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Abstract

Policy compliance detection is the task of en-
suring that a scenario conforms to a policy (e.g.
a claim is valid according to government rules
or a post in an online platform conforms to
community guidelines). This task has been
previously instantiated as a form of textual en-
tailment, which results in poor accuracy due to
the complexity of the policies. In this paper we
propose to address policy compliance detec-
tion via decomposing it into question answer-
ing, where questions check whether the condi-
tions stated in the policy apply to the scenario,
and an expression tree combines the answers
to obtain the label. Despite the initial upfront
annotation cost, we demonstrate that this ap-
proach results in better accuracy, especially in
the cross-policy setup where the policies dur-
ing testing are unseen in training. In addition,
it allows us to use existing question answering
models pre-trained on existing large datasets.
Finally, it explicitly identifies the information
missing from a scenario in case policy com-
pliance cannot be determined. We conduct
our experiments using a recent dataset con-
sisting of government policies, which we aug-
ment with expert annotations and find that the
cost of annotating question answering decom-
position is largely offset by improved inter-
annotator agreement and speed.

1 Introduction

Policy compliance detection is the task of ensuring
that a scenario conforms to a policy. It is a task
that occurs in various contexts, e.g. in ensuring
correct application of government policies (Saeidi
et al., 2018; Holzenberger et al., 2020), enforcing
community guidelines on social media platforms
(Waseem and Hovy, 2016) or the resolution of legal
cases (Zhong et al., 2020), etc.

While the task can be modelled as a text-pair
classification similar to textual entailment (Dagan

1Policy source can be found here https://www.gov.
uk/housing-benefit/how-to-claim

Q0: Is it up to 13 weeks in advance?
Q1: Is it up to 17 weeks in advance?
Q2: Are you aged 60 or over?
Q3: Are you moving?
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You can claim in advance by up to 13 weeks (or 17 weeks 
if you’re aged 60 or over), if you’re moving. You won’t 
usually get any money before you move.

Scenario: My partner and I will be moving shortly. I had 
my 40th birthday last week.

 Policy

 Decomposition

(A3 and (A0 or (A1 and A2) )) = NEI
A0: NEI,  A1: NEI,  A2: No,  A3: Yes

Direct Label: NEI

Label via Decomposition: 

NEI = Not Enough Information/Unresolved

Figure 1: A policy with its decomposition (questions
and expression tree), scenario and label.1

et al., 2009; Bowman et al., 2015), i.e. whether a
scenario complies with a certain policy, this often
results in poor accuracy due to the complexity of
the policy descriptions, which often contain mul-
tiple clauses connected with each other (Holzen-
berger et al., 2020). Moreover, even though some
types of policy compliance detection can be tack-
led via supervised classification, e.g. recognizing
hateful memes (Kiela et al., 2020) and other forms
of hate speech or abusive language on social plat-
forms (Davidson et al., 2017), this requires substan-
tial amounts of training data for one specific policy
which is expensive and time-consuming. Further-
more, the requirement for policy-specific training
data renders supervised classification difficult to
adapt when policies change, e.g. customs rules
changing with Brexit, novel forms of hate speech
in the context of the Covid pandemic, etc.

In this paper we propose to address policy com-

https://www.gov.uk/housing-benefit/how-to-claim
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pliance detection via decomposing it to question
answering (QA) and an expression tree. Each pol-
icy description is converted into a set of questions
whose answers are combined in a logical form rep-
resented by the expression tree to produce the label.
This allows for better handling of complex policies,
and to take advantage of the large-scale datasets
and models developed for question answering (Ra-
jpurkar et al., 2016; Clark et al., 2019). In addition,
the questioning of the scenario with respect to parts
of the policy identifies which parts were used in
order to determine compliance and which informa-
tion is missing in case the scenario could not be
resolved. This in turn, enhances the interpretability
of the model’s decisions and can identify areas for
improvement. Figure 1 shows an example applica-
tion of our approach in the context of a government
policy where the missing date of the move in the
scenario results in its compliance with the policy
being unresolved.

We demonstrate the benefits of policy compli-
ance detection via QA using a dataset that contains
policies, decomposition questions and expression
trees and scenarios. While the policies and scenar-
ios in the dataset are taken from ShARC (Saeidi
et al., 2018), we augment them with expression
trees and answers to each question for all the sce-
narios and policies to create the Question Answer-
ing for Policy Compliance (QA4PC ) dataset. The
results of our experiments demonstrate that we can
achieve an accuracy of 0.69 for policies unseen dur-
ing the training (an increase of 25 absolute points
over the entailment approach) and an accuracy of
0.59 (an increase of 22 absolute points) when no
in-domain data is available for training. We also
show that our approach is more robust compared to
entailment when faced with policies of increasing
complexity. In addition, we find that the cost of
annotating question answering decomposition and
expression trees is largely offset by improved inter-
annotator agreement and speed. Finally, we release
the QA4PC dataset to the community to facilitate
further research.2

2 Previous Work on Policy Compliance

Policy compliance as an entailment task has been
studied by Holzenberger et al. (2020) and referred
to as statutory reasoning entailment. They find that
the application of machine reading models exhibits
low performance, whether or not they have been

2Please contact the authors to access the dataset.

fine-tuned to the legal domain, due to the complex-
ity of the policies. As an alternative approach, they
propose a rule-based system. While their work fo-
cuses solely on the US Tax Law, the dataset we use
in our experiments (Saeidi et al., 2018) contains a
wide range of policies from different countries. Fur-
thermore, the dataset used in (Holzenberger et al.,
2020) only contains scenarios that are either com-
pliant or not compliant with a policy. However, in
real world use, systems should be capable of rec-
ognizing that a decision cannot be made in cases
there is information missing from the scenario.

ShARC (Saeidi et al., 2018) is a dataset for con-
versational question answering based on govern-
ment policies. In ShARC, the task is to predict
what a system should output given a policy and
a conversation history, which can be an answer
or a follow-up clarification question. The task is
evaluated in an end-to-end fashion, measuring the
system’s ability to provide the correct conversation
utterance, However, policy compliance detection is
neither investigated nor evaluated.

Similarity search or matching has been used to
match a new post to known violating posts on so-
cial media such as hoaxes, an objectionable video
or image, or a hateful meme (Ferreira and Vlachos,
2016; Wang et al., 2018; fbm). For textual content,
this can be compared to an entailment task. This ap-
proach requires a bank of existing violating content
for each policy. By using the policy description and
decomposing it into several QA tasks, breaches for
new policies can be detected, as we show in our
experiments.

Much work has focused on learning important
elements of privacy policies to assist users in un-
derstanding the terms of the policies devised by dif-
ferent websites. Shvartzshanider et al. (2018) uses
question answering to extract different elements of
privacy policies that are informative to the users.
Nejad et al. (2020) and Mustapha et al. (2020) as-
sign pre-defined categories to privacy policy para-
graphs using supervised classification. While these
works aim to help users in understanding complex
text of privacy policies, they do not aim to iden-
tify compliance and they mainly focus on privacy
policies. In our work, we look at a wide range of
government policies, for different governments and
focus on an approach for cross-policy compliance
detection.



3 Policy Compliance Detection via QA

In this section we describe our proposed approach
for policy compliance detection via question an-
swering. First we formulate the task as textual
entailment following previous work Holzenberger
et al. (2020). Then we describe how our proposed
expression trees combined with QA operate. Fi-
nally we discuss the implications of our approach
for training and data annotation requirements.

3.1 Policy Compliance Detection (PCD)

We define the task of policy compliance detection
(PCD) as deciding whether a scenario is compli-
ant with a policy. For a policy and a scenario, the
task is to provide a label in [Yes, No, Not Enough
Information]. We use NEI in short for Not Enough
Information for the remaining of the paper. For an
input (p, s), the output is the label l. See Figure 1
for an example. If framed as textual entailment,
a policy is the premise and the scenario is the hy-
pothesis, as there are typically multiple scenarios
per policy. The labels [Yes, No, NEI] correspond to
[entailment, contradiction, neutral].

3.2 Question Answering for PCD

Our proposed decomposition of policy compliance
detection into question answering infers the label
using the answers to the questions and the expres-
sion tree. More formally, the QA model will take
an input (s, qi)i=1...K−1 and output ai ∈ [Yes, No,
NEI], where K is the number of questions repre-
senting the policy p. The expression tree combines
the answers to the questions, {ai}i=0...K−1, using
a logical expression based on the rules in the pol-
icy description to infer the final label l of whether
a scenario is in compliance with the policy or not.
Figure 1 shows an example of a policy decomposed
into questions and an expression tree and how it is
applied to a scenario to infer a label.

An expression tree can contain OR, AND and
NOT operators. Expression trees can be evaluated
in the same way that logical expressions are eval-
uated where Yes is considered as True and No as
False. Similar to logical expressions, we can eval-
uate an expression tree even when the answers to
some of the questions are NEI. For example, the
inferred label for “Q0 AND Q1” is False if the an-
swer to Q0 is False and the answer to Q1 is NEI.
If the answer to Q0 is True and the answer to Q1
is NEI, the inferred label is NEI. It is worth noting
that we do not always need to correctly predict the

answers to all the questions in the expression tree
in order to infer the correct label. For example, for
the expression tree in Figure 1, if the answer to
Q3 is correctly predicted as No, the model doesn’t
need to make correct predictions for Q0, Q1 or Q2.

The underlying QA task is similar to
BoolQ (Clark et al., 2019) with the excep-
tion that an answer can be NEI. This can be
compared to SQUAD 2.0 (Rajpurkar et al., 2018)
where the corpus contains unanswerable questions,
but the answers are spans extracted from the
passage instead of boolean. In this work, we
assume that the expression trees are provided and
leave the task of inferring them for future work.

3.3 Training and Data Requirements

Expression trees are not required during the train-
ing of our approach; they are only used during the
testing to infer the label for the scenario given the
policy. For this reason, we only provide the anno-
tation of expression trees for the data that will be
used for evaluation (dev and test sets) to demon-
strate the benefits of our proposed approach. Using
QA as the subtask, in which we decompose PCD
into, enables us to apply our approach to policies
unseen in training (a.k.a. cross policy setup), since
QA models are typically developed for and eval-
uated on their generalization ability to questions
unseen in their training data.

4 Data

In this section we discuss the creation of the
question-answering for policy detection (QA4PC)
dataset which we introduce in this work to support
our experiments. We create QA4PC using the poli-
cies and the scenarios from the publicly available
training and development splits of existing dataset
ShARC (Saeidi et al., 2018). A scenario in ShARC
is a real-world situation described by a user who is
conversing with a system to find out whether they
comply with a policy. Each conversation utterance
in ShARC has a policy, a question and an answer.
An utterance may include a conversation history (a
list of QAs) and/or a scenario which is built from a
conversation list (a list of questions and answers).
The answer to an utterance can be Yes/No or a
follow-up clarification question. 3

However, while ShARC conversations contain
some of the questions related to the policies, we

3More details on ShARC data can be found here https:
//sharc-data.github.io/data.html
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found that many were missing, as the conversation
progress may render answers to them irrelevant. A
such example is provided in Figure 6 in the Ap-
pendix. Details on number of QAs per policy for
both datasets are discussed in section 4.4.

As neither entailment-style classification nor the
question answering expression trees require com-
plete question-answer sets per instance or expres-
sion trees for training, we convert 70% of ShARC
policies for training of entailment and QA tasks
(see section 4.1 for more details). The procedure
for converting the data is explained in the next sec-
tion. In order to ensure the evaluation datasets (dev
and test sets) are correctly annotated, we augment
the remaining 30% of ShARC policies with ques-
tions and expression trees, and the scenarios with
the entailment labels and answers to all questions
of the related policy (see Section 4.2). Two anno-
tators, co-authors of this paper and UK nationals,
were involved in the annotation described in this
section.

4.1 Converting ShARC to PCD

Entailment Instances We take utterances that
have non-empty scenarios. The entailment answer
to the scenario is Yes/No if the answer to the con-
versation utterance in ShARC is Yes/No and the
conversation history is empty. Conversation history
refers to a list of questions and answers that has
already been exchanged between an agent and a
user. Otherwise, the assigned label is NEI. This is
because if the conversation history is not empty or
the final answer is a follow up question, some of
the necessary information related to the policy is
not mentioned in the scenario and is acquired from
history or will be answered by the user in the next
step of the conversation in the form of an answer
to the follow up question.

QA Instances We construct the set of unique
follow-up questions related to each policy over all
the scenarios as the set of questions for that pol-
icy. If any question from this set appears in the
conversation corresponding to a scenario (a list of
QAs), we create a QA instance where the passage
is the scenario, and the answer is the answer to that
question in the QA list. For all the other questions
in this set, we add a QA instance using the sce-
nario and the answer NEI. More details about the
ShARC dataset and its processing are included in
the Appendix in section A.1.

In-Domain Supervision We call the converted
ShARC dataset ShARC-PC. There are 482 policies,
4, 576 scenarios and 10, 398 QAs in the ShARC
training set. The policies used in ShARC-PC are
distinct from those used in QA4PC. Note that the
labels in ShARC-PC are not always accurate be-
cause they are assigned using a heuristic, thus even
though it is in-domain as it is derived from conver-
sation about government policies, it is noisy. This
was specially noted when augmenting the ShARC
data to obtain QA4PC.

4.2 Expression Tree Annotation

Annotation Procedure Each policy is decom-
posed by the annotators into a set of questions and
an expression tree based on the rules in the policy
description. Each question is assigned an ID (e.g.
Q0, Q1 ) which is used in the expression tree. For
each policy, some of the questions can be extracted
from the ShARC dataset as mentioned in the pre-
vious section. These questions are provided to the
annotators. An annotator can change the question
or remove it. Annotators can also add questions to
expression tree if the existing questions are not suf-
ficient. The UI for this annotation task is depicted
in Figure 7 in the appendix. It took the annotators
an average of 113 seconds to annotate each tree.

Quality Control Annotators were asked to mark
difficult instances and also take note during the an-
notation if they were in doubt about an instance.
After the first round of annotation, the annotators
discussed their notes and clarified the guidelines.
Finally, each annotator reviewed the other annota-
tor’s expression trees and made updates if neces-
sary based on the interim discussion. To further
ensure the quality of the expression trees, we asked
a third annotator (third co-author, not involved in
the annotation otherwise) to review a sample of
50 trees. These trees were selected proportional
to their complexity, i.e. number of questions and
logical operators. Out of 50 trees, the third an-
notator did not agree with 4 annotations, i.e. an
agreement of 92%. The annotator marked 6 addi-
tional instances where they believed the framing of
questions can be improved.

4.3 Entailment and QA Annotations

Annotation Procedure Each scenario is paired
with its corresponding policy. An annotator is re-
quired to choose a label from (Yes/No/NEI) with
regards to the policy compliance (i.e. entailment



Figure 2: Label/answer types for training and evaluation datasets for entailment (left) and QA (right) tasks.

Policies Scenarios QAs Avg QA/Policy
Dev 60 437 1, 600 2.31
Test 133 1, 099 3, 492 2.30

Table 1: Number of instances in QA4PC dataset.

instance). In the same annotation task, the annota-
tors are asked to provide answers to each individual
question in the expression tree of the policy (QA
instances). The UI for this task is shown in Figure 8
in the appendix.

Quality Control We compared the inferred la-
bels to all scenarios using the expression tree of the
corresponding policy against the entailment label
provided as a sanity check. Annotators were also
asked to take notes during the annotation if needed
and discussed their notes and the discrepancies
identified by the sanity check. In some cases, an-
swers were adjusted appropriately. In other cases,
the expression tree was updated, and the annota-
tors ensured that the question and answers were
updated accordingly.

4.4 QA4PC Dataset

In this section, we present statistics of the QA4PC.
As neither our approach nor the entailment base-
line require training data annotated with expression
trees, we divide the dataset only into dev and test
sets. There are 193 policies in QA4PC across both
test and dev sets. Each policy has between 1 and 9
questions and between 2 and 55 scenario instances.
Table 1 shows more properties of dev and test sets
such as the total number of scenarios and individual
QAs and average number of QAs per policy. The
published dataset contains the training, dev and test
sets.

Policies in QA4PC have an average number of
2.31 QAs. This is higher than the average number
of QAs per policy in ShARC-PC which is 1.73,
because annotators added additional questions to
the policies during the annotation when required.

Figure 2 shows the distribution of entailment labels
and answers to the QA instances between training
(i.e. ShARC-PC) and evaluation (i.e. QA4PC) sets.
As the figure shows, the training data has a higher
number of instances where the entailment labels
(left) or answers to the questions are NEI (right).

5 Experimental Setup

Model We use RoBERTa (Liu et al., 2019) for
both the entailment baseline and the QA subtask
and learn three-way classifiers for each. We used
the implementation in the huggingface (Wolf et al.,
2020) library. We also experimented with a T5
model (Raffel et al., 2019) on the dev set. Since the
results of T5 model were very similar to RoBERTa,
we report the performance on all the tasks using
RoBERTa.

Entailment We use a cross-encoder set up for
the task. For each instance, we combine the pol-
icy, scenario and the question using the following
format: “premise: [policy] SEP hypothesis: [sce-
nario] CLS”. The embeddings of the token CLS is
used to classify the instance. This is a common ap-
proach for entailment modelling using pre-trained
encoders (Devlin et al., 2018; Raffel et al., 2019;
Holzenberger et al., 2020).

Question Answering for PCD In the QA ap-
proach to PCD, we decompose the task into a QA
subtask and expression trees, where we use the ex-
pression tree of a policy to combine the answers to
the questions in the policy to infer the label. A QA
model is trained on QA instances of the dataset. For
each QA instance, we combine the scenario and
the question using the format: “passage: [scenario]
SEP question: [question] CLS”. This is a common
formulation of QA tasks (Raffel et al., 2019) using
transformer models. The embedding of the CLS
token is used to assign a label to each instance.



Avg over Scenarios Avg over Policies
Training data ShARC-PC BoolQ SNLI ShARC-PC BoolQ SNLI

Test Set
Entailment 0.44± 0.02 NA 0.37± 0.02 0.44± 0.03 NA 0.42± 0.02
QA ET 0.69± 0.01 0.59± 0.02 NA 0.69± 0.02 0.62± 0.02 NA

Dev Set
Entailment 0.44± 0.01 NA 0.35± 0.02 0.48± 0.01 NA 0.39± 0.02
QA ET 0.70± 0.01 0.65± 0.02 NA 0.74± 0.02 0.65 NA

Table 2: Cross-policy accuracy averaged on all scenarios and per policy on test and dev sets in terms of macro-
accuracy, averaged over 5 runs with varying seeds. QA ET refers to QA decomposition with Expression Trees.

Out-of-Domain Training Data We use the
BoolQ (Clark et al., 2019) dataset for training the
QA model. BoolQ only contains instances (passage
and question pair) with Yes/No answers. We pair
random passages and questions to create instances
with NEI answers. To train the entailment model,
we use the SNLI dataset (Bowman et al., 2015). To
adapt the labels to our task, we convert entailment
to Yes, contradiction to No and neutral to NEI.

Evaluation Metric We use macro-accuracy (av-
eraged over 3 classes of PCD labels/QA answers)
averaged over scenarios, since the labels and an-
swers are not balanced in our dataset (see Figure 2).
As some policies have more scenarios than oth-
ers, we also report results averaged over policies,
where we first calculate the macro-accuracy per
policy and then average over policies.

Hyperparameters We did a manual tuning of
hyperparameters using the dev set. Batch size was
set to 16, learning rate to 5e− 5, Adam epsilon to
1e − 8 and maximum gradient norm of 1.0. We
trained all the models for a maximum of 5 epochs
with early stopping using the loss on the dev set.
We run each experiment 5 times with different ran-
dom seeds and report the mean and variance. The
models were ran on a machine with 8 Tesla V100-
SXM2 GPUs, each with 16 GB memory. Each
epoch of model training takes about 25 seconds
for the entailment baseline and 35 seconds for the
QA subtask on ShARC-PC. Number of trainable
parameters of the model is 124, 647, 939.

6 Results

6.1 Model Accuracy

The accuracies of different approaches in detecting
policy compliance and using different training data
are presented in Table 2.

The first column of the table shows the per-
formance of both approaches in detecting policy
compliance on unseen policies when trained on

ShARC-PC BoolQ
QA 0.68± 0.02 0.59± 0.01

Table 3: The performance of the QA task where models
are trained on in-domain and out-of-domain data and
evaluated on the test set of QA4PC.

Yes No NEI
QA 0.84± 0.03 0.54± 0.05 0.66± 0.03
PCD 0.80± 0.03 0.68± 0.04 0.59± 0.02

Table 4: The performance of QA and PCD tasks per
label using the model trained on ShARC-PC.

data from ShARC-PC. The accuracy of the entail-
ment approach is 0.44 while the QA decomposi-
tion approach reaches an accuracy of 0.69. Table 3
shows the performance of the QA subtask (macro-
accuracy over QA instances) on QA4PC test set us-
ing in-domain (i.e. ShARC-PC) and out-of-domain
(i.e. BoolQ) training data. As mentioned previ-
ously, we do not need to answer all the questions
in a policy correctly in order to get the correct final
label for PCD. For example, in Figure 1, if the an-
swer to Q3 is correctly predicted as No, inferring a
correct final label is independent of the remaining
answers. This is the reason that a QA model with
an accuracy of 0.68 can still achieve an accuracy
of 0.69 on the PCD task.

Since we have a class imbalance in our dataset,
we show the accuracy of the model per label for
both the QA and the PCD tasks in Table 4. The
most difficult answer for the QA model to predict
is No, while the answer with the lowest prediction
accuracy for the PCD task is NEI.

Transfer Learning We define transfer learning
as learning from a training set that is out-of-domain
(i.e. not government policies). Table 2 shows trans-
fer learning results for the PCD task based on train-
ing on BoolQ for QA-based approach and SNLI
for the entailment baseline. As we can see, the
decomposition approach achieves an accuracy of
0.59 when trained on BoolQ data. On the other



Figure 3: Performance (test set) per policy vs. the com-
plexity of the policy, i.e. the number of questions in the
expression tree.

hand, the accuracy of the entailment model trained
on SNLI is 0.37 which is only slightly better than a
random system. This is likely due to entailment de-
tection between policy and scenario being a more
difficult task due to the complexity of the policy
description, and it is not possible to obtain good
accuracy without in-domain data.

Performance per Policy We evaluate the accu-
racy of both approaches averaged over policies to
show how well we can infer compliance with a
new policy. The results averaged over policies are
shown in the right side of Table 2. The accuracies
averaged over policies are similar or slightly higher
than those averages over all the scenarios. This
indicates that there are policies that are difficult
to do inference on which have a high number of
instances. This is evident for both the entailment
and QA decomposition approaches.

Figure 3 shows the average performance of the
PDC task using QA decomposition approach for
individual policies in the test set of QA4PC ver-
sus the complexity of the policy description, i.e.
number of questions in the policy expression tree.
The size of the circles indicate the number of ex-
amples in the dataset for a policy. We used Kendall
tau to find the correlation between the number of
questions in a policy and the accuracy. Tau coef-
ficient between accuracy and number of questions
in policies using QA and entailment approaches
are −0.12 (p-value of 0.05) and −0.17 (p-value of
0.01) respectively. This shows that the accuracy
through the entailment approach is more negatively
affected as the complexity of a policy increases.
Finally, it is worth noting that a policy with 8 ques-
tions has a high number of instances. The average
accuracy over these instances is 0.42 which con-

Figure 4: Performance of two approaches on the test
set as the number of training samples (scenario) from
in-domain data increases.

tributes to the slightly lower performance when
averaged over the scenarios reported in Table 2.

Limited Supervision In Figure 4, we show the
performance of the model on QA4PC as the amount
of in-domain training data from ShARC-PC in-
creases. The results are shown in blue and green
for the QA decomposition and the entailment ap-
proach respectively. As figure shows, with only
500 scenario instances, we achieve an accuracy of
0.60 through the QA decomposition approach. The
entailment approach reaches an accuracy of 0.40
using more than 1000 instances. Note that the num-
ber of training instances are based on the number
of scenario instances which can include a higher
number of QA instances. However we will demon-
strate the annotation time is not higher for more QA
instances in the next section. Also, it takes only an
average of 113 seconds to annotate the expression
tree (see section 4.2) which is done only once per
policy and used for multiple scenarios.

6.2 Annotation Accuracy and Efficiency
To perform policy compliance detection via QA
decomposition, not only we need annotations for
expression trees, we also need to annotate the an-
swers to all the questions of a policy for a related
scenario instance. Therefore, for each scenario,
instead of needing one entailment label, we need
annotators to provide answers to all the questions
in the expression tree of a policy. One may argue
that this approach is more costly as a higher num-
ber of annotations is required and that this effort
could be used instead to annotate more data on the
entailment level that can lead to equally good or
better performance. In this section, we describe our
experiment to demonstrate the effectiveness of the
annotation for the QA decomposition approach in



comparison to the entailment.

Task Setup 50 policies were selected from
QA4PC. We include policies with different number
of questions (and therefore complexity) in this ex-
periment. For each policy, one scenario is selected
randomly from the dataset. Policies are unique
to ensure that the accuracy and speed of annota-
tors are not affected by their familiarity with the
policies. We then create two annotation tasks for
each scenario-policy instance. In the first task, the
annotators are presented with the policy and the
scenario and they are required to choose one entail-
ment label. In the second task, the scenario and all
the questions related to the policy are presented to
the annotators. An annotator is required to provide
an answer to each of the questions.

Agreement and Speed We used two annotators
(unpaid volunteers who are not authors of the paper
but are native English speakers) to perform both
annotation tasks. The average time to provide an
entailment label for a policy and a scenario is 39
seconds across two annotators. The average time
to answer all the questions of a policy with respect
to a scenario is 27 seconds. The annotators high-
lighted the difficulty of annotating the entailment
task because they had to create a mental breakdown
of a policy while they found the QA task easier to
perform as the policy is already decomposed into
individual questions. The Cohen’s Kappa for en-
tailment agreement between the annotators is 0.38
and for individual questions 0.49. The agreement
on the inferred labels using the expression trees
based on the answers to the questions is 0.70. This
agreement is higher than the agreement for the QA
annotation, because as we discussed in section 6.1,
not all the the questions need to be answered cor-
rectly to infer the correct final label. The results of
this annotation experiment shows that annotating
the QA labels has lower cost (faster) compared to
annotating the overall entailment label, even though
an annotator needs to complete more annotations.

7 Discussion

Assumptions In this work, we assume that we
can decompose policy descriptions into indepen-
dent questions that can be executed in parallel.
However, designing independent questions is not
always straightforward. E.g. it could be useful
to have a question in an expression tree that is a
follow-up on another question and therefore a QA

model will have to be executed sequentially taking
into account the earlier question in formulating the
follow up one.

Potential for Automatic Generation of Expres-
sion Trees In our work, we assume that the ex-
pression trees are provided. Providing an expres-
sion tree for a policy by those who create it is un-
likely to be a substantial overhead, and it can lead
to better policy definitions. In addition, in the case
of policies on sensitive issues such as hate speech,
it might be undesirable to have the expression tree
and questions inferred automatically. Moreover, an
expression tree for a policy is created only once
but used multiple times. As discussed in the results
section, the cost of creating expression trees when
using the QA approach is offset by the gains in
performance compare to the entailment approach.

Nevertheless, on-boarding all the policies of an
existing organisation can be time-consuming and
can benefit from automation, and with human-in-
the-loop approaches we can ensure the accuracy of
the trees. Finally, a potential benefit of automating
the generation of expression trees is that it can be
done jointly with the task of policy compliance
detection, such that we generate trees that result in
a higher accuracy on the downstream task.

Use of Task Descriptions The use of task de-
scriptions was recently studied in Weller et al.
(2020) to answer questions based on a passage. Our
work is similar to this work since we use policy de-
scriptions to learn PCD and conduct evaluation in a
cross-policy setting. While they answer questions
from passage descriptions, we focus on learning
policy compliance given a policy and a scenario.
Description of relations has been used in (Oba-
muyide and Vlachos, 2018) to perform zero-shot
relation classification.

Question Decomposition Answering complex
questions has been a long-standing challenge in
natural language processing. Many researchers
explored decomposing questions into simpler ques-
tions (Wolfson et al., 2020; Min et al., 2019; Fer-
rucci et al., 2010; Perez et al., 2020). In question de-
composition, the objective is to convert a complex
question into a list of inter-related sub-questions.
While in question decomposition questions are gen-
erated automatically, in our work, we consider them
given. On the other hand, the answers to the decom-
posed questions are combined in a more complex
manner using an expression tree with logical oper-



ators, while in these works there is no attempt to
combine the answers.

8 Conclusion

In this work, we propose to address the task of pol-
icy compliance detection via decomposing a policy
description into an expression tree. The expres-
sion tree consists of a set of questions and a logical
expression that combines the questions to infer a
final label. Our experiments show that compared
to the existing entailment approach (Holzenberger
et al., 2020), QA decomposition results in a better
model accuracy in a cross-policy setting using in-
domain (0.69 vs. 0.44) and out-of-domain (0.59
vs. 0.37) training data. Furthermore, we show
that while there is an upfront cost of annotation
for expression trees, the cost of QA decomposition
annotations is lower than the cost of annotating the
entailment task while reaching a higher agreement.

Future work can investigate ways to generate
expression trees for policy descriptions automati-
cally. Further, it will be beneficial to demonstrate
that this approach is suitable in detecting policy
compliance in other domains such as community
standards implemented by social media platforms
which requires annotation of relevant datasets.

9 Broader Impact Statement

Tools based on our method could potentially im-
prove automated policy enforcement efforts and
could also help individuals understand how certain
policies may apply to their circumstances. The
proposed method offer better interpretability and
performance when little data in available. This can
provide some insights on where a model may have
made a mistake.

We use an existing transformer-based model to
show the effectiveness of our method. Transformer-
based models are known not to be computationally
effective. However, we use a pre-trained model and
fine-tune it on a relatively small dataset.
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Figure 5: The logical tree of the expression “Q0 OR
Q1 Or Q2” proposed in our work on the left and the
decision tree proposed by ShARC.

A Appendices

A.1 ShARC Data Processing
ShARC dataset contains government policies from
a number of countries including the UK and the
USA. for each policy, several scenarios are pro-
vided. A scenario is a life situation described by a
user who is interested to know whether they com-
ply with the given policy. Scenarios were created
by providing a full or partial list of questions and
their answers from a path in the tree to the labelers.
Labelers were then asked to write a life situation
compatible with those questions and answers. An-
notators were also told to feel free to provide extra
context and information, even if not directly rel-
evant to the provided questions. Note that many
tree instances in ShARC do not have any related
scenarios and only rely on interactive information
seeking with a human to arrive at an answer.

Even though a binary tree for each policy can
be inferred from the ShARC instances, we encoun-
tered two issues with the data: 1) The trees were not
always complete and some fundamental questions
were missing. 2) Trees with only possible Yes/No
for each node as done in ShARC are not expressive
enough (or it’s too complicated to express a policy
fully in a binary tree) to capture the semantics of
the policies in many cases. For example, binary
trees do not capture OR operators very well where
the answer to some questions are not required in
order to infer the final answer. Without an accurate
binary tree, we can not guarantee to infer a correct
label given the answers to the granular tasks.

Figure 5 shows that binary trees in ShARC can
not deal with the answers Not Enough Information
whereas our proposed expression trees do.

A.2 Annotation

Figure 6: An example of a tree in ShARC where we
added extra questions in QA4PC as we believed they
were essential in evaluating a scenario. in QA4PC, four
questions were added about the type of benefit corre-
sponding to each bullet point.

Figure 7: The annotation UI for expression tree annota-
tions.

Figure 8: The annotation UI for QA and entailment
tasks.


