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Figure 1. (a) We demonstrate touch typing on a flat surface using a decoder that translates hand motion from a skeletal hand-tracking system into text. 
Compared to contact-based sensing, e.g., capacitive touch, hand motion additionally encodes the trajectory of a finger as it reaches for a key, which 
we can leverage. For example (b), we show two clusters of trajectories of the right middle fingertip from the training dataset; one for ‘O’ keystrokes 
(magenta) and one for ‘I’ keystrokes (blue). The sample trajectory at test time (green) lands on the ‘I’ key but has a more similar path to the ‘O’ key. 
Our approach uses this trajectory information to correctly classify this case while a contact-based approach cannot. 

ABSTRACT 
We propose a novel text decoding method that enables touch 
typing on an uninstrumented flat surface. Rather than rely-
ing on physical keyboards or capacitive touch, our method 
takes as input hand motion of the typist, obtained through 
hand-tracking, and decodes this motion directly into text. We 
use a temporal convolutional network to represent a motion 
model that maps the hand motion, represented as a sequence 
of hand pose features, into text characters. To enable touch 
typing without the haptic feedback of a physical keyboard, 
we had to address more erratic typing motion due to drift of 
the fingers. Thus, we incorporate a language model as a text 
prior and use beam search to efficiently combine our motion 
and language models to decode text from erratic or ambiguous 
hand motion. We collected a dataset of 20 touch typists and 
evaluated our model on several baselines, including contact-
based text decoding and typing on a physical keyboard. Our 
proposed method is able to leverage continuous hand pose 
information to decode text more accurately than contact-based 
methods and an offline study shows parity (73 WPM, 2.38% 
UER) with typing on a physical keyboard. Our results show 

that hand-tracking has the potential to enable rapid text entry 
in mobile environments. 
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INTRODUCTION 
Text entry is an important task for communication and pro-
ductivity in augmented reality and virtual reality (AR/VR). 
While conventional physical keyboards and touch screens can 
be incorporated into AR/VR input systems, added peripherals 
detract from mobile use cases and accessibility. Automatic 
speech recognition is more accessible, but may not be socially 
acceptable for certain environments or for private communi-
cation. Recent advances in computer vision have shown that 
hand pose can be accurately estimated using commodity depth, 
RGB or monochrome cameras. Commercial AR/VR devices 
such as the Oculus Quest and the Microsoft Hololens have 
started using hand-tracking for text entry. However, exist-
ing hand-tracking-based text entry solutions for AR/VR are 
relatively low throughput. 

In this paper, we investigate the use of hand-tracking to enable 
typing on any flat surface at speeds comparable to typing on 
a physical keyboard. This has several advantages to existing 
approaches. Hand-tracking is typically achieved through on-
headset sensors, without extra peripherals, making it suitable 
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for on-the-go use cases. Typing on a virtual keyboard is more 
discreet than speaking. Most importantly, there already exists 
a wide audience of effective typists. Surveys of internet users 
show that even average typists can achieve speeds greater than 
50 words per minute (WPM) with the fastest 90th percentile 
achieving more than 78 WPM [3]. We show that these users 
can transfer their existing skills typing on a keyboard to typing 
on a flat surface. 

People type faster on a physical keyboard [3] than a soft key-
board and also faster on a surface [4] than in the air. In our 
study we compromise between accessibility and speed by re-
quiring users to type against a surface but eschewing the use 
of a physical keyboard or a touchpad. Additionally, surface 
typing has been shown to be more comfortable than mid air 
typing [4] and confers haptic feedback, which enhances pres-
ence in VR [16]. Our investigation caters particularly to the 
fastest typists–touch typists, which we mean as those who type 
without the sense of sight to find the keys. Without the feel of 
physical keys and without using sight to find the keys, fingers 
will drift during typing. Instead of requiring users to make 
precise contacts on a fixed keyboard layout, we investigate 
using a motion model to recognize finger trajectories, and 
we further explore how statistical decoding techniques affect 
performance. 

We are inspired by the work of Dudley and colleagues [4] that 
shows the high potential of human typing efficiency and error 
rate given a text decoding oracle with knowledge of the text be-
ing typed. In this work, we take the first steps to reducing this 
oracle to practice by building a neural model of text decoding 
that combines motion modeling of fingers and a state-of-the-
art language model. Notably, our model is the first technique 
to our knowledge that converts skeletal hand motion directly 
into text. Instead of relying on surface contact information 
(e.g., from capacitive touch), we investigate using the output of 
a marker-based hand-tracking system [12]. Hand-tracking pro-
vides potentially richer sensing information (including finger 
identities and trajectories) than the contact modality. While 
marker-based hand-tracking is still an optimistic approxima-
tion of the fidelity achievable from an AR/VR headset, our 
experiments shed light on the potential of hand-tracking-based 
text decoding. Specifically, we make the following contribu-
tions: 

• We propose a motion model, represented as a temporal con-
volutional network (TCN), that can translate hand motion 
directly into (a probability distribution over the) typed text. 

• We show that we can combine our motion model with a 
language model, also represented as a neural network, using 
an efficient beam search decoding technique. 

• We show that tracking hands typing on a flat surface com-
bined with our statistical decoding method has the potential 
of achieving speeds comparable to typing on a physical key-
board while maintaining low-error rates. We also explore 
why decoding continuous hand motion data could be advan-
tageous to decoding a discrete set of contacts on a touch 
surface by isolating the value finger trajectory information, 
finger identity information and continuous decoding. 

RELATED WORK 
Surface and eyes-free keyboards 
Typing on a flat surface is analogous to typing on a soft key-
board on a smartphone and inherits similar problems such as 
noisy input and systematic offsets [14] which can be addressed 
via statistical decoding methods [7, 10, 25] (see below). Touch 
typing, by which we mean eyes-free input, on a flat surface 
has been studied in the context of gesture keyboards. The 
i’sFree system [30] is an example of a gesture keyboard that 
learns keyboard location from gesture input over time. Yang et 
al. [27] improve first touch accuracy for a gesture keyboard by 
centering the keyboard around first touch. Our work is most 
similar to that of Zhu et al. [29], who enforced touch-typing 
on a smartphone surface by asking users to tap on an invisible 
keyboard. We show that by using hand pose rather than con-
tact points and a richer motion model, we can achieve more 
accurate decoding. 

AR/VR text entry 
Many other text entry systems have been proposed for AR/VR 
applications, and for brevity, we concentrate on those that use a 
QWERTY keyboard layout. The ARKB system [18] showed a 
very similar concept of typing on a QWERTY virtual keyboard 
on a surface using hand-tracking through color-based segmen-
tation and markers. Since then, hand-tracking technology has 
advanced significantly. The ATK system [28] uses skeletal 
hand-tracking (via a Leap Motion device) to drive text entry, 
although through midair typing. The VISAR system [5] also 
uses hand-tracking (via a Hololens device) to enable typing, 
although with just the index fingers. VISAR also integrates a 
more sophisticated decoding strategy [25] to achieve superior 
mid-air typing on Hololens. Vulture [21] uses a high-precision 
marker-based hand-tracking system to capture a pinch and the 
tracing of a path (of a word-gesture) through a QWERTY key-
board, which are then decoded into the best word proposals. 
Similarly, RotoSwype [11] uses a ring to capture the motion 
of a single finger tracing a path through a QWERTY keyboard 
in the air, achieving speeds of at least 14WPM with a 1% error 
rate by the end of a five-day study. PalmType leverages pas-
sive haptics by using the opposite hand as a tapping / typing 
surface, although this approach comes at the cost of limiting 
typing to a single hand. Our method is designed for typing 
on a flat surface rather than in the air or against the opposite 
hand. We believe the on-surface domain, while slightly less 
accessible, better leverages existing typing skills, allowing our 
method to achieve speeds comparable to typing on a keyboard 
at a low error rate. We also use complete hand pose of all the 
fingers on both hands rather than the pose of a single finger. 

Statistical text decoding 
Goodman et al. [7] first applied statistical decoding to improve 
the accuracy of a soft keyboard by modeling key-targets as 
bi-variate Gaussians and representing a language model as 
an n-gram distribution. Gunawardana et al. [10] improve on 
key-targets with dynamic resizing and respecting minimal key 
regions or anchors. Weir et el. [26] use Gaussian Process re-
gression to model key targets. Kristensson et al. [17] model a 
trajectory of contacts as well as words in a language model ge-
ometrically and decode stylus gestures via a geometric match-
ing method. Similar to our proposed method, Velocitap [25] 

Session 9B: Interpreting and Adapting Hand Input
 

UIST '20, October 20–23, 2020, Virtual Event, USA

687



uses beam search with a language model to decode whole 
sentences at a time, although Velocitap uses contact as the 
input modality while our method uses hand-tracking. 

Automatic speech recognition 
Statistical decoding of typing is analogous to text decoding 
in automatic speech recognition. The combination of connec-
tionist temporal classification (CTC) loss and beam search is 
a cornerstone of modern end-to-end speech recognition sys-
tems [1]. Graves and Jaitly [9] first applied CTC loss with a 
prefix beam search decoder to speech recognition, and Han-
nun and colleagues [13] showed how to directly incorporate a 
language model. We apply this same general framework, sub-
stituting recurrent neural networks with a TCN-based motion 
model, to decode text entry via typing. 

APPROACH 
To evaluate the feasibility of using hand-tracking to enable 
touch typing on virtual keyboards, we first collect a dataset 
of skeletal hand-tracking data from touch-typists transcribing 
short phrases while typing on a flat surface. Next, we design a 
system for decoding the skeletal hand-tracking data into the 
text the typists intended to type. Finally we measure typing 
speed and error rates of our system against typing on a physical 
keyboard and contact-based statistical decoding methods. 

To collect a dataset of skeletal hand-tracking data, we make 
use of a high quality marker-based hand-tracking system [12] 
which is not subject to the current tracking limitations of con-
sumer head mounted hand-trackers. Consumer hand-tracking 
systems on current generation HMDs are optimized for vir-
tual manipulation tasks rather than text input. While using a 
marker-based tracking system may introduce a gap in tracking 
quality compared to what is achievable on an AR/VR headset, 
we can study the ‘potential’ of hand-tracking applied to this 
problem. 

For decoding hand motion into text, we make no such con-
cessions and investigate the accuracy we can achieve using 
practical language models and statistical decoding strategies 
presented in this work. 

Flat surface typing is a paradigm that exists today in tablet 
computers. While we are targeting a different sensing modality 
(hand-tracking instead of capacitive touchpads), we can use 
touchpads as a baseline for our work. We first investigate 
touch typists ability to transfer their physical keyboard typing 
skills to typing on virtual keyboards imposed on flat surfaces, 
and we then compare the performance of decoding text from 
skeletal hand-tracking data to decoding text from 2D surface 
contact points from a touchpad. 

SYSTEM DESIGN 
The problem of generating text from hand motion has strong 
analogs to automatic speech recognition (ASR), and we use 
ASR as motivation to design a multi-component system with 
the following three pieces. 

1. A motion model, analogous to an acoustic model, which 
takes a sequence of hand poses and for each frame outputs a 
likelihood over an alphabet of tokens, i.e., keys plus a blank 
token corresponding to no key. 

2. A language model which can give the likelihood of an addi-
tional token given a prefix of tokens. 

3. A decoder which can optimize an objective function combin-
ing the likelihoods from both the motion and the language 
models. 

The motion model captures the mapping from finger trajec-
tories to intended key presses. This mapping is inherently 
ambiguous, for example, when a finger strikes the boundary 
between two keys, and is exacerbated by drift of the users’ 
fingers due to the lack of haptic feedback of physical keys. 
We apply a beam search decoder to resolve these ambiguities 
using the language model as a prior. 

MAPPING SKELETAL MOTION TO TEXT 
We use a temporal neural network as a motion model. This 
model takes as input a sequence of frames of hand-tracking 
features and for each frame outputs a probability distribution 
over the set of possible keys, plus one additional label for 
blank / no-key. The model should assign more likelihood to 
a key when the user is hitting a key, and otherwise assign 
likelihood to the blank label. 

For temporal modeling, we opt to use a temporal convolutional 
network (TCN) rather than a recurrent model because a fixed 
window of hand motion data is typically sufficient to make 
predictions about key presses. Longer term context is useful 
for prediction in the context of language, but since our system 
design separates motion modeling from language modeling, a 
TCN works well for the former. An advantage of using a TCN 
is efficiency during training, since TCNs can process entire 
sequences in parallel rather than sequentially as with recurrent 
neural networks. We follow the TCN architecture proposed 
by Bai et al. [2] which consists of causal dilated convolutions 
and weight normalization arranged in residual blocks. We use 
three layers of residual blocks with 64, 64, and 32 hidden units 
respectively, a kernel size of 2 and a dilation factor of 3. This 
architecture allows for 46 past frames of hand features (around 
0.75 seconds of motion at 60Hz) to be referenced to generate 
the current probability distribution over the set of keys. 

The input features to the network are frame-to-frame deltas of 
wrist position and rotation along with 3D fingertip positions. 
All positions are represented in the coordinate frame of the 
keyboard (the touchpad, or a virtual keyboard in the runtime). 
We chose these features because they are somewhat invariant 
to differences in hand scale across people. 

The network is trained with a batch size of 32, where each 
individual sample consists of input features {ui}T

i=1, where 
T depends on how long it took the participant to type the 
phrase. The target for each sample is the sequence of keys Ŵ = 
{ŵ j}N

j=1 that were prompted to the participant. The network 
is trained using the CTC loss function[8], which allows for 
sequence level labels without needing known alignment of 
labels to individual frames of input data. The output of the 
network V = {vi}T

i=1 is a corresponding sequence of T frames, 
each containing a probability distribution vi(k) over the set of 
the K + 1 possible keys (with one extra for the blank label). 
This output can be interpreted as a T × (K + 1) heat map 
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Prompt: CHEMICAL_SPILL_TOOK_FOREVER
Greedy: CHEMICCL_SPILL_GLLOK_COREVER
Beam: CHEMICAL_SPILL_TOOK_FOREVER
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Figure 2. The output of our motion model is a heat map of predictions of 
which key was hit at which time. A greedy decoding of this heat map can 
result in errors, while incorporating a language model and beam search 
significantly reduce the error rate. 

containing the prediction of which key was hit at which time 
(Figure 2). To transcribe the probabilities V into typed text, 
this output must be decoded into a sequence of keys W . 

TEXT DECODING WITH A LANGUAGE MODEL 
A naive greedy approach to decoding is to generate a label 
for each frame t ∈ T by taking ` t = argmaxkvt (k). These 
labels {` t}t

T 
=1 are compacted into a transcription W by first 

combining adjacent frames with the same label into one of 
that label, and then by removing all blank labels. 

We can do better than greedy decoding by using a prefix beam 
search decoder [13]. A prefix beam search decoder approx-
imately maximizes p(W ;V ) by incrementally constructing 
W by tracking a set of B best candidates (beams) at any 
given step. Furthermore, we can incorporate a joint prob-
ability from both the likelihood of the beam according to 
the motion model p(W ;V ) as well as the likelihood of the 
compacted text according to a language model plm(W ), i.e., 

1+γptotal = (p(W ;V )plm(W )γ ) 
1 

where γ is a hyperparameter 
to control the balance between the two likelihoods. This al-
lows the language model to steer decoding when the motion 
model is uncertain (See Figure 2). As has been shown in 
the speech recognition community [9], beam search decoding 
is also well-suited to the CTC loss with which we train the 
network. 

We use a beam search implementation with beam compaction 
which maximizes the objective W = argmaxW ptotal . After de-
coding, we compute the uncorrected error rate UER(W,Ŵ ) 
as the Levenstein edit distance between the decoded and 
prompted strings divided by the number of characters of the 
longer of the two strings. For all of our results, we use B = 100 
beams. For our language model, we use a Transformer [24] 
model similar to the “small-two” model described in [15] with 
4.76M parameters. This language model was trained on using 
a window of 500 characters on text sampled from 2 million 
articles in the CC-News dataset [20]. 

Figure 3. Our data collection setup consists of a marker-based hand-
tracking system using OptiTrack cameras and a touchpad for recording 
contact. A printed 2D keyboard guide is attached to the touchpad for 
reference. 

DATA COLLECTION 
In our study we collected data by having participants complete 
a text transcription task for short phrases. To evaluate hand-
tracking as an input modality compared to contact data from 
touchpads or to physical keyboards, we asked participants to 
type each phrase on either a physical keyboard or on a Sensel 
pressure sensitive touchpad with a printed 2D keyboard layout 
affixed (See Figure 3). In both cases, we also captured their 
hand motion using a marker-based hand-tracking system [12]. 

We recruited 20 participants who passed a pre-screening ques-
tionnaire designed to select for experienced typists. In this 
questionnaire all participants self identified as expert typists 
who type for more than 30 minutes per day and who use at 
least 3 distinct fingers to type the word “ghost” on a QWERTY 
keyboard. 

Participants were given prompts with 3-6 word phrases con-
taining only lowercase alphabetical characters and spaces. Af-
ter typing each phrase, participants would use one of two foot 
pedals to mark that they felt they correctly typed the phrase, or 
that they typed the phrase but felt they made mistakes. Since 
our goal is to produce the text people intended to type, we 
filtered samples where the user believed they made a mistake 
since we don’t know what text the user expects to be produced 
in those cases. 

Participants typed phrases up to 40 characters long drawn from 
two corpora; samples used to fit or train models were randomly 
sampled from Daily Dialog [19], while samples for testing 
and evaluation were randomly sampled from Mackenzie and 
Soukeroff [23]. For each participant, data was collected in 
three distinct blocks in the following order: 

1. 5 minutes of test set phrases on a physical keyboard 

2. 60 minutes (in 5 minute blocks) of training set phrases on a 
touchpad 

3. 5 minutes of test set phrases on a touchpad 

Aside from the prompted phrase, no visual feedback was af-
forded in any of the blocks. Participants typed a median of 362 
training phrases (approximately 6650 characters), and a me-
dian of 131 testing phrases (approximately 3400 characters). 
Test phrases were randomly sampled from a corpus of 500 
phrases giving a possibility of overlap between the physical 
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keyboard and surface test set phrases. Using the foot pedals 
participants discarded a median 15.89% of surface phrases 
compared to 12.5% of physical keyboard phrases; a Wilcoxon 
signed rank test found no significance (p = 0.328). 

Hand-tracking information was recorded while participants 
typed during all three blocks. Participants wore elastic mesh 
gloves with 19 retro-reflective motion capture markers affixed, 
and the method from Han and colleagues [12] was used to 
generate skeletal hand tracking information–specifically, joint 
angles and wrist transforms necessary to drive a fitted hand 
mesh. The touchpad was calibrated by placing three retro-
reflective hemispheres at corners of the touchpad and fitting 
a transform to align those 2D touchpad coordinates with the 
corresponding 3D marker positions. This transform enabled 
all 2D contact points to be lifted into the 3D coordinate space 
in which the skeletal hand poses were represented. 

Because contact-based text decoders are sensitive to accidental 
or missed touches, we took care to clean the contact-based 
training data from the touchpad captures. We filtered out 
captures where the number of touchpad contact events did not 
agree with the number of characters in the prompted phrase. In 
each of the remaining samples we expect that the Nth contact 
event corresponds to the Nth character in the prompted phrase. 
To filter samples where both an extra and a missing contact 
event occurred (leading to an agreement on counts but an error 
in contact-key sequence alignment), we build up a distribution 
for each key of how many times each finger hit that key. We 
then filter samples where multiple keys in the sample were 
struck by a finger which hits that key in less than 1% of cases 
overall. 

The resulting touchpad training dataset consists of samples 
where we have 1) a sequence of length N of keys that were 
typed, 2) a sequence of length N of 2D contact events from 
the touchpad, and 3) a sequence of length T of skeletal hand 
poses while those keys were typed, recorded at 60Hz. 

The testing dataset used for all decoders is the same, except 
that we only filter samples where the user felt they made a 
mistake, which means that the number of characters typed 
might not equal the number of contact events. We wish to 
quantify our ability to produce the text people intended to type, 
which should include all of the samples where participants felt 
they typed the phrase correctly. 

While the contact-based baselines can only be trained with 
known key/contact-point correspondences, our motion model 
is trained using CTC loss, which allows for sequence level 
labels and can deduce the frame-level alignment of the labels. 
Thus our motion model was able to be trained on the original 
training dataset, only filtering samples where users felt they 
made a mistake. We note that this less filtered training dataset 
more closely mirrors the testing dataset. 

EVALUATION 
We present two evaluations of our proposed text entry method 
using the data collected from our user study. The first evalu-
ation is a direct comparison against physical keyboards, and 
the second evaluation consists of two experiments aimed at 
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Figure 4. Boxplots depicting median, quartiles, and means comparing 
typing speed and accuracy between physical keyboard and flat surface 
typing. 

better understanding which aspects of the motion model make 
it perform so well. 

For our motion model we trained person-specific models that 
captured each user’s typing style from the training set portion 
of the data. All of our results were computed over the test 
set portion of the data. While this is not an interactive result, 
it simulates the same condition of decoding additional text 
from the user after a model had been trained (although without 
providing visual feedback to the user). 

Physical keyboard versus virtual keyboard 
Our first evaluation is to determine if participants are able to 
transfer their existing skills typing on a physical keyboard to 
typing on a flat surface (with the help of our proposed decoder). 
Participants of our user study type at different speeds, so we 
compare the relative speed of typing on a flat surface versus 
a physical keyboard. Because our participants were tasked 
with typing test-set phrases on both a physical keyboard and 
on a touchpad, we can make this comparison directly. We 
found that our expert typists generally typed efficiently both 
on physical keyboards (median: 75 WPM, mean: 74 WPM) 
as well as on surfaces (median: 69 WPM, mean: 73 WPM). 
A Wilcoxon signed-rank test also showed no statistically sig-
nificant difference (p = 0.859) with participants’ typing speed 
across the two modalities. 

Participants typed on physical keyboards with a mean UER of 
1.72% (median: 1.19%) compared to a mean UER of 2.38% 
(median: 1.77%) when they typed on flat surfaces with our 
decoder. A Wilcoxon signed-rank test showed no statistically 
significant difference (p = 0.131), however the descriptive 
statistics might suggest that users can still type more accurately 
on physical keyboards (Figure 4). 

This result is consistent with previous findings on the perfor-
mance envelopes of human typing [4] which described the 
high potential of typing speeds given a limited text decoding 
oracle. Our result reduces this oracle to practice by substitut-
ing it with our proposed neural text decoder. 
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Figure 5. As a baseline, we compare our method to a contact-based spa-
tial model that fits bivariate Gaussians (bottom) to all the contact events 
of each key (top). 

Comparison of Input Features and Motion Models 
Our system differs from prior work in several ways. We use a 
higher capacity neural motion model to decode a richer input 
signal (i.e., with finger identity and trajectory information) 
into text. Our decoding is also continuous (at 60Hz) rather 
than constrained to producing characters at discrete contact 
events. We attempt to tease apart the contributions of these 
differences with two experiments. 

In our first experiment we study the contribution of finger 
identity information. To do so we create two contact-based 
baselines for comparison, one that uses only anonymous, dis-
crete contact events, and another that adds finger-identity in-
formation. We compare these baselines to each other and to 
our hand motion based decoding to isolate the impact of finger 
identity information. 

In our second experiment we investigate the contribution of 
continuous motion decoding versus discrete contact-based 
decoding. We observed that many mistakes made by contact-
based decoding were due to its discrete nature: Characters 
are generated if and only if there is a corresponding contact 
event, which means that spurious or omitted contacts neces-
sarily result in decoding errors. We attempt to ablate away 
the continuous nature of hand motion decoding by creating a 
filtered test dataset containing only samples with matched con-
tacts and keys. We repeat our evaluation of the two baselines 
on this corresponded contacts dataset, isolating the value of 
trajectories from the value of continuous decoding and finger 
identity information. 

Experiment 1: Comparison with Finger Identity Information 
For our first baseline, Gaussian contact decoding, we evaluate 
performance using the spatial modeling approach described by 
Zhu et al. [29]. This model lacks the continuous text decoding 
capabilities of our motion model, but rather has to decode 
text only at discrete contact events. This model also lacks the 

Figure 6. Variation in typing consistency and key-finger correspondences 
shown in three participants from our dataset. Each ellipse is a bivariate 
Gaussian fitted to contact points for a key colored by which finger ac-
counts for 90% of contacts of that key. 

Continuous Discrete

Figure 7. A typist types the word “WITH” but fails to make contact for 
the letter ‘H’. Continuous decoding makes one prediction every 60th of 
a second and can predict the possibility of the missing contact (indicated 
by the blue arrow) based on hand motion near the surface. Discrete 
contact-based decoding only predicts when contacts occur and thus can-
not predict the missing letter. 

richer input features of hand-tracking, e.g., which finger is 
hitting a key or which path the finger took to reach a key. 

Using the cleaned training dataset, we obtain a sequence of 
keys pressed {ŵi} and a sequence of 2D contact points from 
the touchpad {x̂i} (See Figure 5). Since these sequences 
are in correspondence, we can bucket 2D contact points for 
each key on the keyboard. For each key k we fit a bivari-
ate Gaussian gk(x) = N(x; µk, Σk) from the collection of 2D 
contacts. During inference, the likelihood of a novel 2D 
contact point is measured according to each Gaussian, and 
the resulting distribution over all keys is then normalized 
p(k;x) = gk(x)/∑

K
k0=1 gk0 (x). This distribution over the set 
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of keys can be processed using the same beam search decoder 
and language model we described for hand motion decoding. 

For our second baseline, Per Finger Gaussian contact decod-
ing, we specifically investigate if augmenting the spatial model 
input with finger identity information improves performance 
of the contact-based model. Recent studies show that touch 
typists and faster typists tend to have lower entropy in their 
finger to key mapping [6]. As shown in Figure 6, we found our 
expert typist participants tended to have consistent key-finger 
correspondences. Motivated by this finding, we hypothesized 
that providing a richer input feature that includes which finger 
pressed a key can help a model disambiguate which key was 
pressed. 

To use finger identity information, we make two changes 
to our Gaussian contact decoding baseline. First, we find 
the closest fingertip f for each contact using hand-tracking 
data and then bucket by both key k and finger f to fit 2D 
Gaussians hk, f (x) to these subsets of contact points. Sec-
ond, at inference time, we use the known fingertip f to com-
pute the distribution over the set of keys for a specific finger 
p(k;x, f ) = hk, f (x)/∑

K 
=1 hk0 , f (x, f )k0 .

Using our touchpad evaluation dataset we compared the two 
baselines with our motion model approach (Figure 8). We 
decoded all test set samples using the Gaussian, Per Finger 
Gaussian, and our hand motion model with a greedy decoder 
with no language modeling. We then tested a beam search 
decoder with a language model on the same three conditions. 

With greedy decoding, the 2D contact-based methods appeared 
to have higher variance, though the median UER was compa-
rable across the three strategies. When we added the beam 
search language model decoder, however, we found that both 
Gaussian and Per Finger Gaussian contact-based methods per-
formed comparably with a mean UERs of 5.66% (median 
2.70%) and 4.76% (median 2.64%) respectively, while our 
motion model approach outperformed both with a mean UER 
of 2.38% (median 1.77%). A Wilcoxon signed-rank test found 
the motion model performance to be significantly better than 
both Gaussian (p = 0.0258) and Per Finger Gaussian decoding 
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Figure 8. Uncorrected error rate for various decoding strategies. 
G=Gaussian contact model, PFG=Per Finger Gaussian contact model, 
Motion=Hand motion model. 

(p = 0.011), indicating that factors beyond finger identity had 
a strong impact on performance. 

Experiment 2: Comparison with Corresponded Contacts 
The previous experiments show that our continuous hand mo-
tion decoding method is more accurate than decoding of dis-
crete contacts with either a simple Gaussian spatial model or 
a richer model with finger identity information. When we ex-
amined the results qualitatively, we noted several differences 
between the contact-based decoding approach and our hand-
tracking-based approach, which we illustrate in Table 2. Some 
of the error discrepancies could be explained by augmenting 
with finger identity information. Others could be attributed 
to the addition of finger trajectory information. Figure 1(b) 
shows an example where our motion model is able to learn to 
detect the signature trajectory of reaching for a particular key. 
Finally, others were due to the fundamentally discrete nature 
of contact decoding. 

At first, we assumed that the discrete nature of contacts was an 
advantage for contact decoding. Explicit contact information 
is a strong signal for a key-press, whereas our motion model 
has to learn to detect the signature trajectory of a finger as it 
presses a key. However, when using a touchpad, we assume 
no ambiguity in whether a contact event occurred, only 2D 
spatial ambiguity about which key was pressed. There is no 
mechanism to detect an accidental touch or to guess when a 
touch event should have happened but was missed. Because 
contact-based decoding occurs only at discrete touch events, 
for an accidental touch, the system must assign a key to the 
event, and for a missing touch, the system cannot insert an 
extra key-press. On the other hand, our motion model gen-
erates a probability distribution of which key was pressed 
(including no-key) at every frame of the tracking, which pro-
vides the decoder flexibility to insert or remove key-presses to 
accommodate the language model prior (Figure 7). 

In order to disentangle the benefit of continuous motion decod-
ing versus discrete contact decoding, we filter our test dataset 
similarly to our training set to contain only samples where we 
know the correspondences between contact events and ground 
truth character labels.In this filtered corresponded contacts 
dataset, there are no samples with missing or spurious con-
tacts. Any remaining errors from the contact-based methods 
can only be due to the richness of the input signal. 

Repeating the evaluation of the previous two baselines on this 
filtered corresponded contacts dataset, we found a substantial 
drop in the mean UER for all methods (Table 1), suggesting 
that removing spurious or missing key-presses makes for an 
easier dataset. However, the decrease is greater for the contact-

Gaussian Per Finger 
Gaussian 

Hand Mo-
tion 

Unfiltered UER 5.66 (2.70) 4.76 (2.64) 2.38 (1.77) 
Filtered UER 4.84 (1.90) 3.97 (1.84) 2.22 (1.24) 
% Decrease 14.6 (29.5) 16.6 (30.5) 6.72 (29.9) 

Table 1. Comparison of mean (median) accuracy across decoding strate-
gies, and the deltas when only samples with corresponded contacts are 
evaluated. 
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Test Phrase Gaussian Contact Per Finger Gaussian Contact Hand Motion Decoding 
a) PHYSICS AND CHEMISTRY ARE HARD 

b) HAVE A GOOD WEEKEND 

c) QUICK THERE IS SOMEONE KNOCKING 

d) THE DOW JONES INDEX HAS RISEN 

e) I WATCHED BLAZING SADDLES 

PHTWUCS AND CHWNUSTEYNARE HARE 

GAVE A GOOD SEREND 

QJICK THERE IS SOMEONE KNOCMING 

THE DOWN JONES INDEX HAS ROSEN 

I WATCHED BLAZING SADDLES 

PHYWUCS AND CHEMISTRY ARE HARE 

GADE A GOOD WEEEND 

QJICK THERE IS SOMEONE KNOCKING 

THR DOWN JONES INDEX HAS RISEN 

I WATCHED BLAZING SADDLES 

PHYSICS AND CHEMISTRY ARE HARD 

HAVE A GOOD WEEKEND 

QUICK THERE IS SOMEONE KNOCKING 

THE DOW JONES INDEX HAS ROSE 

I WATCHED BLAZING SALES 

Table 2. Sample phrases decoded with contact decoding baselines and our method (Hand Motion Decoding). In some phrases (a), we see the benefit of 
finger identity information. In others (c), using the trajectory of the finger allows for more accurate character classification. Operating on a continuous 
stream of hand motion allows our method to vary the number of characters (b,d,e) while contact-based decoding can only generate the same number of 
characters as the number of contacts. 

based methods, which makes the differences between hand 
motion decoding and the two baselines no longer statistically 
significant (p = 0.300 for Gaussian and p = 0.109 for Per Fin-
ger Gaussian) according to a Wilcoxon signed rank test. This 
suggests that continuous hand motion decoding is better able 
to cope with the mistakes in the unfiltered dataset. Still, the 
remaining discrepancy in descriptive statistics between hand 
motion decoding UER and both baselines suggests that finger 
trajectory information is helpful for further disambiguating 
typed text. Note that while more sophisticated contact-based 
decoders such as the one described in Velocitap [25] can add 
or remove characters during decoding, they would not have 
access to finger trajectory information. 

Figure 9. Interactive text input in virtual reality using using hand-
tracking and a calibrated surface, with a virtual keyboard composed 
of standard sized 19mm keys. 

Performance and interactive run-time 
Our motion model network is compact, containing just 180KB 
of weights, enabling efficient evaluation on a GPU. Our lan-
guage model consists of 19MB of weights. We are able to run 
both models, in addition to decoding, at interactive rates (i.e. 
120 Hz) on a PC with an Nvidia RTX 2080Ti graphics card. 
These models were not optimized for compute and can be 
further accelerated using modern distillation and quantization 
techniques for neural networks [22]. 

We created a toy text entry application with an Oculus Rift and 
the Unity game engine to demonstrate real-time touch typing 
on a flat surface in VR using hand-tracking (Figure 9). 

In this interactive setting we constrained our beam search 
decoder to force convergence for any predictions older than 
6 frames (0.1s) causing all beams to have a common prefix. 
We only rendered text in the common prefix of all beams, 
effectively imposing a fixed 0.1s delay. This prevented any 
visible retroactive changes and maintained a controlled latency, 
while allowing corrections of the most recent 1-2 characters 
for most typists. While this serves as a proof of concept for 
interactive utility, our system still lacks many fundamental 
features required of any practical text input system, such as 
backspace or punctuation. 

CONCLUSION 
Typing on any flat surface without the need to bring a physical 
keyboard would provide a valuable addition to AR/VR interac-
tion. In this paper we take a major step towards realizing the 
viability of such a system by demonstrating decoding of text 
from hand motion captured with a high quality hand-tracking 
system. We have shown on a 20 person dataset that touch-
typists can transfer their skills typing on a physical keyboard 
to typing on a flat surface, reaching comparable typing speeds 
(73WPM) while retaining an uncorrected error rate of less than 
2.4%. We achieved this result through the introduction of a 
novel motion model mapping hand motion to text, represented 
as a temporal neural network, and the application of beam 
search decoding combined with a modern neural language 
model. We also show that our hand-tracking-based decoder 
can produce significantly lower error than two baselines using 
contact-based text decoding (with and without finger identity 
information). 

Many challenges remain to making this system practical for 
general text input. We will need to handle a lower quality 
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hand-tracking input signal from mobile headsets, or alterna-
tively improve the state-of-the-art of egocentric hand-tracking 
today. Our system currently does not support typing of non-
dictionary words effectively. For this work, we trained per-user 
neural motion models over an hour’s worth of typing samples 
and will need a more user-friendly version of user calibration. 
When we attempted to train a single between-users model on 
the combined training sets of all users, the performance did 
not match the user specific models (UER rose from 2.4% to 
3.9%, which a Wilcoxon signed rank test found to be signifi-
cant, p = 0.001). We will need to explore a more efficient user 
calibration process in future work. Our current experiments 
provide no visual feedback during typing, and more explo-
ration of what visual feedback to offer, e.g., along the lines of 
Velocitap [25] is needed. Finally, we are only decoding the 
lower case letters of the alphabet on our keyboard. We will 
need to handle other keys, including backspace, numbers and 
symbols to support general interactive text editing. 
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