
RAS: Continuously Optimized Region-Wide
Datacenter Resource Allocation

Andrew Newell, Dimitrios Skarlatos‡∗, Jingyuan Fan, Pavan Kumar, Maxim
Khutornenko, Mayank Pundir, Yirui Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le,
Brendon Daugherty†, Apurva Samudra†, Prashasti Baid, James Kneeland, Igor
Kabiljo, Dmitry Shchukin, Andre Rodrigues, Scott Michelson, Ben Christensen,

Kaushik Veeraraghavan, Chunqiang Tang
{newella, dskarlat, jfan5, pavanka, maximk, mpundir, yirui, mingjunzhang, lyl, linhle, brendond, asamudra,

prashasti, jamesk, ikabiljo, dmitrs, andrerod, sdmich, benjchristensen, kaushikv, tang}@fb.com
Facebook Inc. ‡Carnegie Mellon University

Abstract
Capacity reservation is a common offering in public clouds
and on-premise infrastructure. However, no prior work pro-
vides capacity reservation with SLO guarantees that takes
into account random and correlated hardware failures, dat-
acenter maintenance, and heterogeneous hardware. In this
paper, we describe how Facebook’s region-scale Resource
Allowance System (RAS) addresses these issues and provides
guaranteed capacity. RAS uses a capacity abstraction called
reservation to represent a set of servers dynamically assigned
to a logical cluster. We take a two-level approach to scale
resource allocation to all datacenters in a region, where a
mixed-integer-programming solver continuously optimizes
server-to-reservation assignments off the critical path, and a
traditional container allocator does real-time placement of
containers on servers in a reservation. As a relatively new
component of Facebook’s 10-year old cluster manager Twine,
RAS has been running in production for almost two years,
continuously optimizing the allocation of millions of servers
to thousands of reservations. We describe the design of RAS
and share our experience of deploying it at scale.

CCS Concepts
•Computer systems organization→Distributed archi-
tectures;Maintainability and maintenance; • Software and
its engineering;

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483578

Keywords
Datacenter, ResourceAllocation, CapacityManagement, Con-
tainer Orchestration

ACM Reference Format:
Andrew Newell, Dimitrios Skarlatos‡∗, Jingyuan Fan, Pavan Kumar,
Maxim Khutornenko, Mayank Pundir, Yirui Zhang, Mingjun Zhang,
Yuanlai Liu, Linh Le, BrendonDaugherty†, Apurva Samudra†, Prashasti
Baid, James Kneeland, Igor Kabiljo, Dmitry Shchukin, Andre Ro-
drigues, Scott Michelson, Ben Christensen, Kaushik Veeraragha-
van, Chunqiang Tang. 2021. RAS: Continuously Optimized Region-
Wide Datacenter Resource Allocation. In ACM SIGOPS 28th Sym-
posium on Operating Systems Principles (SOSP ’21), October 26–29,
2021, Virtual Event, Germany. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3477132.3483578

1 Introduction
Cluster managers [28, 31, 45] place containers or virtual ma-
chines on servers and manage their lifecycle. In the past
decade, a significant amount of research has focused on
developing efficient resource allocation solutions in data-
centers. Numerous approaches have been adopted by public
clouds [27], open-source systems such as Kubernetes [31],
and proprietary systems such as Google’s Borg [45], Face-
book’s Twine [39], and Microsoft’s Protean [27].

Capacity reservation is a common offering in public clouds [3,
6, 23, 34, 35], which “ensures the peace of mind that you have
capacity availability when you need it during critical events,
such as disaster recovery or unexpected workload spikes [35].”
However, there is scant literature on how it works, especially,
how to provide guaranteed capacity despite large-scale fail-
ures in datacenters. In this paper, we describe how we solve
this problem for our on-premise infrastructure, whose size
is comparable to that of the largest public clouds.
There are several challenges in providing guaranteed ca-

pacity. First, it needs to account for independent and cor-
related failures [44] across various scopes including server,

https://doi.org/10.1145/3477132.3483578
https://doi.org/10.1145/3477132.3483578


rack, datacenter, network switch, power row, and cooling
systems. Naively increasing the buffer capacity to handle all
potential failures would be prohibitively expensive.
Second, the cluster manager needs to uphold a capacity

guarantee despite constant infrastructure lifecycle events
such as OS kernel upgrades, physical maintenance at various
scopes, hardware refresh, and datacenter turn-ups. Each of
these can cause different magnitudes of server capacity loss
and the clustermanager needs to acquire replacement servers
in a timely manner.
Third, a cluster manager should provide capacity that

meets the constraints of its workloads and also considers
hardware heterogeneity. For instance, some workloads might
gain a significant performance boost on a particular CPU gen-
eration, others might require affinity with storage systems
and databases to meet latency requirements, while yet others
might need all their servers situated within a single data-
center so that they would not overwhelm cross-datacenter
network links.
Finally, the increased scale of modern infrastructure fur-

ther exacerbates these challenges as there exists an inherent
trade-off between the decision quality and the speed of re-
source allocation. If the cluster manager prioritizes meeting
an allocation-speed service level objective (SLO) by compro-
mising the allocation spread across fault domains, a single
large-scale correlated failure might render a significant frac-
tion of capacity unavailable.
It is challenging to allocate a set of servers that simulta-

neously satisfy guaranteed capacity requirements, support
datacenter lifecycle operations, and meet complex workload
constraints, while still achieving low-latency container place-
ment. To that end, we propose breaking resource allocation
into a two-level problem: 1) assigning servers to logical clus-
ters and 2) assigning containers to servers in a cluster.

While the latter has been widely explored [9, 12, 16, 22, 27–
31, 36, 43, 45–47], assigning servers to clusters has received
far less attention in the past. These two levels compliment
each other. Some problems that are hard or impossible to
be solved by the latter can be more easily solved by the for-
mer. This paper presents our solution for server assignment,
which runs off the critical path of container placement.

1.1 Prior Solutions
The most common approach of assigning servers to clusters
is based on static scopes. For example, all servers in a data-
center may belong to one cluster. Servers may be added to or
removed from a cluster, but often these changes are manually
initiated. A benefit of this approach is that the static cluster
membership reduces the candidate servers to be evaluated
on the critical path of container placement. Hence, it enables
new containers to be quickly deployed within a few seconds
by using servers already in the cluster. Unfortunately, this

benefit comes with some drawbacks. First, with static as-
signment of servers to clusters, some clusters may run out
of capacity and cannot sustain higher loads, while others
are underutilized. Second, server allocation may be subopti-
mal due to variation in power and network consumption of
workloads and their different hardware requirements such
as certain CPUs, flash storage, and memory capacity. Finally,
service owners have to individually prepare for datacenter-
scale failures by themselves.

Our previous approach at Facebook, presented in Twine [39],
is to forego the boundary of physical clusters and datacen-
ters, and use a shared mega server pool that comprises all
servers from datacenters in a geographical region connected
by a low-latency network. Conceptually, Twine organizes
servers into logical clusters called entitlements. When a new
container needs to be started but cannot fit on any existing
server in an entitlement, a free server is greedily acquired
from a shared region-level free-server pool and added to
the entitlement to host the new container. When the last
container running on a server is decommissioned, the server
is returned to the shared free-server pool. On one hand,
this approach has the benefit that a single server pool elim-
inates server capacity stranded in many smaller physical
clusters. On the other hand, it puts a whole region’s server-
to-entitlement assignment on the critical path of container
placement. As a result, previously we had to adopt simple
heuristics to make quick server-assignment decisions, which
led to sub-optimal server assignment and could not provide
guaranteed capacity in the event of correlated failures.
Overall, both approaches, though highly practical, have

their limitations. Ideally, a cluster manager should combine
their benefits without their drawbacks.

1.2 Our Solution: Continuous Server
Reassignment

In this paper, we present Twine’s new server-allocation com-
ponent, called Resource Allowance System (RAS). RAS uses a
capacity abstraction called reservation to represent a set of
servers dynamically assigned to a logical cluster. A reserva-
tion provides to its workloads a certain amount of guaran-
teed capacity that takes into account random and correlated
failures, datacenter maintenance events, heterogeneous hard-
ware resources, and compound workload requirements and
characteristics.

RAS adopts a two-level approach that first assigns servers
to reservations off the critical path and then allocates contain-
ers to servers within each reservation. Through the two-level
approach, server-assignment constraints are removed from
the latency-sensitive container-placement process, and are
evaluated at the reservation-creation time and maintained

2



continuously. Moreover, the two-level approach enables mul-
tiple container allocators to run independently for better
scalability, by treating each reservation as a separate logical
cluster. Finally, each reservation embeds the buffer capacity
needed for handling large-scale failures and maintenance, re-
moving server-to-reservation assignments from the critical
path of these operations.

RAS exploits the inherent computational slack to deploy a
mixed-integer-programming (MIP) solver to optimize server-
to-reservation assignments at a regional level, continuously,
every few tens of minutes. The generality of MIP allows RAS
to incorporate a broad set of factors into the optimization
problem, including capacity requirements, server availability,
network, datacenter topology, as well as random and corre-
lated failure buffer constraints. Furthermore, RAS introduces
stability and optimality objectives that minimize movement
of servers and optimize server spread across fault domains
of various scopes.
To cater to the increasingly heterogeneous hardware re-

sources within datacenters, RAS abstracts the amount of het-
erogeneous hardware through relative resource units (RRUs).
RRUs allow RAS to form reservations based on equivalent
heterogeneous resources that take into account a workload’s
relative performance on different CPU, memory, flash, GPU,
and ASIC configurations.

Overall, RAS has several advantages over prior solutions.
First, RAS avoids the drawbacks of statically-scoped clusters,
including capacity stranded in clusters and the burden for
service owners to individually prepare for large-scale failures.
RAS resolves them by dynamically adjusting servers assigned
to reservations to best match workload characteristics and
underlying infrastructure changes, and by embedding and
optimizing failure andmaintenance buffers as part of reserva-
tions. Second, RAS avoids the drawbacks of Twine’s previous
approach of performing server assignments on the critical
path of container placement, by allocating a reservation’s
full capacity ahead of time. Hence, container placement can
immediately use a free server already in the reservation. Fi-
nally, RAS offers to users the simple abstraction of workloads
running on a reservation that provides guaranteed capacity
and supports stacking. Underneath, RAS takes care of hier-
archical fault domains in a region, random and correlated
failures, datacenter maintenance, heterogeneous hardware,
network affinity, power consumption, and myriad of other
datacenter constraints and realities.
As a relatively new component of Twine, RAS has been

running in production for almost two years. RAS achieves
near fully allocated regions, where close to 94% of servers are
allocated for workloads as guaranteed capacity, 2% are allo-
cated for random failures, and the remaining 4% are allocated
for large-scale correlated failures.

Region

Datacenter

MSB

DatacenterMain Switch Board (MSB)
Reservation A Reservation B

Figure 1: Regional Datacenter Topology.

The contributions of this paper are as follows:

• RAS introduces the concept of reservation, i.e., a guar-
anteed amount of server capacity that functions as a
logical cluster and abstracts away the complexity of
datacenters, hardware heterogeneity, and workload
characteristics.

• RAS presents a two-level approach that decouples
server-to-reservation assignments from container place-
ment.

• RAS formulates server assignments as a MIP problem.
We describe our techniques for scaling our MIP solver
to allocate up to a million servers in a whole region.

• RAS optimizes server assignments based on a broad
set of factors such as capacity requirements, datacen-
ter topology, random and correlated failures, server
movement constraints, and fault-domain spread.

2 Resource Management Realities
Efficiently providing guaranteed capacity within a region
poses significant challenges to resource allocation due to
the capacity scale, intricacies of datacenters, and diverse
workload characteristics.

2.1 Region Layout
Facebook’s infrastructure is geo-distributed across multi-
ple regions around the globe. Figure 1 shows a high-level
overview of a region’s layout. A region consists of multiple
datacenters connected through high-bandwidth networking.
At Facebook, each datecenter is composed of several fault
domains defined by the power main switch board (MSB),
which are isolated power and network domains that can fail
independently. Each MSB consists of thousands of servers.
The network latency within a region is less than a mil-

lisecond. This enables resource management to aggregate
resources across datacenters in a region beyond the tradi-
tional concept of a physical cluster, which is historically

3



constrained within a datacenter. Still, the network band-
width across datacenters in a region is only a fraction of the
bandwidth between racks in the same datacenter. As a result,
server assignments need to consider cross-datacenter band-
width. Such constraints are important for network-intensive
workloads such as distributed machine learning training that
can swiftly saturate the available bandwidth.

2.2 Hardware Heterogeneity
Turn-up and decommission of servers combined with the
increased hardware heterogeneity leads to vastly different
hardware mixtures across MSBs. Figure 2 shows the hard-
ware mixture across a set of representative MSBs within a
region. The last bar shows the average mixture across all the
MSBs of the region. Hardware resources are broken down
into < Ci − Si > tuples where C represents a hardware
category while S represents subtypes within each category.
We divide hardware into subtypes only if there is a notable
performance difference.

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  Avg
Main Switch Board (MSB)

0

25

50

75

100

Ca
pa

cit
y 

%

C1
C3

C4-S2
C9-S1

C4-S1
C8

C9-S2
C2-S1

C6-S1
C6-S2

C2-S2
C7-S2

C5
C7-S3

C7-S1
C4-S3

Figure 2: Hardware heterogeneity across MSBs.

Figure 2 shows that there are nine hardware types and a
total of 12 subtypes. Furthermore, there is a large variation of
the hardware mixture across MSBs. With the emergence of
persistent memory and specialized hardware such as GPUs
and accelerators for AI and video [19], datacenters are bound
to exhibit even higher heterogeneity in the future. As a result,
server assignment needs to take into account the hardware
heterogeneity across MSBs and abstract away physical hard-
ware characteristics to more uniform metrics.

2.3 Impact of Hardware Heterogeneity on
Services

Services are commonly classified based on their resource re-
quirements such as compute, memory, storage, and network.
A major challenge of resource allocation is to automatically
adapt to different types and generations of hardware avail-
able at hand. In order to classify how a service benefits from a
given hardware generation, we define a metric called Relative
Value that accounts for the important performance metrics
of each service. To compute the Relative Value, we aggre-
gate the average for each service across the entirety of its

instances. We further use this metric to guide our capacity
planning for each service.

DataStore Feed1 Feed2 Web Fleet Avg
Production Services

0.0
0.5
1.0
1.5
2.0

Re
la

tiv
e 

Va
lu

e Processor Gen I Processor Gen II Processor Gen III

Figure 3: Relative value gained across Facebook’ ser-
vices across three processor generations.

Figure 3 shows how a set of four large services within Face-
book gain values from different hardware generations. Each
service is normalized individually to the first hardware gen-
eration. Some services gain significant values from new hard-
ware generations. For example, Web gains 1.47x and 1.82x, by
upgrading to the second and third hardware generation re-
spectively. The fifth group shows the fleet average across all
Facebook’s services excluding the major four shown in the
figure. The result indicates that in general processor genera-
tion upgrades lead to significant gains. However, some major
services such as the DataStore do not see any gains. Others
like Feed gain from one generation but not the next. Clearly,
service intrinsics introduce important server assignment
constraints and opportunities. In general, every workload
scales slightly differently although similar workloads exhibit
comparable scaling. Notably, it is important to provide a re-
source abstraction such that hardware-specific nuances do
not burden individual service owners.

2.4 Diverse Capacity Requests
At Facebook we opted to split resource management between
capacity and container requests. Capacity requests are usu-
ally initiated by engineers and capacity planners. The result
is a collection of hardware resources that are then managed
by the container scheduler. Requests are commonly in the or-
der of a few thousand per day. Furthermore, they are highly
diverse as they exhibit multiple degrees of variation across
the number of requested resources and hardware types.

0 1 2 3 4 5 6 7 8 9 10 11 12
Hardware Types

1
10

100
1000

10000
100000

Ca
pa

cit
y 

Un
its

Figure 4: Requested capacity vs. the number of hard-
ware types that can fulfill them.

Figure 4 shows the requested hardware capacity in nor-
malized units across the possible hardware types that can

4



fulfill them. A capacity unit represents a physical server. We
plot the y-axis on log-scale and aggregate the frequency of
requests. Each circle represents the amount of servers of a
given server type. The size of the circle shows the amount
of requests across all services. For example, the circle in
hardware type 8 and capacity unit 100, shows that capacity
requests for about 100 servers that can be full-filled by 8
hardware types are one of the most common. As we can see
from the figure, the requested capacity varies from one to
more than 10,000 units. The majority of requests range from
a few hundred to a few thousand units. A few requests are
close to 30,000, which are from very large Web and Feed
services deployed at Facebook.
Furthermore, capacity requests are spread over the pos-

sible hardware types that can fulfill them. Many requests
can only be served by a single type of hardware which is
usually the latest processor generation. A high number of
requests can be served by eight hardware types. These re-
quests are from services that require one or two processor
generations and are agnostic to the remaining server config-
uration parameters such as main memory capacity. Finally,
a small number of capacity requests can be fulfilled by 10-12
hardware types because some services are able to make good
use of any hardware generation and system configuration.

Server assignment needs to handle the unceasing flow and
diversity of capacity requests such that it minimizes server
movements in the face of varying sizes of requested capacity
and takes into account their hardware requirements.

2.5 Server Unavailability Events
Server unavailability is common within datacenters. Main-
tenance, hardware failures, power capping, kernel updates,
and other operations lead to significant downtime of servers.

Week 1 Week 2 Week 3 Week 4
Time Over One Month

0

2

4

6

Un
av

ai
la

bi
lit

y 
Ev

en
ts

 %

Correlated Failure
Total Unplanned Unplanned Hardware

Figure 5: Server unavailability events over onemonth.

Figure 5 shows the number of planned and unplanned
unavailability events active in a region over periods of 60
minutes normalized to the total capacity of the region dur-
ing a month. In addition the figure shows the percentage
of unplanned hardware failures. The remaining unplanned
unavailability is due to software events. The duration of un-
availability events can be minutes for planned maintenance,

while hardware failures can last weeks. Planned unavailabil-
ity events are controlled by infrastructure owners.
Combined planned and unplanned server unavailability

can render more than 5% of the regional capacity unavail-
able. Typically, planned unavailability events, such as main-
tenance, account for the majority of capacity loss. Mainte-
nance operations including maintenance of servers, network
switches and power devices, kernel updates, and other op-
erations lead to significant downtime of servers. However,
unplanned events that usually account for less than 0.5% of
the total capacity can spike to more than 3%.
Capacity unavailability due to random or correlated fail-

ures is a major challenge in datacenters. We consider failures
at the server level or the Top-of-Rack (ToR) switch level as
random failures. For example, at any time 0.1% of Facebook’s
fleet is classified as unavailable due to hardware repairs, a
subcategory of random failures.

Correlated failures occur due to failures of common phys-
ical devices such as power breakers, network devices, or
cooling fans. The largest fault domain inside a datacenter at
Facebook is defined by the power main switch board (MSB),
which may consist of thousands of servers. Within a region,
we need to prepare for correlated failures as large as a whole
MSB. Figure 5 shows an example of a correlated failure that
caused a ≈4% capacity loss.

We have measured that roughly one MSB fails per month
per region at our current capacity. Moreover, Facebook per-
forms planned maintenance events at the granularity of MSB,
which sets consistent expectations for handling planned
maintenance events and correlated failures at the MSB scope
or lower. Hence it is important to build resource manage-
ment systems that provide guaranteed capacity to services
in the presence of large-scale failures or maintenance.

3 RAS Design
RAS continuously optimizes server assignments and pro-
vides to services guaranteed capacity in the face of random
and correlated failures, diverse capacity requests, heteroge-
neous hardware resources, and compound service require-
ments and characteristics.

3.1 Two-level Architecture
Our guiding principle is to decouple container placement
from capacity allocation to enable region-wide optimizations
for capacity allocation. Figure 6 shows an overview of our
two-level architecture. The first level is RAS, which consists
of two main components, the Async Solver and the Online
Mover. The Solver uses mixed integer programming (MIP)
to continuously reason about the entire region capacity and
adapts resource binding to form dynamic capacity reserva-
tions. The Mover executes the Solver’s decision. The second

5



S
Async
Solver

Online
Mover

Frontend

S

Solve Input

Server Information Target Current Elastic Unavailability
{ID, CPU, Rack, …} A A 2-4pm

B B Yes

A

Resource Broker

RAS

S

Twine
Allocator & SchedulerFrontend

Health
Check Service

Capacity Request
~1 Hour

Container Request
~1 Second

Rebalancing Request
~1 Minute

Region Capacity

1

2

Solve Result
3

4

Unavailability
Event7

6

Capacity
Binding

5

Reservation 
A

H
ou

rly
 R

e-
ev

al
ua

tio
n

8

Figure 6: The two-level architecture with the components of RAS on the left and the Twine Allocator & Scheduler
on the right. The Resource Broker on the bottom maintains server reservations of the regional capacity.

level is the Twine Allocator & Scheduler, which performs real
time container placement atop each reservation andmanages
container lifecycle. The Health Check Service monitors all
servers in the fleet. Region Capacity of hardware resources is
virtualized through the Resource Broker that maintains server
status and other reservation information.

A reservation is a logical cluster that represents a materi-
alized amount of resources that the Twine Allocator can use.
Each reservation is owned by a business unit to host their
services. Containers in a reservation are stacked on servers
assigned to the reservation. Reservations are characterized
by the amount of resources, hardware types, placement poli-
cies, and operating-system (OS) configuration requirements.

RAS abstracts the amount of heterogeneous hardware re-
sources through relative resource units (RRUs). A resource
unit amount is defined for each server type reflecting through-
put of the particular server type. Then, a total sum amount
of resource units are requested, which reflect the aggre-
gate throughput requirement. RRUs ensure services can de-
fine the aggregate hardware capacity they require. Addi-
tionally, smaller services can use a simple count-based ap-
proach where expressed units are equivalent among server
types. RRUs avoid the pitfalls of uniform vCPUs as the mini-
mum compute unit and can automatically and fairly adapt
to different generations of hardware that co-exist in data-
centers. RRUs can be defined for all types of heterogeneous
resources such as accelerators, memory, storage, and net-
work resources. RRUs effectively decouple capacity requests
from the actual hardware allocated and allow RAS to fulfill
each request by equivalent heterogeneous resources that
together form a reservation.
Twine’s Host Profile mechanism [39] allows each reser-

vation to have custom OS configuration requirements (e.g.,

kernel version & settings) for its servers based on the needs
of its workloads. A reservation’s server placement policies
are enforced by RAS based on the constraints of workloads.
Most workloads within Facebook desire a wide spread across
MSBs in a region, whereas some workloads require network
and storage affinity.

3.2 Resource Management Flow
Facebook’s resource management is separated between ca-
pacity requests and container requests. A service owner first
performs a capacity request that defines her intent. The end
result is hardware capacity that forms a reservation and is
managed by the Twine Allocator.

Service owners create, modify, or delete capacity requests
1 expressed as RRUs via the Capacity Portal. The state of all
requests are stored in a database owned by RAS. The Async
Solver performs continuous optimizations at each solve 2 ,
and takes into consideration the latest request state and the
complete hardware fleet of a region from the Resource Broker,
a highly available storage that stores the current resource
binding and hardware unavailability events. The async solver
has a Service Level Objective (SLO) of completing each solve
within one hour. The goal is to provide a solution that ful-
fills the resource requirements and meets the placement
constraints such as sizing of failure buffers, network band-
width limits, and fault-domain spread, while minimizing pre-
emption to existing allocations, i.e., shuffling servers across
reservations. Its output 3 is a mapping between servers and
reservation IDs, signaling the binding intent, and is persisted
back in the Resource Broker by updating the target field.

The design of handling all server assignments via a single
solver under a one-hour SLO is ideal to optimize datacenter
resources. However, despite efforts taken by service owners
to forecast capacity demands, there will always be situations

6



where emergency capacity is needed immediately and can-
not wait for one hour. Our solution is to offer a separate
emergency path to quickly allocate capacity in these situa-
tions, and later the Async Solver can improve the potentially
suboptimal allocation done by the emergency path.

The Online Mover is responsible for changing the owner-
ship of a server following updates from RAS solve outputs 4 .
It also performs two efficiency optimizations: shared buffers
and opportunistic capacity, as explained later. Each server
move includes steps such as preempting containers off the
current reservation and performing necessary host clean up
and OS reconfiguration based on the target reservation spec-
ification. The outcome of this process is capacity binding
that ties hardware resources to reservations 5 .

After a capacity request is complete, the service owner can
submit container requests 6 . Twine’s two-level architecture
enables the Twine Allocator to provide swift response times
of seconds on the critical path of container allocation. The
Twine Allocator leverages the Resource Broker to get a list
of candidate servers by referencing the reservation ID and
perform further filtering and optimizations based on the con-
straints of the job at hand. Within a reservation, containers
from different jobs can be placed on one server.

The Health Check Service monitors all servers in a region
and updates the unavailability field in the Resource Broker 7 .
Both the Twine Allocator and Online Mover subscribe to
unavailability events via call back. Unplanned events prompt
the Online Mover to provide replacement servers within one
minute, and then the Twine Allocator & Scheduler move
containers to those servers. Replacement servers for planned
events are already baked into the reservation and do not
need the Online Mover to take actions on the critical path.

Finally, RAS re-evaluates its past server-assignment deci-
sions every hour 8 in order to take into account capacity
fluctuations and continuously optimize resource bindings.

3.3 Failure Buffers
At Facebook, we have observed that the p97.5 server un-
availability over 90 days is ≈1% of the global fleet capacity.
Correlated failures are observed at the frequency of ≈0.5%
of power rows and ≈2% of MSBs impacted over a year. RAS
manages random failures and correlated failures differently
in order to minimize the buffer capacity.
3.3.1 Handling Random and Correlated Failures
All reservations use a common pool of shared buffers to
handle random failures. Upon a server failure, the Online
Mover reassigns a server from the shared buffer to the im-
pacted reservation in less than a minute, as shown in 4 of
Figure 6. This quick decision may not be optimal and the
Async Solver may generate a better assignment later. Using

a shared random-failure buffer saves capacity and is feasi-
ble because of the low random-failure rate and the short
server-replacement time. RAS uses long-term trends and
forecasting to predict how many extra servers are needed
for random-failure events. Currently, this is 2% of the total
region capacity.
Within a region, our infrastructure is designed to handle

the failure of a whole MSB without causing noticeable im-
pacts on services. RAS handles correlated failures through
embedded buffers, i.e., the buffer servers are already preallo-
cated into reservations. In the event of a correlated failure,
the Twine Allocator can immediately use the buffer servers to
host containers without the Online Mover taking any action.
We do not use shared buffers for correlated failures because a
correlated failure may eliminate thousands of servers in one
MSB. Finding and moving replacement servers at that scale
in near real time would add significant complexity on the
critical path of failure mitigation, leading again, to a trade-off
between server assignment quality and response time.

In addition to handling correlated failures, embedded buffers
are also used to handle large-scale planned maintenance
events at the granularity of an MSB. In other words, planned
maintenance and correlated failures share the same buffer,
which leads to significant cost savings. In the event of a
correlated failure, maintenance events are paused and em-
bedded buffers are returned to deal with the failure in two
phases. 75% of embedded buffers are returned within seconds
while the remaining 25% within 30 minutes. This is possi-
ble as our maintenance scheduling system limits concurrent
maintenance operations to 25% of an MSB.
The size of a reservation’s embedded buffer needs to be

as large as the reservation’s largest capacity in any MSB,
because it has to anticipate the failure of any MSB. RAS
optimizes the placement to minimize the buffer size. For
example, in a production region with 36 MSBs, RAS required
4.2% of capacity for embedded failure buffers. Taking into
account imbalances between capacity requests and spread of
heterogeneous hardware across MSBs, the minimal required
buffer capacity is 4.06%. If hardware was perfectly spread
across MSBs, the lower bound would be 100 / 36 = 2.8%.
3.3.2 Storage Services
Storage services have some unique requirements. They uti-
lize all capacity in a reservation, including embedded buffers,
to deploy redundant data copies. RAS enables replication-
based storage services by ensuring enough server spread to
maintain a quorum during an MSB failure. Furthermore, it
enables erasure-coding-based storage services by ensuring
enough server spread to minimize data shard re-construction
costs across alive servers during an MSB failure. Finally, to
ensure the locality between compute and storage, RAS can

7



enforce that the compute capacity allocated to each datacen-
ter matches the ratio of storage.

3.4 Elastic Reservation
When buffers are not in active use for handling failures or
maintenance events, they are handed out in the form of
Elastic Reservations to services that can utilize opportunistic
capacity, e.g., asynchronous computing platform and offline
machine learning training. Specifically, the Online Mover
monitors the usage of a server and changes its ownership
to an elastic reservation when it is idle. Elastic service own-
ers, similar to guaranteed service owners, submit container
requests by referencing the elastic reservation ID. When-
ever failure handling needs the buffer capacity, servers are
revoked from elastic reservations and returned back to the
original guaranteed reservations.

3.5 Async Solver
The core of RAS placement decisions is a MIP solver. RAS
formulates server-to-reservation assignment as an optimiza-
tion problem and lets commercial solvers reason about the
combinatorial complexities. In the following sections, we
first summarize the intuition behind our optimization goals,
and then discuss how to practically solve a large MIP prob-
lem in production. Finally, we describe the details of our MIP
model.
3.5.1 Solver Intuition
RAS balances the capacity of an entire region continuously.
At each solve, RAS considers the previous solve result, the
capacity requests, and the server pool. The server pool infor-
mation includes the hardware specification of each server,
their topologies in the region, unavailability events, and their
current reservation assignment. The shared random-failure
buffer is treated as a standalone special reservation.
Each placement goal can be treated as a constraint or an

objective. If a goal is important enough to block capacity
fulfillment, then we make it a constraint. Constraints are al-
ways more dominant and thus fixing them can come at high
objective costs. When competing constraints cannot be met,
we soften constraints such that no constraint can regress
from its initial value and there are high-priority objectives
associated with fixing as many constraints as possible. Oth-
erwise, we make it an objective and strive to set parameters
appropriately, e.g., whether to introduce preemption (i.e.,
moving running containers) to fix such an objective.

Constraints. RAS determines the group of servers as-
signed to each reservation subject to capacity requirements,
server availability, network and correlated failure buffer con-
straints. Specifically, the capacity constraint enforces that the
allocated capacity for a reservation meets its requested ca-
pacity in RRUs. The availability constraint filters out servers

that are unavailable due to unplanned failures, whereas un-
availability due to planned maintenance is treated as usable
capacity as discussed in Section 3.3.1. The network constraint
aims to minimize unnecessary cross-datacenter communi-
cation traffic by enforcing compute capacity allocated to
each datacenter matches the ratio of storage. The correlated-
failure-buffer constraint ensures that after losing any MSB,
the reservation can still meet its capacity requirement.

Objectives. RAS optimizes for multiple objectives. First,
to minimize churns, RAS aims to move unused servers in-
stead of those with running containers, and strives to main-
tain the same move in the current solve if a move was gen-
erated in a previous solve. Second, RAS spreads reservations
across MSBs to minimize correlated-failure buffers. Finally,
RAS aims to reduce hotspots that may overload rack switch
uplinks.
3.5.2 Scaling the Solver
Although RAS removes server-allocation decisions from the
critical path of container placement, it still needs to meet
the SLO of solving within one hour, which is challenging
due to the large number of servers in a region and a MIP
solver’s limited scalability. As RAS must ensure capacity
remains fungible within a region, trivial partitioning of the
problem would cause fragmentation. Our scaling strategy
revolves around exploiting the symmetry of servers in the
MIP. Furthermore, via phased solving, we cautiously trade
solution optimality for solving speed.

Exploit symmetry. RAS exploits the natural symmetry
in servers to reduce the size of the MIP problem. In Sec-
tion 3.5.3, we express the basic MIP model with assignment
variables xs,r which are 1 when server s is given to reser-
vation r and 0 otherwise. In the MIP formulation, there are
large groups of servers where all of their assignment vari-
ables xs,r have the same coefficients in all constraints and
objectives. In practice, these groups of servers are identical
in terms of our modeling. Thus, we merge them into a single
integer variable representing how many of that equivalence
class are assigned to a particular reservation.

Phased solving. By itself, the symmetry strategy above
is insufficient because it cannot be applied to servers with
different location properties such as rack, MSB and datacen-
ter. Consider a region with 1000 reservations, 5 datacenters,
10 MSBs per datacenter, 200 racks per MSB, and 20 server
types. The product of all of those values leads to a scale of 200
million assignment variables even after exploiting symmetry,
which is beyond what MIP can solve within our SLO of one
hour. Empirically, we find that ≈10 million assignment vari-
ables is the upper limit. Thus, we chose to cautiously trade
solution optimality for reduced solving time via two-phase
solving.
In the first phase, RAS solves the problem without any

8



rack-related goals, which allows grouping more symmetric
servers into one assignment variable and reduces the prob-
lem to less than ten million variables. In the second phase,
RAS solves the problem with all goals in phase one plus rack
goals, but limits the problem to a subset of reservations in
order to keep the number of variables under a limit. The
reservations that have the worst rack-level objectives are
prioritized to be selected in this second phase. This is a com-
promise as we cannot guarantee that rack-related objectives
are immediately met for all reservations after one run of the
Async Solver.
3.5.3 MIP Model

We now present the detailed MIP model of RAS. The pre-
sentation is simpler on the raw problem without leveraging
symmetry. In practice, we express the problem using the raw
form, and then perform an automatic translation to group
symmetric assignment variables before constructing the MIP.
Table 1 describes the notation used for the following prob-
lem.

Minimize: ∑
s∈S,r ∈R

Ms ∗max(0, Xs,r − xs,r ) (1)

+β ∗
∑

r ∈R,G∈ΨK

max

(
0,

∑
s∈G

(Vs,r ∗ xs,r ) − αK ∗Cr

)
(2)

+β ∗
∑

r ∈R,G∈ΨF

max

(
0,

∑
s∈G

(Vs,r ∗ xs,r ) − α F ∗Cr

)
(3)

+τ ∗
∑
r ∈R

max
G∈ΨF

(∑
s∈G

Vs,r ∗ xs,r

)
(4)

Subject to: ∑
r ∈R

xs,r ≤ 1, ∀s ∈ S (5)

∑
s∈S

(Vs,r ∗ xs,r ) − max
G∈ΨF

(∑
s∈G

Vs,r ∗ xs,r

)
≥ Cr , ∀r ∈ R (6)����∑s∈G (Vs,r ∗ xs,r )

Cr
− Ar ,G

���� ≤ θ, ∀r ∈ R, G ∈ ΨD (7)

Stability objective. Expression 1 imposes a cost ofMs for
each server s that is moved out of a reservation. We impose
a largeMs on servers with active running containers, and a
lower value if not.

Spread-wide objective. Expressions 2 and 3 promote the
spread of capacity at the rack and MSB levels, respectively.
αK and α F are the tunable proportional spread parameters
that sets the desired threshold for proportion of capacity
allowed within a single physical scope. Then, β is the pa-
rameter of objective penalty associated with each server
exceeding the desired threshold. The spread wide objective
also mitigates power and network hotspots.

Table 1: Notation for MIP
Notation Description

S Set of all servers
R Set of all reservations

xs,r Assignment variable which is 1 if server s is assigned to
reservation r and 0 otherwise

Xs,r Constant initial assignment value
Ms Movement cost of server s
τ Cost of each correlated-failure-buffer server
β Cost of each server outside spread goals

αK,F Proportional limit of reservation for spread in K (rack)
or F (MSB fault domain)

Vs,r RRU value of server s for reservation r
Cr Capacity desired for reservation r

ΨK,F ,D Partition of servers based on K (rack), D (datacenter), or
F (MSB fault domain)

Ar ,G Affinity of reservation r to a partition group G

Assignment variables. Expression 5 represents our basic
assignment constraints which we utilize as a primitive for
the rest of the problem.

Embedded correlated-failure buffer. Expression 6 en-
sures that a reservation has sufficient remaining capacity
after the failure of anyMSB, whereas Expression 4 minimizes
the correlated-failure buffer.

Shared random-failure buffer.RAS constructs a special
reservation for each hardware type to represent the random-
failure buffer shared by all reservations. The reservation’s
capacity is proportional to the expected random-failure rate.

Network affinity constraints. Expression 7 enforces a
reservation’s preference for physical datacenters. For exam-
ple, if a service’s data resides in a datacenter, its compute
servers should also come from that datacenter in order to
minimize cross-datacenter traffic. Systems outside RAS de-
termine the values of Ar,G , which dictates the amount of
capacity that should be allocated from different datacenters
for a reservation.

4 Evaluation
RAS has been running in production for almost two years
and achieves near fully allocated regions. Currently, the ca-
pacity guarantee of RAS to a reservation is to tolerate the
failure of one MSB, and 2% of random failures within a re-
gion. Our evaluation sheds light on different aspects of RAS.
Specifically, it answers the following questions:

(1) How does RAS perform and scale in production?
(2) What is the effect of RAS on correlated-failure buffers?
(3) How does RAS spread services across MSBs?
(4) What is the effect of RAS on cross-datacenter net-

works?
(5) What is the effect of RAS on power spread?
(6) Does RAS cause server-reassignment churns?

9



4.1 RAS Performance and Scalability
To characterize the performance and scalability of RAS, we
first present the allocation time in a production region, break-
downs by phases, and solution quality of MIP. Finally, we
show the allocation time in several production regions to
demonstrate how RAS scales as a function of the number of
assignment variables.
4.1.1 Allocation Time Distribution

1600 1800 2000 2200 2400
Allocation Time (Seconds)

0.000

0.002

0.004

0.006

Pr
ob

ab
ilit

y 
De

ns
ity

m
ea

n

p9
5

p9
9

Figure 7: RAS regional allocation time distribution.

Figure 7 shows the distribution of the production alloca-
tion time over three months for a region that hosts several
hundreds of thousands of servers. The mean allocation time
is 1.8K seconds. The distribution further reveals that the 95th
percentile is at 2.2K seconds while the 99th percentile is at
2.45K seconds, within the one-hour SLO. One reason for the
tight distribution is due to moderate hardware pool changes
between solves.

0 20 40 60 80 100
Allocation Time % Breakdown

Phase 1 Phase 2

RAS Build Solver Build Initial State MIP

Figure 8: RAS allocation time breakdown.

Figure 8 shows a breakdown of the allocation time. Phase 1
accounts for 60% of the total allocation time. Each phase is
broken down into four steps. The RAS Build step builds the
objectives and constraints required by RAS. The Solver Build
step builds the constraints and objectives based on the re-
quirements and applies the symmetric-server optimization.
The Initial State step provides to the solver the initial assign-
ment and perform the initial LP solve. Finally, the MIP step
does the actual MIP solving.

Phase 1 spends 67% of its time in the MIP step. By contrast,
Phase 2 spends only 19% of its time in the MIP step, whereas
almost 70% of its time is split equally between the two build
steps. These differences are due to differences in complexity
between the two phases. Phase 1 performs a coarse-grained
solve and takes into account the region’s entire capacity and
ensures basic capacity for reservations and failures buffers.
Phase 2 further refines the server assignments done by Phase
1.

4.1.2 Allocation Quality
To meet the one-hour allocation-time SLO, we impose a

timeout on phase 1, which may interrupt the MIP solver
before a true optimal solution is found.

10^2 10^3 10^4 10^5 10^6
Log Gap

0

25

50

75

100

Pe
rc

en
til

e

90% proven within 200 
 preemptions optimal

99% proven optimal to fix 
 all softened constraints

Figure 9: Phase 1 MIP quality gap.

Figure 9 evaluates the solution quality by showing the
gap with respect to an optimal solution. We evaluate the
quality of a solution by comparing the value of its objective
function (i.e., Expressions 1–4) with a) the coefficient cost of
a server reassignment across reservations requiring preemp-
tion (i.e.,Ms in Table 1), and with b) the cost of not fixing an
initially broken constraint (i.e., β and τ in Table 1). 90% of
the solutions are optimal within 200 server preemptions and
99% of the solutions are optimal in that all initially broken
constraints are fixed. Our evaluation shows that running
the solver with a longer timeout often tightens the above
bounds but produces no new solution, indicating that early
timeout is practical. Moreover, we performed many investi-
gations into production issues related to missed placement
goals or excessive server-move churns. We found that they
were almost always due to unrealistic and competing place-
ment goals rather than low-quality solutions caused by early
termination.
4.1.3 Allocation Scalability

1.0M 2.0M 3.0M 4.0M 5.0M 6.0M
Assignment Variables

0
100
200
300
400
500
600

Se
tu

p 
Ti

m
e 

(S
ec

on
ds

)

Phase 1 Phase 2

Figure 10: The time of Phase 1 & 2 spent in RAS build +
solver build + initial state, measured from Facebook’s
different production regions and shown as a function
of the number of assignment variables.

In Figure 8, even if we can reduce the MIP step’s time via
early timeout, the first three steps—RAS build, solver build,
and initial state—provide a lower bound on the allocation
time, which is reported in Figure 10. Additionally, Figure 11
shows the memory usage of the solver. Both time and mem-
ory grow linearly as a function of the number of assignment
variables.

10



1.0M 2.0M 3.0M 4.0M 5.0M 6.0M
Assignment Variables

0
4
8

12
16
20
24

M
em

or
y 

(G
B)

Phase 1 Phase 2

Figure 11: The memory usage of Phase 1 & 2 used by
RAS, measured from Facebook’s different production
regions and shown as a function of the number of as-
signment variables.

Figure 10 motivates the design of two-phase solving. Note
that Phase 2 is configured to add assignment variables until
it either covers 10% of reservations or reaches a maximum
of five million assignment variables. Without phasing, the
full problems would be at least 10x larger than the Phase 2
problems represented in Figure 10. Extrapolating linearly,
solving would require 75GB of memory but the time to just
set up the largest full MIP problemwould take≈4000 seconds,
exceeding our one-hour SLO. Currently, using two phases is
sufficient for our problem. In the future, we will likely add
more phases when we introduce additional placement goals
that significantly break server symmetry.

4.2 Reduce Correlated-Failure Buffers

Week 1 Week 3 Week 5 Week 7
Time Over Two Months

0

4

8

12

16

M
ac

hi
ne

s %
in

 M
ax

 M
SB

Figure 12: RAS helps reduce correlated-failure buffers
over a period of two months.

Figure 12 shows the effect on spare server capacity needed
to tolerate correlated failures as a region gradually enables
RAS for more reservations over time. The starting point is
Facebook’s previous production solution that was based on
greedy server assignment as described in Twine [39]. Specifi-
cally, for each service there is one MSB that hosts the largest
percentage of servers used by that service. Reducing this per-
centage helps reduce the number of spare servers needed to
tolerate the loss of oneMSB. Byminimizing expressions 3 & 4
of the MIP model in Section 3.5.3, RAS reduces the percent-
age of servers used by a service within one MSB from 15.1%
down to 5.8%. As additional MSBs were added to datacen-
ters later, RAS further reduces this percentage down to 4.2%,
very close to the optimal lower-bound of 4.06%. If hardware
installation in datacenters was perfectly spread across all
MSBs, the theoretical lower bound would be 2.8%.

4.3 Spread of Services Across MSBs
Figure 13 shows the spread achieved by RAS for the top 30
services across all the MSBs in a region. We order the MSBs
based on time of deployment—the oldest MSBs have a lower
number, whereas the newest MSBs have a higher number and
host the newest hardware. Each vertical bar represents the
spread of a service’s capacity across MSBs. The color of a cell,
e.g., service 4 at MSB 24, represents the fraction of service
4’s capacity allocated at MSB 24. The color code is shown on
the right side of the figure. We color an MSB white if it is not
utilized by a service. A service is well spread across MSBs
if its vertical bar shows a relatively uniform color. Observe
that RAS spreads the majority of services across all MSBs,
with a few exceptions, based on other required placement
constraints.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Service

2

10

18

26

34

M
SB

0.00

0.04

0.08

0.12

0.16

0.20

Figure 13: Spread of services across MSBs.

The 1st and 2nd services do not use some of the oldest
MSBs as they require hardware that is not present in those
MSBs. The 25-30th services do not use the newest MSBs,
because they prefer certain hardware that is discontinued
and not available in the new MSBs. The 13th service is ML-
focused which is constrained to a single datacenter of the
latest 12 MSBs due to its high bandwidth requirements with
storage. Furthermore, this ML service desires a high amount
of the newest hardware that only exists in the latest 3 MSBs,
and is forced to have a high proportion of its capacity in
those MSBs. Services 6 and 15 are not yet ready to utilize
the newest hardware, so they have no capacity in the latest
MSBs. Overall, RAS achieves a near uniform distribution of
services by enforcing spread-wide objectives while catering
to heterogeneous hardware, datacenter topology constraints,
and constant capacity resizing performed by service owners.

4.4 Power Spread
Power is an important limiting resource within Facebook’s
datacenters. The same rules imposed to improve failure do-
main spread also improve power balance to avoid hotspots
and power capping.

Figure 14 shows the normalized power consumption vari-
ance across MSBs as a region gradually enables RAS. The

11



Month 1 Month 2 Month 3 Month 4
Time Over Four Months

0.00
0.25
0.50
0.75
1.00

No
rm

al
ize

d
Po

we
r V

ar
ia

nc
e

Figure 14: RAS helps reduce power usage variance
across MSBs over a period of four months.

starting point is Facebook’s Twine [39] greedy server assign-
ment solution that was running in production. Overtime,
RAS’ placement optimizations reduce the power imbalance
across MSBs. Specifically, the variance is reduced from close
to 0.9 down to 0.2. This significant reduction brings data-
centers much closer to a uniform power distribution across
MSBs. Furthermore, RAS’ placement optimization reduced
the peak power usage of the most loadedMSBs and improved
their power headroom from near zero to 11%. Overall, RAS
leads to a higher predictability of power consumption, which
enables further optimizations for job placement, capacity
planning, and maintenance operations.

4.5 Cross-Datacenter Network Traffic
An exception to spread-wide rules is affinity of services with
high bandwidth needs. At Facebook the main network bottle-
neck within a region is cross-datacenter bandwidth. Further-
more, networking requirements of services exhibit a heavy
tail. Most services have minimal networking requirements
but the last few percentiles of services can swiftly saturate
cross-datacenter bandwidth. Optimizing placement of the
few such services within a region is important in order to
minimize cross-datacenter traffic.

Week 1 Week 3 Week 5 Week 7
Time Over Two Months

0%

25%

50%

75%

100%

Cr
os

s-
da

ta
ce

nt
er

 
 %

 o
f N

et
wo

rk
 T

ra
ffi

c Presto Interactive Presto Batch

Figure 15: RAS helps reduce cross-datacenter network
traffic over a period of two months.

Figure 15 shows the percentage of cross-datacenter traffic
for two services as RAS gradually enables cross-datacenter
networking affinity constraints in expression 7 of the MIP
in Section 3.5.3. They are interactive and batch SQL query
services based on Presto [37]. On one hand, placing a service
entirely within a single datacenter would eliminate cross-
datacenter traffic. On the other hand, spreading a service
across datacenters reduces the buffer capacity for handling

correlated failures. RAS strikes a balance among different
optimization constraints. It reduced cross-datacenter traffic
by more than 2.3x and 1.6x for batch and interactive Presto
services respectively, by enforcing network constraints while
meeting other constraints.

4.6 Server Movement Churns
As RAS’ continuous optimization reassigns servers across
reservations, it incurs the overhead of migrating contain-
ers running on those affected servers, which is particularly
harmful for stateful services.

Monday Wednesday Friday Sunday
Time Over One Week

0.0%

0.5%

1.0%

1.5%

Ch
ur

n 
(%

 o
f h

ou
rly

 se
rv

er
 m

ov
es

) In-use Server Moves Unused Server Moves

Figure 16: Weekly in-use vs. unused server moves.

Figure 16 shows the percentage of server movement per
hour. RAS enforces via expression 1 of theMIP in Section 3.5.3
to minimize movement and use a 10x smaller penalty for
servers without active running containers since their moves
are virtually free. The average hourly rate of unused server
moves is 10.6x greater than that of in-use. Overall, ≈80%
of servers run containers for guaranteed reservations and
RAS is able to meet most placement objectives by selecting
moves from the remaining 20% of servers that are either idle
or temporarily assigned to elastic reservations. The spikes
in the figure align with working hours, during which server
moves are mainly driven by capacity requests submitted by
engineers. During off-hours, there are few capacity requests
and server moves are mostly driven by random failures.

5 Discussion

5.1 How to Apply RAS to Other Systems
RAS has been running in production for almost two years and
manages the entire Facebook fleet.We believe that the follow-
ing key ideas of RAS can be selectively integrated into other
systems: 1) Present to users the abstraction of dynamic reser-
vations as opposed to static clusters, 2) Decouple server-to-
cluster assignment from container placement, 3) Formulate
server-to-reservation assignment as a general optimization
problem, 4) Scale the solver by exploiting server symmetry to
create equivalence sets and orchestrate solves into a hierar-
chy of phases based on optimization and infrastructure-level
scopes (e.g., availability zones and racks).
The key ideas of RAS can potentially be applied incre-

mentally without being adopted all at once. Suppose your
infrastructure has 100 logical clusters (i.e., 100 reservations)

12



and ≈1,000 servers per cluster. You may apply MIP directly
to optimization problems of this scale without using the
idea 4 above for scalability. Furthermore, if your infrastruc-
ture cares less about complex constraints such as hardware
heterogeneity or is less strict in enforcing expectations such
as spread across fault domains, you may use simpler heuris-
tics that tailor to your needs to dynamically assign servers
to logical clusters, without using MIP. Still, this approach
provides the benefits of flexible logical clusters, as opposed
to static clusters that may strand unused capacity.
If your infrastructure operates multiple physical clusters

and already has a quota system that admits jobs at the time
of job submission, you can apply RAS to convert each static
physical cluster to a dynamic logical cluster (i.e., reserva-
tion) and obtain immediate benefits without changing your
quota system. The quota system can apply to resources in
a reservation similar to how it applies to a physical cluster.
Instead of using static clusters, which have many limitations
described in Section 1.1, RAS allows you to easily grow or
shrink reservations to avoid stranded capacity. Moreover, a
reservation can enlist servers from different fault domains,
which improves fault tolerance of jobs running in a reserva-
tion.

We believe that RAS can be retrofitted into existing cluster
managers because the integration point is narrow, i.e., around
how a cluster manager maintains a list of servers in a cluster.
This interface should exist in every system. For example,
Kubernetes’ tool “kubeadm join” adds a node to a cluster.
At Facebook, Twine is a 10-year old cluster manager and we
were able to retrofit RAS into it successfully.

5.2 Additional Placement Goals
RAS is relatively new at Facebook, and we described the
current placement goals in Section 3.5.2. In the future, we
plan to leverage RAS to further increase the efficiency of our
datacenters. Specifically, we plan to incorporate additional
placement goals to further minimize network hotspots at
the rack-switch level, power hot spots across various power
domains, as well additional hardware constraints such SSD
burnout reduction through IO-aware server assignments.
The expressiveness of MIP allows us to easily introduce new
optimization goals.

5.3 Lessons Learned
Prioritize buffer capacity.When there is a capacity crunch
for a particular service and extra capacity is required, it can
be convenient to dip into currently unused buffer capacity.
However, depleting buffers reserved for failures can run
a real risk of harming the entire region and causing site
outages. Thus, RAS treats buffers just like a large, important
service that cannot be downsized. This forces pool operators
to find a safer solution by downsizing services that are less

important.
Visibility into optimization decisions. Having granu-

lar visibility into the optimization decisions and the reasons
behind those decisions made by the solver is important to
operate a capacity management system at scale. Specifically,
it is important that we are able to describe to service owners
why they received a certain composition of hardware gener-
ations or particular spread across fault domains. Similarly,
when a capacity request gets rejected due to some require-
ments not being met, the rejection message needs to explain
the reason; otherwise, it is not actionable.

RunningMIP on the critical path.While MIP provides
flexibility and expressibility, our use of a third-party MIP
solver introduces runtime risk from rare bugs. We manage
this risk by gradually rolling out new placement policies,
monitoring runtime andmemorymetrics to detect anomalies,
and thoroughly root-causing production issues.

Stacking reservations. RAS provides capacity guaran-
tees at the granularity of individual servers. Stacking con-
tainers on a server is left for the container allocator to handle.
However, this puts burdens of capacitymanagement and find-
ing efficient stacking onto the reservation owner. To improve
efficiency, we are actively extending RAS so that a single
server can be shared by multiple stackable reservations.

5.4 Challenges
Although RAS is able to make guarantees on capacity, it also
introduces a few challenges.

Capacity-request delays. The RAS solver may take up
to one hour to grant a new capacity request, which is too
slow if the capacity is needed to handle an urgent site outage.
For emergencies, RAS provides an out-of-band mechanism
to directly write server assignments to the Resource Broker
to grant immediate capacity without obeying all placement
guarantees. Then, future solves will correct any placement
guarantees that were broken by this process. For normal
operations, the delay is a worthwhile trade-off for the ben-
efits of high-quality resource allocation. This out-of-band
mechanism is also used as a back-up in a case where the RAS
solver may be unavailable.

Extra service preemption. RAS continuously optimizes
server assignments to achieve better resource allocation,
which may result in a higher preemption rate for services.
This requires service owners to build more flexible services
that can quickly adapt to a new composition of servers. This
in particular imposes more burden on sharded stateful ser-
vices. Sharding layers have to re-evaluate how to spread
shards across the new composition of capacity. RAS strives
to minimize these preemptions and carefully vet any new
placement goal that may significantly increase preemptions.

Rigid capacity boundaries and random failures. To
clearly divide responsibilities, the container allocator works

13



exclusively within a single reservation. This rigid capacity
boundary can be problematic for scenarios where random
failures exceed planned failure limits. In such situations, ser-
vice owners will not have replacement capacity until a slow
RAS solve provides healthy capacity. Before RAS was inte-
grated with Twine, there were less strict claims to capacity,
so any server without a container could be leveraged as
a replacement in this scenario at the risk of poor service
placement.

Outages larger than a single MSB. Despite best efforts
to keep correlated failures down to at most a single MSB of
capacity, there are still unexpected events which can exceed
this amount. The operational response today considers the
region not operational and re-routes traffic to other regions
as our capacity planning ensures we can handle peak load
with a single region down. However, that is not the ideal
long-term solution as the probability increases of multiple
regions being down simultaneously. Today, in such an outage
scenario, RAS considers all reservations equally and does
not revoke granted capacity. RAS will need to adapt to make
the best trade-offs in capacity among reservations to keep a
region as functional as possible.

6 Related Work
Cluster scheduling and solvers. Prior research [10, 12, 16,
17, 21, 30, 40, 43, 45] has proposed several heuristic-based
solutions for scheduling and resource management. A body
of research has adopted solvers [13, 20, 24–26, 38, 41, 42],
usually within a small cluster. Medea [20] uses MIP to place
containers for long-running applications only within a clus-
ter of a few thousand nodes. DCM [38] allows a developer
to use SQL to express placement constraints, which is then
translated into an optimization problem. DCM is evaluated
via simulation up to only 10K nodes. Other works have used
solvers to improve network flows [11, 15, 22, 29]. Moreover,
multiple projects focused on job placement to provide high
availability of services [2, 7, 8, 44]. At Facebook, both RAS
and Shard Manager [33] use a common library called Re-
Balancer to formulate constrained optimization problems.
Internally, ReBalancer can choose different backend solvers
to solve an optimization problem. ReBalancer uses a MIP
solver for RAS, but uses a local-search-based solver [1] for
Shard Manager because Shard Manager needs to perform
near-realtime shard-to-container allocation in seconds. Pre-
vious approaches on scheduling can be supplemental to RAS,
as they can schedule containers within the logical cluster cre-
ated by RAS. Furthermore, RAS presents a MIP formulation
of server assignment and scales it to handle the resources of
a multi-datacenter region for the first time.

Cluster scalability and server assignments. Scaling
cluster managers has received a significant amount of atten-
tion in the past. Kubernetes [31] and Hydra [14] approach
scalability through federations while Twine [39] uses shard-
ing. RAS can be integrated with either approach to provide
continuously optimized server assignments. The problem
of assigning servers to clusters has received little attention
in the past. Kubernetes’ cluster autoscaler [32] can respond
to workload growth by provisioning virtual machines in a
public cloud and adding them to a node pool. This is similar
to RAS growing a reservation, but RAS does much more
complex optimizations. Cloudlab [18] presents a quota sys-
tem within time windows that perform late-binding of con-
tainers to servers. It supports a single hardware-type, does
not provide capacity guarantees in the presence of faults
and does not perform continuous optimizations of resources.
HarvestVMs [5] provide flexible VM instances that aim to
exploit underutilized resources in a similar vein to AWS Spot
instances [4], with the ability to grow or shrink based on
underlying hardware. RAS can directly support this use case
through elastic reservations, by building HarvestVMs on top
of elastic reservation in order to maximize efficiency and
provide strict SLAs to services.

Capacity reservations. Cloud providers commonly pro-
vide resource reservation offerings [3, 6, 23, 34, 35]. By reserv-
ing resources users can have significant cost savings com-
pared to the pay-as-you-go model. Despite the cost-benefits
of these approaches, there is little information of how reser-
vations are materialized, how or if they provide guarantees
against large-scale failures, how heterogeneous hardware
resources and datacenter realities are handled, and if cloud
providers perform one time allocations versus continuous
optimizations like RAS.

7 Conclusion
We identified the need to provide guaranteed capacity to ser-
vices. We presented RAS, Facebook’s region-scale resource
allocator, that addresses this need in the face of datacen-
ter realities such as random and large-scale correlated fail-
ures, heterogeneous hardware, and datacenter maintenance.
RAS introduces the concept of reservations and adopts a
two-level architecture that dynamically assigns servers to
reservations and decouples it from container allocation. We
formulated server assignments as a MIP problem and dis-
cussed our techniques to scale RAS to handle the resources of
a multi-datacenter region. Finally, we shared our experience
with RAS and our strategy to deploy further region-scale
optimizations.

14



References
[1] Emile Aarts, Emile HL Aarts, and Jan Karel Lenstra. 2003. Local search

in combinatorial optimization. Princeton University Press.
[2] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec

Wolman, and Harbinder Bhogan. 2010. Volley: Automated Data Place-
ment for Geo-Distributed Cloud Services. In Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’10). USENIX Association.

[3] Alibaba. 2021. How to Use Alibaba Cloud Reserved Instances to Reduce
Costs. https://www.alibabacloud.com/blog/how-to-use-alibaba-cloud-
reserved-instances-to-reduce-costs_595237.

[4] Amazon. 2021. EC2 Spot Instances. https://aws.amazon.com/ec2/spot/.
[5] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun, KeWang, Brian

Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh
Elnikety, Marcus Fontoura, and Ricardo Bianchini. 2020. Providing
SLOs for Resource-Harvesting VMs in Cloud Platforms. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 735–751. https://www.usenix.org/conference/
osdi20/presentation/ambati

[6] AWS. 2021. EC2 Capacity Reservations.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-
capacity-reservations.html.

[7] N. Bansal, R. Bhagwan, N. Jain, Y. Park, D. Turaga, and C. Venkatramani.
2008. Towards Optimal Resource Allocation in Partial-Fault Tolerant
Applications. In IEEE INFOCOM 2008 - The 27th Conference on Computer
Communications.

[8] Peter Bodík, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar
Mani, David A. Maltz, and Ion Stoica. 2012. Surviving Failures in
Bandwidth-Constrained Datacenters. In Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM ’12).

[9] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and
Coordinated Scheduling for Cloud-Scale Computing. In Proceedings of
the 11th USENIX Symposium on Operating Systems Design and Imple-
mentation.

[10] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and
Coordinated Scheduling for Cloud-Scale Computing. In Proceedings of
the 11th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI’14). USENIX Association.

[11] David Chou, Tianyin Xu, Kaushik Veeraraghavan, Andrew Newell,
Sonia Margulis, Lin Xiao, Pol Mauri Ruiz, Justin Meza, Kiryong Ha,
Shruti Padmanabha, Kevin Cole, and Dmitri Perelman. 2019. Taiji:
Managing Global User Traffic for Large-Scale Internet Services at the
Edge. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP ’19).

[12] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource Central: Understand-
ing and Predicting Workloads for Improved Resource Management in
Large Cloud Platforms. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles.

[13] Carlo Curino, Djellel E. Difallah, Chris Douglas, Subru Krishnan, Raghu
Ramakrishnan, and Sriram Rao. 2014. Reservation-Based Scheduling:
If You’re Late Don’t Blame Us!. In Proceedings of the ACM Symposium
on Cloud Computing (SOCC ’14).

[14] Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao,
Giovanni M. Fumarola, Botong Huang, Kishore Chaliparambil, Arun
Suresh, Young Chen, Solom Heddaya, Roni Burd, Sarvesh Sakalanaga,
Chris Douglas, Bill Ramsey, and Raghu Ramakrishnan. 2019. Hydra:
A Federated Resource Manager for Data-Center Scale Analytics. In

Proceedings of the 16th USENIX Conference on Networked Systems Design
and Implementation (NSDI’19). USENIX Association.

[15] Emilie Danna, Subhasree Mandal, and Arjun Singh. 2012. A prac-
tical algorithm for balancing the max-min fairness and throughput
objectives in traffic engineering. In 2012 Proceedings IEEE INFOCOM.

[16] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-
Aware Scheduling for Heterogeneous Datacenters. In Proceedings of
the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (Houston,
TX, USA).

[17] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. SIGARCH Comput.
Archit. News (2014).

[18] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Op-
eration of CloudLab. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). USENIX Association, Renton, WA, 1–14. https:
//www.usenix.org/conference/atc19/presentation/duplyakin

[19] Facebook. 2019. Accelerating FacebookâĂŹs in-
frastructure with application-specific hardware.
https://engineering.fb.com/2019/03/14/data-center-
engineering/accelerating-infrastructure/.

[20] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun
Suresh, and Sriram Rao. 2018. Medea: Scheduling of Long Running
Applications in Shared Production Clusters. In Proceedings of the Thir-
teenth EuroSys Conference (EuroSys ’18).

[21] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2013. Choosy:
Max-Min Fair Sharing for Datacenter Jobs with Constraints. In Pro-
ceedings of the 8th ACM European Conference on Computer Systems
(EuroSys ’13).

[22] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N.M.Watson, and
Steven Hand. 2016. Firmament: Fast, Centralized Cluster Scheduling
at Scale. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation.

[23] Google. 2021. Reserving Compute Engine Zonal Resources.
https://cloud.google.com/compute/docs/instances/reserving-zonal-
resources.

[24] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2014. Multi-Resource Packing for Cluster
Schedulers. In Proceedings of the 2014 ACM Conference on SIGCOMM
(SIGCOMM ’14).

[25] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh
Ananthanarayanan. 2016. Altruistic Scheduling in Multi-Resource
Clusters. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association.

[26] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Ja-
nardhan Kulkarni. 2016. GRAPHENE: Packing and Dependency-Aware
Scheduling for Data-Parallel Clusters. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). USENIX As-
sociation.

[27] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E
Greeff, David Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark
Russinovich, and Thomas Moscibroda. 2020. Protean: VM Allocation
Service at Scale. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 845–861.

[28] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center . In Proceedings of the 8th USENIX Symposium on Networked

15

https://www.alibabacloud.com/blog/how-to-use-alibaba-cloud-reserved-instances-to-reduce-costs_595237
https://www.alibabacloud.com/blog/how-to-use-alibaba-cloud-reserved-instances-to-reduce-costs_595237
https://www.usenix.org/conference/osdi20/presentation/ambati
https://www.usenix.org/conference/osdi20/presentation/ambati
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin


Systems Design and Implementation.
[29] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal

Talwar, and Andrew Goldberg. 2009. Quincy: Fair Scheduling for
Distributed Computing Clusters. In Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles.

[30] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur
Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, RuslanMavlyutov,
Íñigo Goiri, Subru Krishnan, Janardhan Kulkarni, and Sriram Rao.
2016. Morpheus: Towards Automated SLOs for Enterprise Clusters.
In Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation.

[31] Kubernetes. 2020. https://kubernetes.io/.
[32] Kubernetes cluster autoscaler. 2020. https://github.com/kubernetes/

autoscaler/tree/master/cluster-autoscaler.
[33] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying, Thawan Koobu-

rat, Suryadeep Biswal, Jun Chen, Kun Huang, Yatpang Cheung, Yiding
Zhou, Kaushik Veeraraghavan, Biren Damani, Pol Mauri Ruiz, Vikas
Mehta, and Chunqiang Tang. 2021. Shard Manager: A Generic Shard
Management Framework for Geo-distributed Applications. In Proceed-
ings of the 28th ACM Symposium on Operating Systems Principles.

[34] Microsoft. 2021. Azure Reservations. https://azure.microsoft.com/en-
us/reservations/.

[35] Oracle Cloud. 2021. Ensure Business Continuity With Capacity
Reservations. https://blogs.oracle.com/cloud-infrastructure/ensure-
business-continuity-with-capacity-reservations.

[36] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: Distributed, Low Latency Scheduling. In Proceedings of the
24th ACM Symposium on Operating Systems Principles.

[37] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips,Wenlei
Xie, Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema
Shingte, et al. 2019. Presto: SQL on Everything. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE, 1802–1813.

[38] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu Jyothi, Nina
Narodytska, Leonid Ryzhyk, Sahan Gamage, Brian Oki, Pranshu Jain,
and Michael Gasch. 2020. Building Scalable and Flexible Cluster Man-
agers Using Declarative Programming. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX
Association.

[39] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor,
Scott Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew
Clark, Kabir Gogia, Long Cheng, Ben Christensen, Alex Gartrell,
Maxim Khutornenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas
Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaishnavi Venkatesan,
and Peter Zhang. 2020. Twine: A Unified Cluster Management System
for Shared Infrastructure. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association,
787–803.

[40] Muhammad Tirmazi, Adam Barker, Nan Deng, Md Ehtesam Haque,
Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: the Next Generation. In EuroSys’20.

[41] Alexey Tumanov, James Cipar, Gregory R. Ganger, and Michael A.
Kozuch. 2012. Alsched: Algebraic Scheduling of Mixed Workloads in
Heterogeneous Clouds. In Proceedings of the Third ACM Symposium
on Cloud Computing (SoCC ’12).

[42] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch,
Mor Harchol-Balter, and Gregory R. Ganger. 2016. TetriSched: Global
Rescheduling with Adaptive Plan-Ahead in Dynamic Heterogeneous
Clusters. In Proceedings of the Eleventh European Conference on Com-
puter Systems (EuroSys ’16).

[43] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,

Hitesh Shah, Siddharth Seth, et al. 2013. Apache Hadoop YARN: Yet An-
other Resource Negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing.

[44] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-
sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-
rice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora:
Design Considerations for High Throughput Cloud-Native Relational
Databases. In Proceedings of the 2017 ACM International Conference on
Management of Data (SIGMOD ’17).

[45] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster manage-
ment at Google with Borg. In Proceedings of the European Conference
on Computer Systems (EuroSys).

[46] Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola, Marcus Fon-
toura, Íñigo Goiri, and Ricardo Bianchini. 2016. History-Based Har-
vesting of Spare Cycles and Storage in Large-Scale Datacenters. In
Proceedings of the 12th USENIX Symposium on Operating Systems Design
and Implementation.

[47] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu.
2014. Fuxi: a Fault-Tolerant Resource Management and Job Scheduling
System at Internet Scale. In Proceedings of the VLDB Endowment.

16

https://kubernetes.io/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

	Abstract
	1 Introduction
	1.1 Prior Solutions
	1.2 Our Solution: Continuous Server Reassignment

	2 Resource Management Realities
	2.1 Region Layout
	2.2 Hardware Heterogeneity
	2.3 Impact of Hardware Heterogeneity on Services
	2.4 Diverse Capacity Requests
	2.5 Server Unavailability Events

	3 RAS Design
	3.1 Two-level Architecture
	3.2 Resource Management Flow
	3.3 Failure Buffers
	3.4 Elastic Reservation
	3.5 Async Solver

	4 Evaluation
	4.1 RAS Performance and Scalability
	4.2 Reduce Correlated-Failure Buffers
	4.3 Spread of Services Across MSBs
	4.4 Power Spread
	4.5 Cross-Datacenter Network Traffic
	4.6 Server Movement Churns

	5 Discussion
	5.1 How to Apply RAS to Other Systems
	5.2 Additional Placement Goals
	5.3 Lessons Learned
	5.4 Challenges

	6 Related Work
	7 Conclusion
	References

