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A. Confidence Intervals

Model Text Image Group

MTurk Human 89.50 [88.58,90.42] 88.50 [85.74,91.26] 85.50 [82.45,88.55]

VinVL 37.75 [29.81,45.69] 17.75 [12.03,23.47] 14.50 [10.71,18.29]
UNITERlarge 38.00 [32.05,43.95] 14.00 [9.89,18.11] 10.50 [8.45,12.55]
UNITERbase 32.25 [24.10,40.40] 13.25 [7.53,18.97] 10.00 [7.09,12.91]
ViLLAlarge 37.00 [31.34,42.66] 13.25 [5.63,20.87] 11.00 [5.97,16.03]
ViLLAbase 30.00 [21.99,38.01] 12.00 [8.56,15.44] 8.00 [4.56,11.44]
VisualBERT 15.50 [12.74,18.26] 2.50 [0.45,4.55] 1.50 [0.00,3.55]
ViLT 34.75 [27.47,42.03] 14.00 [11.09,16.91] 9.25 [6.53,11.97]
LXMERT 19.25 [13.83,24.67] 7.00 [3.56,10.44] 4.00 [0.56,7.44]
ViLBERT 23.75 [15.19,32.31] 7.25 [5.25,9.25] 4.75 [1.47,8.03]
UniT 19.50 [16.19,22.81] 6.25 [2.07,10.43] 4.00 [0.56,7.44]
CLIP 30.75 [21.90,39.60] 10.50 [5.91,15.09] 8.00 [4.56,11.44]
VSE++COCO (ResNet) 22.75 [19.47,26.03] 8.00 [5.09,10.91] 4.00 [2.70,5.30]
VSE++COCO (VGG) 18.75 [13.82,23.68] 5.50 [2.74,8.26] 3.50 [0.74,6.26]
VSE++Flickr30k (ResNet) 20.00 [15.32,24.68] 5.00 [0.00,10.51] 2.75 [0.03,5.47]
VSE++Flickr30k (VGG) 19.75 [14.49,25.01] 6.25 [1.16,11.34] 4.50 [1.45,7.55]
VSRNCOCO 17.50 [11.62,23.38] 7.00 [4.09,9.91] 3.75 [2.23,5.27]
VSRNFlickr30k 20.00 [16.10,23.90] 5.00 [2.75,7.25] 3.50 [0.00,7.29]

Table 1. 95% confidence intervals for the aggregate results on Winoground. We divided the dataset into 4 groups of equal size to get 4
scores for each model and score-type, and used this to compute the confidence intervals.

B. Impact of Pretraining Data
In investigating the impact of pretraining data, we found that the number of pretraining images correlates with higher

text scores, even though all models still perform poorly (see below). Interestingly, the image scores do not show the same
correlation as the text scores, which we plan to explore more in future work. We observe the same general trend for the text
and images score versus the number of pretraining captions.

0 1 2 3 4

10

20

30

random chance

UNITERbase

VILLAbaseVinVLbase

VisualBERT

ViLT

LXMERT ViLBERT

UniT

VSE++COCO

VSE++F30k

UNITERbase
VILLAbase

VinVLbase

VisualBERT

ViLT

LXMERT

ViLBERT
UniT

VSE++COCO

VSE++F30k

#/pretraining images (millions)

te
xt

sc
or

e,
im

ag
e

sc
or

e

0 2 4 6 8 10

10

20

30

UNITERbase

VILLAbaseVinVLbase

VisualBERT

ViLT

LXMERT
ViLBERT

UniT

VSE++COCO

VSE++Flickr30k

UNITERbase
VILLAbase

VinVLbase

VisualBERT

ViLT

LXMERT

ViLBERT
UniT

VSE++COCOVSE++Flickr30k

#/pretraining captions (millions)

te
xt

sc
or

e,
im

ag
e

sc
or

e

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#5457

CVPR
#5457

CVPR 2022 Submission #5457. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

C. Linguistic Tag Breakdown

Tag Fine-Grained Tag Example

Noun Phrase, Determiner-Numeral [a person] carrying [more than one flotation device]
Noun Phrase [a person] holding up [books]
Determiner-Numeral, Noun Phrase [a lightbulb] surrounding [some plants]

Object Noun Phrase, Determiner-Possessive [a deer’s nose] is resting on [a child’s hand]
Noun Phrase, Adjective-Color aerial view of a green tree in [the brown freshly turned soil] next to [a green field]
Pronoun, Noun Phrase [the person] wears a hat but [it] doesn’t
Determiner-Numeral Phrase [one] is in a boat and [almost everyone] is swimming
Pronoun, Verb-Intransitive [it] ran away while [they] pursued
Noun more [bicycles] than [cars]

Adjective-Age [an older] person blocking [a younger] person
Scope, Preposition racing [over] it []
Verb-Intransitive, Verb-Transitive Phrase a kid [threw a basketball] then [jumped]
Verb-Intransitive, Adjective-Manner the younger person is [making noise] while the other is [silent]
Negation, Noun Phrase, Preposition Phrase a person [with long braids] is exercising in front of a person [without braids]
Scope, Preposition, Verb-Intransitive [out]1[swam]2 the person in the red swimcap []2[]1
Noun Phrase, Adjective-Animate the one on the left is [sad] and the other is [happy]
Adjective-Size the [taller] person hugs the [shorter] person
Determiner-Possessive the [person’s] leg is on the [dog’s] torso
Adjective-Texture [smooth] shoes are on a [soft] floor
Adjective-Color painting the [white] wall [red]
Scope [getting] a horse [] wet
Preposition Phrase flat [at the bottom] and pointy [on top]
Relative Clause, Scope the person [who is wearing a crown] is kissing a frog []
Adjective-Height a [taller] person wearing blue standing next to a [shorter] person
Verb-Intransitive Phrase, Preposition the gesture of the person [sitting down] is supporting the understanding of the person [standing up]
Verb-Intransitive, Determiner-Numeral some people are [standing] but more are [sitting]
Determiner-Numeral [one]1 person[]2 wearing [two]1 scarf[s]2
Adjective-Weight the larger ball is [lighter] and the smaller one is [heavier]
Verb-Intransitive, Noun the dog is [standing] and the person is [swimming]
Verb-Intransitive Phrase, Adverb-Animate the person on the left is [crying sadly] while the one on the right is [smiling happily]
Scope, Relative Clause a fencer [who is wearing black pants] having a point scored against them by another fencer [] using a wheelchair
Adjective-Speed the train is [still] while the person is [moving fast]
Adverb-Temporal a person is drinking [now] and eating [later]
Adverb-Spatial the car is sitting [upside down] while the person is standing [rightside up]

Relation Adjective-Shape the [round] table has a [square] base
Noun, Adjective-Color Young person playing baseball with a [blue] bat and [green] ball
Verb-Transitive the person with the ponytail [buys] stuff and other [packs] it
Scope, Verb-Transitive [] gears for [moving] something
Scope, Preposition Phrase [] child in [front facing] row of yellow rubber ducks
Adjective-Temperature a [hot] drink on a [cold] day
Adjective-Temporal the [first] vowel is E and the [last] consonant is N
Scope, Conjunction a person spraying water on [someone else]1 [and]2 a person on a bike []2 []1
Scope, Conjunction Phrase A child [] riding a bike [and an adult]
Preposition Phrase, Scope someone [with an apple] is hurt by a tree []
Adjective-Manner Phrase two people wearing clothes of [different] colors are on [the same] side of the tennis net
Verb-Intransitive a person [stands] and a dog [sits]
Adjective-Animate [toy] cat with [real] baby
Adverb-Spatial Phrase the sailboat sails [close] but the beach is [far away]
Scope, Adjective-Texture A [] small animal with [curled] hair
Adverb-Animate someone talks on the phone [angrily] while another person sits [happily]
Adjective-Manner [poor] [unfortunate] people
Verb-Transitive Phrase they [drank water] then they [worked out]
Adjective-Color (3-way swap) The [red]→[yellow] book is above the [yellow]→[blue] book and below the [blue]→[red] book
Scope, Adjective-Manner [] living things [drinking]
Preposition seat numbers increasing from [right] to [left]
Verb-Intransitive Phrase a cat is [stretching] and a person is [lying down]
Sentence [the coffee is poured] before [it is ground]
Adjective-Speed Phrase, Verb-Intransitive the person with green legs is running [quite slowly] and the red legged one runs [faster]
Adjective-Spatial A [left] hand pulls a glove onto a [right] hand
Negation, Scope The [un]caged bird has an []opened cage door
Verb-Transitive Phrase, Verb-Intransitive, Preposition Phrase the dog [bite]1s []2 what someone would normally [wear]1 [as a hat]2

Altered POS [watch]ing the [present]
Verb-Transitive, Noun someone []1 on [the ground]2 [is]1 spraying water towards [a vehicle]2
Scope, Altered POS, Verb-Intransitive, Verb-Transitive [walking]1 someone []1 [cut]2 [lines]2 into green plants
Noun, Adjective-Size the [person]1 is too [big]2 for the [small]2 [door]1

Both Noun, Verb-Intransitive a [dog sitting] on a couch with a [person lying] on the floor
Scope, Noun, Preposition []1 a person [near]1 [water]2 using a []2 lasso
Noun, Preposition Phrase, Scope a person wearing a [bear]1 mask []2 in blue on the left hand side of a person wearing a [panda]1 mask [with glasses]2 in pink
Scope, Preposition Phrase, Adjective-Color [darker]1 things []2 become [light]1 [in stripes]2
Altered POS, Determiner-Numeral [one] ear that some [donkey] is whispering a secret into

Table 2. Examples showcasing the full linguistic (swap-dependent) tag breakdown.
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D. Heatmaps for the Word-Region Alignment Models
We provide heatmaps for models that use word-region alignment: UNITER, ViLLA and ViLT. See the main text for the

ViLT heatmaps.

a brown dog is on a white couch

a white dog is on a brown couch

circular food on heart-shaped wood

heart-shaped food on circular wood

Figure 1. Word-region alignment scores between the image and text features for ViLLAbase on examples from Winoground.

a brown dog is on a white couch

a white dog is on a brown couch

circular food on heart-shaped wood

heart-shaped food on circular wood

Figure 2. Word-region alignment scores between the image and text features for UNITERbase on examples from Winoground.
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E. Mechanical Turk Interface

Figure 3. The Amazon Mechanical Turk validation interface. In order to participate, crowdworkers needed to satisfy several criteria: be an
English speaker, have 98% previous HIT approval, have completed 1000 previous HITs, and pass the onboarding test. The onboarding test
used the same interface as the actual task. It consisted of ten image-caption match questions, with images and captions that are independent
from the actual Winoground dataset. If they made one mistake, a pop-up would ask them if they were sure, and they would be allowed to
select whether there was a match or not again. If they made any addiitonal mistakes during onboarding, they were disqualified.
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F. Ethical Considerations
A key consideration while designing Winoground centered on how the expert annotators would describe the people con-

tained in the images. We avoided using gendered terms (e.g. using “person” in place of “woman” or “man”) in our captions
and did not include any swaps between pairs of captions based on gender, race or ethnicity (e.g. “[the man] hands a water to
[the woman]”). We recognize that, barring direct access to the people in the images, we would be merely making a guess at
a person’s identity based on our own cultural norms and experiences.

In addition, we encouraged the expert annotators to find images that represent a variety of people across the dimensions of
perceived race, gender, disability, etc.. We gathered the Getty Images metadata (title and short alt text-like description) and
searched them for specific words as a rough proxy for gender representation. The relevant words are either words referring
to women (e.g. girl, her), words referring to men (e.g. boy, him) or words that are gender-neutral (e.g. them, themself).
Using the Getty Images metadata corresponding to the 800 images in Winoground, 371 images have corresponding metadata
that contained at least one word from the lists we created. Using this metadata for these 371 images, we estimate that 152
images only contain women, 123 images only contain men, 22 images only contain people without gender descriptors, and
the remaining 74 images contain people described by multiple genders. This serves only as a rough estimate as much of the
metadata contain words referring to people that are inherently non-gendered (e.g. scuba diver, friend, etc.) and because the
relevant gendered words we found are themselves subject to the assumptions of those who wrote the titles and captions.
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