A. Confidence Intervals

Model	Text		Image		Group	
MTurk Human	89.50	$[88.58,90.42]$	88.50	$[85.74,91.26]$	85.50	$[82.45,88.55]$
VinVL UNITER	large					

Table 1. 95% confidence intervals for the aggregate results on Winoground. We divided the dataset into 4 groups of equal size to get 4 scores for each model and score-type, and used this to compute the confidence intervals.

B. Impact of Pretraining Data

In investigating the impact of pretraining data, we found that the number of pretraining images correlates with higher text scores, even though all models still perform poorly (see below). Interestingly, the image scores do not show the same correlation as the text scores, which we plan to explore more in future work. We observe the same general trend for the text and images score versus the number of pretraining captions.

C. Linguistic Tag Breakdown

Tag	Fine-Grained Tag	Example

Noun Phrase, Determiner-Numeral
Noun Phrase
Determiner-Numeral, Noun Phrase
Object Noun Phrase, Determiner-Possessive
Noun Phrase, Adjective-Color
Pronoun, Noun Phrase
Determiner-Numeral Phrase
Pronoun, Verb-Intransitive
Noun
Adjective-Age
Scope, Preposition
Verb-Intransitive, Verb-Transitive Phrase
Verb-Intransitive, Adjective-Manner
Negation, Noun Phrase, Preposition Phrase
Scope, Preposition, Verb-Intransitive
Noun Phrase, Adjective-Animate
Adjective-Size
Determiner-Possessive
Adjective-Texture
Adjective-Color
Scope
Preposition Phrase
Relative Clause, Scope
Adjective-Height
Verb-Intransitive Phrase, Preposition
Verb-Intransitive, Determiner-Numeral
Determiner-Numeral
Adjective-Weight
Verb-Intransitive, Noun
Verb-Intransitive Phrase, Adverb-Animate
Scope, Relative Clause
Adjective-Speed
Adverb-Temporal
Adverb-Spatial
Relation Adjective-Shape
Noun, Adjective-Color
Verb-Transitive
Scope, Verb-Transitive
Scope, Preposition Phrase
Adjective-Temperature
Adjective-Temporal
Scope, Conjunction
Scope, Conjunction Phrase
Preposition Phrase, Scope
Adjective-Manner Phrase
Verb-Intransitive
Adjective-Animate
Adverb-Spatial Phrase
Scope, Adjective-Texture
Adverb-Animate
Adjective-Manner
Verb-Transitive Phrase
Adjective-Color (3-way swap)
Scope, Adjective-Manner
Preposition
Verb-Intransitive Phrase
Sentence
Adjective-Speed Phrase, Verb-Intransitive
Adjective-Spatial
Negation, Scope
Verb-Transitive Phrase, Verb-Intransitive, Preposition Phrase

Verb-Transitive, Noun

Scope, Altered POS, Verb-Intransitive, Verb-Transitive
Noun, Adjective-Size
Both Noun, Verb-Intransitive
Scope, Noun, Preposition
Noun, Preposition Phrase, Scope
Scope, Preposition Phrase, Adjective-Color
Altered POS, Determiner-Numeral
[a person] carrying [more than one flotation device] 166
a person] holding up [books]
[a lightbulb] surrounding [some plants]
[a deer's nose] is resting on [a child's hand]
erial view of a green tree in [the brown freshly turned soil] next to [a green field]
[the person] wears a hat but [it] doesn't
one] is in a boat and [almost everyone] is swimming
it] ran away while [they] pursued
more [bicycles] than [cars]
[an older] person blocking [a younger] person
racing [over] it []
a kid [threw a basketball] then [jumped]
the younger person is [making noise] while the other is [silent]
a person [with long braids] is exercising in front of a person [without braids]
[out] $1[$ swam] 2 the person in the red swimcap [] 2[] 1
the one on the left is [sad] and the other is [happy]
the [taller] person hugs the [shorter] person
the [person's] leg is on the [dog's] torso
[smooth] shoes are on a [soft] floor
painting the [white] wall [red]
[getting] a horse [] wet
flat [at the bottom] and pointy [on top]
the person [who is wearing a crown] is kissing a frog []
a [taller] person wearing blue standing next to a [shorter] person
the gesture of the person [sitting down] is supporting the understanding of the person [standing up]
some people are [standing] but more are [sitting]
[one]1 person[]2 wearing [two]1 scarf[s]2
the larger ball is [lighter] and the smaller one is [heavier]
the dog is [standing] and the person is [swimming]
the person on the left is [crying sadly] while the one on the right is [smiling happily]
a fencer [who is wearing black pants] having a point scored against them by another fencer [] using a wheelchair
the train is [still] while the person is [moving fast]
a person is drinking [now] and eating [later]
the car is sitting [upside down] while the person is standing [rightside up]
the [round] table has a [square] base
Young person playing baseball with a [blue] bat and [green] ball
the person with the ponytail [buys] stuff and other [packs] it
[] gears for [moving] something
[] child in [front facing] row of yellow rubber ducks
a [hot] drink on a [cold] day
the [first] vowel is E and the [last] consonant is N
a person spraying water on [someone else] 1 [and]2 a person on a bike []2 []1
A child [] riding a bike [and an adult]
someone [with an apple] is hurt by a tree []
two people wearing clothes of [different] colors are on [the same] side of the tennis net
a person [stands] and a dog [sits]
[toy] cat with [real] baby
he sailboat sails [close] but the beach is [far away]
A [] small animal with [curled] hair
someone talks on the phone [angrily] while another person sits [happily]
[poor] [unfortunate] people
they [drank water] then they [worked out]
The [red] \rightarrow [yellow] book is above the [yellow] \rightarrow blue] book and below the [blue] \rightarrow [red] book
[] living things [drinking]
seat numbers increasing from [right] to [left]
a cat is [stretching] and a person is [lying down]
[the coffee is poured] before [it is ground]
the person with green legs is running [quite slowly] and the red legged one runs [faster]
A [left] hand pulls a glove onto a [right] hand
The [un]caged bird has an [lopened cage door
the dog [bite]1s [] 2 what someone would normally [wear] [as a hat]2
watch]ing the [present]
someone [] 1 on [the ground] 2 [is] 1 spraying water towards [a vehicle]2
[walking]1 someone [] 1 [cut] 2 [lines] 2 into green plants
the [person] 1 is too [big] 2 for the [small] 2 [door] 1
a [dog sitting] on a couch with a [person lying] on the floor
[]1 a person [near] 1 [water] 2 using a []2 lasso
a person wearing a [bear] 1 mask [] 2 in blue on the left hand side of a person wearing a [panda] 1 mask [with glasses] 2 in pink
[darker]1 things [22 become [light]1 [in stripes]2
[one] ear that some [donkey] is whispering a secret into
Altered POS
Verb-Transitive, Noun

Table 2. Examples showcasing the full linguistic (swap-dependent) tag breakdown.
\qquad

D. Heatmaps for the Word-Region Alignment Models

We provide heatmaps for models that use word-region alignment: UNITER, ViLLA and ViLT. See the main text for the ViLT heatmaps.

Figure 1. Word-region alignment scores between the image and text features for ViLLA ${ }_{\text {base }}$ on examples from Winoground.

Figure 2. Word-region alignment scores between the image and text features for UNITER ${ }_{\text {base }}$ on examples from Winoground.
E. Mechanical Turk Interface

Validate examples

Instructions: Select whether the image matches the caption. Pay close attention to the word order. 38

CAPTION:
a kite is lifting up a person
a kite is lifting up a person 402
does the caption match the image? 404
○ Yes
O No
Submit

Figure 3. The Amazon Mechanical Turk validation interface. In order to participate, crowdworkers needed to satisfy several criteria: be an English speaker, have 98% previous HIT approval, have completed 1000 previous HITs, and pass the onboarding test. The onboarding test used the same interface as the actual task. It consisted of ten image-caption match questions, with images and captions that are independent from the actual Winoground dataset. If they made one mistake, a pop-up would ask them if they were sure, and they would be allowed to select whether there was a match or not again. If they made any addiitonal mistakes during onboarding, they were disqualified.

F. Ethical Considerations

A key consideration while designing Winoground centered on how the expert annotators would describe the people contained in the images. We avoided using gendered terms (e.g. using "person" in place of "woman" or "man") in our captions and did not include any swaps between pairs of captions based on gender, race or ethnicity (e.g. "[the man] hands a water to [the woman]"). We recognize that, barring direct access to the people in the images, we would be merely making a guess at a person's identity based on our own cultural norms and experiences.

In addition, we encouraged the expert annotators to find images that represent a variety of people across the dimensions of perceived race, gender, disability, etc.. We gathered the Getty Images metadata (title and short alt text-like description) and searched them for specific words as a rough proxy for gender representation. The relevant words are either words referring to women (e.g. girl, her), words referring to men (e.g. boy, him) or words that are gender-neutral (e.g. them, themself). Using the Getty Images metadata corresponding to the 800 images in Winoground, 371 images have corresponding metadata that contained at least one word from the lists we created. Using this metadata for these 371 images, we estimate that 152 images only contain women, 123 images only contain men, 22 images only contain people without gender descriptors, and the remaining 74 images contain people described by multiple genders. This serves only as a rough estimate as much of the metadata contain words referring to people that are inherently non-gendered (e.g. scuba diver, friend, etc.) and because the relevant gendered words we found are themselves subject to the assumptions of those who wrote the titles and captions.

