total number of memory allocations in the
mesh data structure, yielding performance benefits.
The runtime module simulates the propagation of sound in 4

logarithmically-distributed frequency bands: 0-176 Hz, 176-775 Hz,
775-3408 Hz, and 3408-22050 Hz. The simulation executes on a sin-
gle thread of an Intel Core i7-4770K CPU. Ray intersections are
accelerated by an axis-aligned bounding box hierarchy (BVH) that
is partitioned into two levels: a top level that is rebuilt each frame
to handle dynamic geometry, and a bottom level for the static mesh
BVHs in local space. The path tracer emits 100 rays from each
source and listener. Listener rays are reflected or diffracted up to
200 times before path termination, while source rays are only al-
lowed 10 path events. The asymmetry between sources and listeners
enables the path tracer to simulate multiple sources with less run-
time impact. At each listener subpath event, we randomly sample
connections to points on the source subpaths. The probability of
making a connection can be used to adjust the balance between
simulation convergence and performance.

10.11 s 22.39 s 0.76 s 1.00 s 52.93 s 11.29 s

0

10

20

30

40

50

60

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Apartment 0 Bistro Sibenik Sponza Sun Temple Warehouse

%
 T

ot
al

Build Graph

Create Flags

Merge Colinear

Split Curves

Find Silhouettes

Clean Edges

Face Clustering

Edge Collapse

Connectivity

Weld Vertices

Fig. 9. The time taken by each section of our preprocessing pipeline. For
most scenes, the construction of the diffraction graph takes the majority
of the time. The Apartment 0 scene requires more time for edge-collapse
simplification due to the highly tessellated input mesh.

Frequency-dependent audio rendering is implemented by first
passing all input monaural source audio through a 4-way crossover
filter bank and then applying separate gains to each band in par-
allel using SIMD instructions. We use interpolated delay lines to
implement the rendering of direct sound, diffraction, and early re-
flections up to order 2. Late reverberation is rendered using artificial
reverberators whose rates of decay and gain in each band are de-
rived from energy-time histograms computed by the path tracer.
Reverb and early reflections are spatialized as 1st-order ambisonic
signals, while direct sound and diffraction are 3rd-order. The audio
for all sources is summed as world-space ambisonics and a single
convolution with an ambisonic HRTF [Zaunschirm et al. 2018] is
performed to convert ambisonics to binaural. The listener’s head
rotation is applied by rotating the ambisonic HRTF by the inverse
head rotation before convolution.

7 RESULTS

7.1 Scenes
To evaluate our diffraction method, we selected six scenes of varying
size and geometric complexity. The attributes and results of these
scenes are summarized in Table 1. TheApartment 0 scenewas chosen
as an example of dense geometry derived from 3D reconstruction.
The Bistro scene [Lumberyard 2017] interior has highly detailed
geometry with many very small diffraction edges. The Sibenik and
Sponza scenes [McGuire 2017] have lower complexity but some
challenging features (cylindrical columns, curtains). The largest
scene, Sun Temple, encompasses a very large outdoor environment
(about 1km2), and has many difficult geometries such as wooden
walls with many small holes through which diffraction can occur.
TheWarehouse scene is particularly challenging for the diffraction
graph traversal because its numerous mutually-visible diffraction
edges result in a graph with a high average degree. Please refer to
the accompanying video to hear the audio results of our method on
these scenes.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

Fast Diffraction Pathfinding for Dynamic Sound Propagation • 138:11

Table 1. The main results of our diffraction approach. All scenes simulate diffraction at runtime up to order 10 on a single Intel Core i7-4770K 3.7GHz CPU
thread. Preprocessing results use 8 CPU threads. Speedup is per source relative to [Schissler et al. 2014].

Preprocessing Runtime
Scene #Triangles #Edges #Flags Graph Size Time [Schissler 2014] Speedup #Sources Total Per Source [Schissler 2014] Speedup

Apartment 0 9.1M 147.7K 2,446 145 KB 10.11 s 145.2 s 14.4× 6 2.1 ms 0.35 ms 0.95 ms 2.7×
Bistro 3.8M 2.8M 52,364 8.40 MB 22.39 s 206.3 s 9.2× 7 36.5 ms 5.2 ms 107.8 ms 20.7×
Sibenik 75.2K 66.7K 4,837 671 KB 0.76 s 8.07 s 10.7× 2 0.28 ms 0.14 ms 5.80 ms 42.2×
Sponza 282.1K 103.7K 5,075 489 KB 1.00 s 8.73 s 8.7× 6 4.2 ms 0.70 ms 3.04 ms 4.4×
Sun Temple 4.7M 3.8M 229,512 54.5 MB 52.93 s 16,175 s 305.6× 16 120.7 ms 7.5 ms 4.29 s 568×
Warehouse 602K 377.3K 34,336 8.69 MB 11.29 s 83.6 s 7.4× 20 72.0 ms 3.6 ms 390.6 ms 109×

7.2 Preprocessing
We applied our preprocessing pipeline and measured the time taken
by each section. These results are shown in Figure 9. Additional
results and images of the scenes for each pipeline stage are located
in the supplemental material. For most scenes, the preprocessing
time is less than 20 𝑠 . For the simpler Sibenik and Sponza scenes, it
takes only about 1 second for the entire process. The largest scene,
Sun Temple, still only takes 52.93 𝑠 . Aside from the Apartment 0
scene where edge-collapse dominates performance due to dense
tessellation, most of the time is spent on the construction of the edge
visibility graph. Our preprocessing pipeline is able to reduce the
number of diffraction edges considered for simulation by at least an
order of magnitude, and in some cases by up to 60 times (Apartment
0). The total memory required for the diffraction graph is less than
10MB for all but the Sun Temple scene.

For comparison, we tried the same scenes using the implementa-
tion from [Schissler et al. 2014]. Our approach is about an order of
magnitude faster on most of the scenes, and up to 305.6 times faster
for the Sun Temple scene, which took almost 5 hours to compute
using the old method. The main reason for this large speedup is the
lack of a voxelization step, and our new method for computing the
edge visibility graph that has much better time complexity (𝑂 (𝑁)
instead of𝑂 (𝑁 2)). For all scenes, our approach also produces fewer
final diffraction edges than [Schissler et al. 2014].

7.3 Runtime
To evaluate the runtime method, we placed various sound sources
throughout the scenes and recorded the time taken to calculate
diffraction for the demos shown in the accompanying video. For the
simpler scenes (Apartment 0, Sibenik, Sponza), our method is able
to simulate 10th-order diffraction in less than 1ms per source. The
other scenes have manymore diffraction edges and larger diffraction
graphs, and as a result take 3.6ms− 7.5ms per source. Generally, the
time required increases with the number of diffraction flags as well
as the size and interconnectedness of the graph.

In Figure 10, we present results for how the runtime performance
of our method varies with respect to the maximum diffraction order.
Compared to previous approaches like [Schissler et al. 2014] which
have exponential time complexity, our approach exhibits a roughly
linear relationship. This enables our approach to scale to much
larger diffraction order within real-time constraints and enables it
to handle more difficult curved geometry.
In Figure 11 we show how our runtime method performs with

different numbers of rays as well as with and without the A* graph

0.10

1.00

10.00

1 2 3 4 5 6 7 8 9 10
Ti

m
e

Pe
r S

ou
rc

e
(m

s)

Maximum Diffraction Order

Aparment 0 Bistro
Sibenik Sponza
Sun Temple Warehouse

Fig. 10. A graph showing how the runtime performance of our approach
changes with respect to the maximum diffraction order. Please note the
logarithmic vertical axis. Error bars correspond to one standard deviation.

1

10

100

1000

10000

100000

0 10 20 30 40 50 60

D
iff

ra
ct

io
n

Pa
th

s

Time (s)

10000 rays, A* + cache (860 ms) 10000 rays, cache (124 ms)
100 rays, A* + cache (ours) (3.6 ms) 100 rays, A* (3.5 ms)
100 rays, cache (0.4 ms) 100 rays (0.2 ms)

Fig. 11. A graph showing how the number of paths found in the Warehouse
scene over time in the demo video is affected by the number of rays traced
as well as presence or absence of the A* graph search and path cache. Times
for each condition are per-source.

search and path cache on the Warehouse scene. The path cache
improves the smoothness of the curve (i.e. temporal coherence)
compared to without the cache, as well as increases the number of
paths found by about 10 times, for a small overhead of about 0.2ms.
The A* graph search also increases the number of paths found by
about 10 times relative to without the graph search, though it has
a greater runtime overhead. When both cache and A* are enabled,
our approach is able to find nearly as many paths with 100 rays as

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

138:12 • Carl Schissler, Gregor Mückl, and Paul Calamia

84 Hz 369 Hz 1625 Hz

FDTD

Ours

10 dB

-20 dB

20 dB

0 dB

-10 dB

0 dB

-70 dB

-30 dB

-15 dB

-45 dB

-60 dB

Difference

Fig. 12. A comparison between our diffraction approach and an offline
FDTD simulation on a cylinder scene where all surfaces are fully absorptive.
This illustrates the accuracy of UTD diffraction up to order 8. For most
positions in the scene, the difference between the methods is less than 5
decibels. In general, UTD overestimates the level of the diffracted sound,
particularly for areas with high-order diffraction.

compared to 10,000 rays without the A* graph search, yet is 34 times
faster. In the video, we also show the audio impact of the cache and
A* search.

Compared to [Schissler et al. 2014], our runtime approach is be-
tween 2.7 and 568 times faster per source for 10th-order diffraction.
The performance of their method scales exponentially with the
maximum order, making diffraction beyond order 3 − 5 infeasible
in real-time except for smaller scenes. On the other hand, our ap-
proach’s use of the A* algorithm to search the graph avoids this
problem, and enables better results with 100 rays than [Schissler
et al. 2014] with 1000 rays. In the accompanying video we compare
audio results in the Sibenik and Sponza scenes to show how our
method is more robust with difficult curved geometry.
The recent diffraction approach of Pisha et al. [2020] reports

performance that is comparable to ours. However, their approach
was tested on low complexity scenes (≤ 1024 triangles), and uses a
powerful GPU for ray tracing. In contrast, our technique is applicable
to scenes that aremore than 1000× larger, and runs on a single thread
of a modest CPU. Despite this, its good agreement with BTM makes
[Pisha et al. 2020] an attractive replacement for UTD evaluation of
the diffracted sound pressure in our approach.

7.4 Validation
To evaluate the accuracy of our approach, we compared it to an
offline FDTD simulation on a few simple scenes. We set all surfaces
and boundary conditions to be fully absorptive to isolate only the
direct and diffracted sound. In Figure 12, we present the results for a
scene containing a 20-sided cylinder, where themaximumdiffraction
order is at least 8. Overall, there is a relatively good match between
the methods, with a difference of less than 5dB for most of the scene.
The greatest errors occur in the areas with higher-order diffraction,
where energy-based UTD overestimates the diffracted sound field

84 Hz 369 Hz 1625 Hz

FDTD

Ours
(loudest path)

0 dB

-70 dB

-30 dB

-15 dB

-45 dB

-60 dB

0 dB

-70 dB

-30 dB

-15 dB

-45 dB

-60 dB

Ours
(all paths)

Fig. 13. A comparison between FDTD and two different configurations of
our approach on a scene that resembles a wooden fence. When configured
to render all paths, there is significant overestimation of the diffracted
sound field for the 84Hz and 369Hz bands, whereas using the loudest path
produces results that more closely match the FDTD simulation. The hard
shadows in the all-paths case are the result of rendering either direct sound
or diffraction (but not both).

by 10 − 15dB, and doesn’t exhibit the interference patterns visible
in the wave simulation. Please refer to the supplemental material
for more comparisons of 1st and 2nd-order diffraction.
We also performed an experiment to justify the choice of ren-

dering only the loudest diffraction path as opposed to all paths.
Figure 13 shows this in a scene that resembles a wooden fence,
where diffraction paths are produced around each of the columns.
In the case where all diffraction paths are rendered, the sound field
is overestimated by about 20dB for the 84Hz frequency band. This
may be caused by fundamental limitations of UTD such as the as-
sumption of an infinite diffraction wedge. In comparison, using only
the loudest path results in a diffracted sound field that much more
closely matches the FDTD results at low frequencies.

8 CONCLUSIONS
In this work, we presented a complete approach for simulating ap-
proximate acoustic diffraction for real-time AR and VR applications.
Our diffraction approach uses a novel mesh preprocessing pipeline
to identify a reduced set of diffraction edges as well as construct
diffraction flag geometry and edge visibility graphs. The runtime
component of our approach traces rays against the diffraction flags
to probabilistically explore possible diffraction paths, then computes
the path intensities using the UTD diffraction model. We also utilize
a precomputed edge visibility graph and the A* algorithm to greatly
speed up the exploration of high-order diffraction paths. This diffrac-
tion technique is between 2.7 and 586 times faster than the previous
state of the art in real-time high order diffraction, depending on the
scene, and is able to scale efficiently and robustly to large scenes
with high geometric detail. We have also evaluated its objective
accuracy by comparing to an offline FDTD wave simulation.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

Fast Diffraction Pathfinding for Dynamic Sound Propagation • 138:13

However, there are some limitations. First, we only consider di-
rect diffraction between a source or listener, i.e. diffraction paths
consisting of only edge diffraction with no reflections. In theory,
combinations of reflection and diffraction are compatible with our
approach, but would require changes to how paths are stored and
accessed in the diffraction path cache, and also changes to how the
path intensity is evaluated. Additionally, the generation of unique
cache identifiers for diffuse reflections may prove more difficult
than for diffraction edges or specular reflections. Since we use the
UTD diffraction model to calculate diffraction path intensities, our
approach has all of the limitations of UTD such as inaccuracy with
small edges. However, other more-accurate diffraction models like
BTM or [Pisha et al. 2020] could be used in place of UTD to amelio-
rate some of these issues. Another limitation is that the diffraction
graph traversal algorithm only finds a single path per edge, though
this nevertheless produces plausible results. Since the graphs for
each mesh in the scene are disjoint, the graph search can only find
diffraction paths around individual objects, though this limitation
does not apply to the rest of the runtime algorithm.

In the future we hope to apply this diffraction method to mobile-
class devices where compute is extremely limited. We would also
like to explore possibilites for leveraging more precomputation to
further reduce the runtime overhead of diffraction.

REFERENCES
Paul T Calamia and U Peter Svensson. 2005. Edge subdivision for fast diffraction

calculations. In IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, 2005. IEEE, 187–190.

Chunxiao Cao, Zhong Ren, Carl Schissler, Dinesh Manocha, and Kun Zhou. 2016.
Interactive sound propagation with bidirectional path tracing. ACM Transactions on
Graphics (TOG) 35, 6 (2016), 1–11.

Anish Chandak, Christian Lauterbach, Micah Taylor, Zhimin Ren, and Dinesh Manocha.
2008. Ad-frustum: Adaptive frustum tracing for interactive sound propagation. IEEE
Transactions on Visualization and Computer Graphics 14, 6 (2008), 1707–1722.

Brent Cowan and Bill Kapralos. 2015. Interactive rate acoustical occlusion/diffraction
modeling for 2D virtual environments & games. In 2015 6th International Conference
on Information, Intelligence, Systems and Applications (IISA). IEEE, 1–6.

Pedro F Felzenszwalb and Daniel P Huttenlocher. 2004. Efficient graph-based image
segmentation. International journal of computer vision 59, 2 (2004), 167–181.

Thomas Funkhouser, Nicolas Tsingos, Ingrid Carlbom, Gary Elko, Mohan Sondhi,
James E West, Gopal Pingali, Patrick Min, and Addy Ngan. 2004. A beam tracing
method for interactive architectural acoustics. The Journal of the acoustical society
of America 115, 2 (2004), 739–756.

Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. 209–216.

Iliyan Georgiev. 2012. Implementing vertex connection and merging. Technical Report.
Saarland University (2012).

Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics 4, 2 (1968), 100–107.

Claudia Hendrix and Woodrow Barfield. 1996. The sense of presence within auditory
virtual environments. Presence: Teleoperators & Virtual Environments 5, 3 (1996),
290–301.

Jan Hradek, Martin Kuchař, and Vaclav Skala. 2003. Hash functions and triangular
mesh reconstruction. Computers & geosciences 29, 6 (2003), 741–751.

Chris Joslin and Nadia Magnenat-Thalmann. 2003. Significant facet retrieval for real-
time 3d sound rendering in complex virtual environments. In Proceedings of the
ACM symposium on Virtual reality software and technology. 15–21.

Robert G Kouyoumjian and Prabhakar H Pathak. 1974. A uniform geometrical theory
of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62, 11 (1974),
1448–1461.

Alexander Lindau and Stefan Weinzierl. 2012. Assessing the Plausibility of Virtual
Acoustic Environments. Acta Acustica united with Acustica 98, 5 (2012), 804–810.

Amazon Lumberyard. 2017. Amazon Lumberyard Bistro, Open Research Content
Archive (ORCA). (July 2017). http://developer.nvidia.com/orca/amazon-lumberyard-
bistro

Morgan McGuire. 2017. Computer Graphics Archive. (July 2017). https://casual-
effects.com/data

Sönke Pelzer and Michael Vorländer. 2010. Frequency-and time-dependent geometry
for real-time auralizations. In Proceedings of 20th International Congress on Acoustics,
ICA. 1–7.

Louis Pisha, Siddharth Atre, John Burnett, and Shahrokh Yadegari. 2020. Approximate
diffraction modeling for real-time sound propagation simulation. The Journal of the
Acoustical Society of America 148, 4 (2020), 1922–1933.

Alexander Pohl. 2014. Simulation of diffraction based on the uncertainty relation.
(2014).

Nikunj Raghuvanshi and John Snyder. 2014. Parametric wave field coding for pre-
computed sound propagation. ACM Transactions on Graphics (TOG) 33, 4 (2014),
1–11.

Nikunj Raghuvanshi, John Tennant, and John Snyder. 2017. Triton: Practical pre-
computed sound propagation for games and virtual reality. The Journal of the
Acoustical Society of America 141, 5 (2017), 3455–3455.

Atul Rungta, Carl Schissler, Nicholas Rewkowski, Ravish Mehra, and Dinesh Manocha.
2018. Diffraction kernels for interactive sound propagation in dynamic environments.
IEEE transactions on visualization and computer graphics 24, 4 (2018), 1613–1622.

Lauri Savioja and U Peter Svensson. 2015. Overview of geometrical room acoustic
modeling techniques. The Journal of the Acoustical Society of America 138, 2 (2015),
708–730.

Carl Schissler. 2017. Efficient Interactive Sound Propagation in Dynamic Environments.
PhD thesis, UNC Chapel Hill.

Carl Schissler and Dinesh Manocha. 2011. GSound: Interactive sound propagation for
games. In AES 41st International Conference: Audio for Games.

Carl Schissler, Ravish Mehra, and Dinesh Manocha. 2014. High-order diffraction and
diffuse reflections for interactive sound propagation in large environments. ACM
Transactions on Graphics (SIGGRAPH 2014) 33, 4 (2014), 39.

Samuel Siltanen, Tapio Lokki, Lauri Savioja, and Claus Lynge Christensen. 2008. Ge-
ometry reduction in room acoustics modeling. Acta Acustica united with Acustica
94, 3 (2008), 410–418.

Uwe M Stephenson. 2004. Beugungssimulation ohne Rechenzeitexplosion: die Methode
der quantisierten Pyramidenstrahlen. PhD thesis, RWTH Aachen.

Uwe M Stephenson. 2010. An energetic approach for the simulation of diffraction
within ray tracing based on the uncertainty relation. Acta Acustica united with
Acustica 96, 3 (2010), 516–535.

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green,
Jakob J Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, et al. 2019. The Replica
dataset: A digital replica of indoor spaces. arXiv preprint arXiv:1906.05797 (2019).

U Peter Svensson, Roger I Fred, and John Vanderkooy. 1999. An analytic secondary
source model of edge diffraction impulse responses. The Journal of the Acoustical
Society of America 106, 5 (1999), 2331–2344.

Micah Taylor, Anish Chandak, Zhimin Ren, Christian Lauterbach, and Dinesh Manocha.
2009. Fast edge-diffraction for sound propagation in complex virtual environments.
In EAA auralization symposium. Citeseer, 15–17.

Rendell R Torres, U Peter Svensson, and Mendel Kleiner. 2001. Computation of edge
diffraction for more accurate room acoustics auralization. The Journal of the Acous-
tical Society of America 109, 2 (2001), 600–610.

Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and Ingrid Carlbom. 2001. Modeling
acoustics in virtual environments using the Uniform Theory of Diffraction. In
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques. ACM, 545–552.

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Vol. 1610.
Stanford University PhD thesis.

StephanWerner, Florian Klein, Thomas Mayenfels, and Karlheinz Brandenburg. 2016. A
summary on acoustic room divergence and its effect on externalization of auditory
events. In 2016 Eighth International Conference on Quality of Multimedia Experience
(QoMEX). IEEE, 1–6.

Hengchin Yeh, Ravish Mehra, Zhimin Ren, Lakulish Antani, Dinesh Manocha, and Ming
Lin. 2013. Wave-ray coupling for interactive sound propagation in large complex
scenes. ACM Transactions on Graphics (TOG) 32, 6 (2013), 1–11.

Markus Zaunschirm, Christian Schörkhuber, and Robert Höldrich. 2018. Binaural
rendering of ambisonic signals by head-related impulse response time alignment
and a diffuseness constraint. The Journal of the Acoustical Society of America 143, 6
(2018), 3616–3627.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://casual-effects.com/data
https://casual-effects.com/data

138:14 • Carl Schissler, Gregor Mückl, and Paul Calamia

0

50

100

150

200

250

300

350

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Pa
th

s P
er

 S
ou

rc
e

Diffraction Flag Length (m)

Apartment 0 Bistro Sibenik
Sponza Sun Temple Warehouse

0.01

0.1

1

10

100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Pa
th

s P
er

 S
ou

rc
e

Pe
r m

s

Diffraction Flag Length (m)

Apartment 0 Bistro Sibenik
Sponza Sun Temple Warehouse

Fig. 14. An evaluation of the runtime performance and number of paths
found for varying diffraction flag lengths from 0.1m to 2.0m.

A PATH VALIDATION DETAILS
In Section 5.2.1, we presented the shadow test for path validation.
Here, we provide additional details about how each edge is evaluated
to check if it is within the shadow region of the previous edge. An
edge is considered to be in shadow if it crosses the shadow face or
horizon planes of the previous edge, or if it is completely contained
inside the shadow region. This can be determined by evaluating
the dot products 𝛿 𝑓

𝑖
= (®𝑣𝑖 − ®𝑣 ′) · ®𝑛𝑠ℎ𝑎𝑑𝑜𝑤 and 𝛿ℎ

𝑖
= (®𝑣𝑖 − ®𝑣 ′) · ®ℎ

for 𝑖 = {0, 1}, where ®𝑣 ′ is a point on the previous edge. The edge
crosses the face or horizon planes when sign(𝛿 𝑓0) ≠ sign(𝛿 𝑓1) or
sign(𝛿ℎ0) ≠ sign(𝛿ℎ1), respectively. The edge is completely inside
the shadow region if 𝛿 𝑓

𝑖
> −𝜖𝑓 and 𝛿ℎ

𝑖
< 𝜖ℎ for 𝑖 = {0, 1}, where 𝜖ℎ

and 𝜖𝑓 are the shadow test tolerances for the respective planes. We
apply this test for each edge intersected along a subpath.

B ADDITIONAL RESULTS
In this section we present additional preprocessing and runtime
results for our diffraction approach.

B.1 Preprocessing
Figures 16 - 21 show the results of our preprocessing approach on
each of the six scenes. For each scene, we provide two viewpoints
and show the state of the mesh at each stage of the preprocessing
pipeline. We also report the number of diffraction edges at each step
to show the reduction in diffraction edges achieved by each pipeline
stage.
In most scenes, the silhouette edge detection stage is the most

successful at eliminating unnecessary edges, providing a reduction

84 Hz 369 Hz 1625 Hz

FDTD

Ours

Difference

10 dB

-20 dB

20 dB

0 dB

-10 dB

0 dB

-70 dB

-30 dB

-15 dB

-45 dB

-60 dB

84 Hz 369 Hz 1625 Hz

FDTD

Ours

10 dB

-20 dB

20 dB

0 dB

-10 dB

0 dB

-70 dB

-30 dB

-15 dB

-45 dB

-60 dB

Difference

Fig. 15. A comparison between our diffraction approach and an offline
FDTD simulation on two scenes showing 1st and 2nd-order diffraction. For
most positions in the scene, the difference between the methods is less
than a few decibels. The largest differences occur near the shadow region
boundary, where the UTD interpolation from [Tsingos et al. 2001] increases
the level of diffracted sound.

of 2.7 × −14.5× versus the output of the previous face clustering
stage.

B.2 Runtime
We also evaluated how the length of the diffraction flags impacts
the performance and number of paths found by our approach, as
shown in Figure 14. As expected, the total number of paths generally
increases with the flag length, though the increase is not very large
beyond 1.0m. However, when the paths found per unit time are
plotted instead, we can see that very short flags are actually more
efficient at finding diffraction flags in most scenes, including the
large outdoor Sun Temple scene. This suggests that flags shorter
than our chosen 𝑑𝑓 𝑙𝑎𝑔 = 1.0m may be more optimal.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

Fast Diffraction Pathfinding for Dynamic Sound Propagation • 138:15

B.3 FDTD Comparison
We performed further comparisons with FDTD to evaluate the ac-
curacy of our approach on simple scenes with 1st and 2nd-order
diffraction. These results are presented in Figure 15, where we show
the magnitude at 3 different frequencies for a horizontal slice of the
scene. Overall, our approach produces subjectively similar results
to the FDTD simulation, with a difference of less than 10dB for
most points in the scenes. Surprisingly, there is a closer match for

second-order diffraction than for first-order diffraction. The great-
est discrepancies occur near the shadow region boundary, where
our approach overestimates the diffracted sound pressure. This is
caused by the UTD interpolation proposed by [Tsingos et al. 2001]
which artificially increases the diffracted sound pressure near the
shadow region boundary in order to produce a smooth transition
from direct to diffracted sound. This interpolation is required to
produce a smooth sound field when diffraction outside the shadow
region is ignored.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

138:16 • Carl Schissler, Gregor Mückl, and Paul Calamia

Input – 13.68M edges Simplified – 147K edges Face Clustering – 25.1K clusters

Cluster Boundaries – 48.0K, 65.9K edges Silhouettes – 4596 boundaries, 6855 edges Diffraction Flags – 2446 flags

Apartment 0 – view 1

Input – 13.68M edges Simplified – 147K edges Face Clustering – 25.1K clusters

Cluster Boundaries – 48.0K, 65.9K edges Silhouettes – 4596 boundaries, 6855 edges Diffraction Flags – 2446 flags

Apartment 0 – view 2

Fig. 16. The preprocessing results for the Apartment 0 scene for two different viewpoints at each stage in the pipeline. Our silhouette edge detection approach
reduces the number of significant edges by 9.6×. Note how the silhouette edge detection removes the unnecessary edges on bumpy but otherwise flat surfaces
(e.g. bed, chair). It also removes the edges from small protrusions (e.g. baseboard moulding).

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

Fast Diffraction Pathfinding for Dynamic Sound Propagation • 138:17

Input – 6.13M edges Simplified – 2.80M edges Face Clustering – 837K clusters

Cluster Boundaries – 880K, 960K edges Silhouettes – 63K boundaries, 66K edges Diffraction Flags – 52,364 flags

Bistro – view 1

Input – 6.13M edges Simplified – 2.80M edges Face Clustering – 837K clusters

Cluster Boundaries – 880K, 960K edges Silhouettes – 63K boundaries, 66K edges Diffraction Flags – 52,364 flags

Bistro – view 2

Fig. 17. The preprocessing results for the Bistro scene for two different viewpoints at each stage in the pipeline. Our silhouette edge detection approach
reduces the number of significant edges by 14.5×. Silhouette edge detection removes edges such as the curb that cannot produce diffraction for a human-sized
listener.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

138:18 • Carl Schissler, Gregor Mückl, and Paul Calamia

Input – 116.4K edges Simplified – 66.8K edges Face Clustering – 17.4K clusters

Cluster Boundaries – 16.2K, 16.6K edges Silhouettes – 6011 boundaries, 6207 edges Diffraction Flags – 4837 flags

Sibenik – view 1

Input – 116.4K edges Simplified – 66.8K edges Face Clustering – 17.4K clusters

Cluster Boundaries – 16.2K, 16.6K edges Silhouettes – 6011 boundaries, 6207 edges Diffraction Flags – 4837 flags

Sibenik – view 2

Fig. 18. The preprocessing results for the Sibenik scene for two different viewpoints at each stage in the pipeline. Our face clustering and silhouette edge
detection techniques together reduce the number of significant edges by 9.3× versus the simplified mesh.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

Fast Diffraction Pathfinding for Dynamic Sound Propagation • 138:19

Input – 434.9K edges Simplified – 103.7K edges Face Clustering – 28.8K clusters

Cluster Boundaries – 43.0K, 46.5K edges Silhouettes – 6881 boundaries, 7060 edges Diffraction Flags – 5075 flags

Sponza – view 1

Input – 434.9K edges Simplified – 103.7K edges Face Clustering – 28.8K clusters

Cluster Boundaries – 43.0K, 46.5K edges Silhouettes – 6881 boundaries, 7060 edges Diffraction Flags – 5075 flags

Sponza – view 2

Fig. 19. The preprocessing results for the Sponza scene for two different viewpoints at each stage in the pipeline. Our face clustering and silhouette edge
detection techniques together reduce the number of significant edges by 14.7× versus the simplified mesh.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

138:20 • Carl Schissler, Gregor Mückl, and Paul Calamia

Input – 7.10M edges Simplified – 3.81M edges Face Clustering – 2.47M clusters

Cluster Boundaries – 1.54M, 1.71M edges Silhouettes – 318K boundaries, 339K edges Diffraction Flags – 229K flags

Sun Temple – view 1

Input – 7.10M edges Simplified – 3.81M edges Face Clustering – 2.47M clusters

Cluster Boundaries – 1.54M, 1.71M edges Silhouettes – 318K boundaries, 339K edges Diffraction Flags – 229K flags

Sun Temple – view 2

Fig. 20. The preprocessing results for the Sun Temple scene for two different viewpoints at each stage in the pipeline. Our face clustering and silhouette edge
detection techniques together reduce the number of significant edges by 11.2× versus the simplified mesh.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

Fast Diffraction Pathfinding for Dynamic Sound Propagation • 138:21

Input – 916K edges Simplified – 377K edges Face Clustering – 105K clusters

Cluster Boundaries – 152K, 169K edges Silhouettes – 45.9K boundaries, 48.9K edges Diffraction Flags – 34.3K flags

Warehouse – view 1

Input – 916K edges Simplified – 377K edges Face Clustering – 105K clusters

Cluster Boundaries – 152K, 169K edges Silhouettes – 45.9K boundaries, 48.9K edges Diffraction Flags – 34.3K flags

Warehouse – view 2

Fig. 21. The preprocessing results for the Warehouse scene for two different viewpoints at each stage in the pipeline. Our face clustering and silhouette edge
detection techniques together reduce the number of significant edges by 7.7× versus the simplified mesh. Silhouette edge detection removes most of the edges
along flat surfaces like the segmented wall in view 2 while retaining the important edges.

ACM Trans. Graph., Vol. 40, No. 4, Article 138. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Background
	2.1 Sound Propagation
	2.2 Diffraction for Geometric Acoustics
	2.3 Mesh Simplification for Acoustics

	3 Overview
	4 Diffraction Mesh Preprocessing
	4.1 Mesh Simplification
	4.2 Diffraction Edge Extraction
	4.3 Diffraction Geometry Construction
	4.4 Diffraction Graph

	5 Diffraction Runtime
	5.1 Ray Tracing
	5.2 Path Validation
	5.3 Diffraction Path Cache
	5.4 Diffraction Graph Traversal

	6 Implementation
	7 Results
	7.1 Scenes
	7.2 Preprocessing
	7.3 Runtime
	7.4 Validation

	8 Conclusions
	References
	A Path Validation Details
	B Additional Results
	B.1 Preprocessing
	B.2 Runtime
	B.3 FDTD Comparison

