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Abstract
Recently, neural networks purely based on atten-
tion were shown to address image understanding
tasks such as image classification. These high-
performing vision transformers are pre-trained
with hundreds of millions of images using a large
infrastructure, thereby limiting their adoption.

In this work, we produce competitive convolution-
free transformers trained on ImageNet only us-
ing a single computer in less than 3 days. Our
reference vision transformer (86M parameters)
achieves top-1 accuracy of 83.1% (single-crop)
on ImageNet with no external data.

We also introduce a teacher-student strategy spe-
cific to transformers. It relies on a distillation
token ensuring that the student learns from the
teacher through attention, typically from a con-
vnet teacher. The learned transformers are com-
petitive (85.2% top-1 acc.) with the state of the art
on ImageNet, and similarly when transferred to
other tasks. We will share our code and models.

1. Introduction
Convolutional neural networks have been the main design
paradigm for image understanding tasks, as initially demon-
strated on image classification tasks. One of the ingredient
to their success was the availability of a large training set,
namely Imagenet. Motivated by the success of attention-
based models in Natural Language Processing, there has
been an increasing interest in architectures leveraging atten-
tion mechanisms within convnets. More recently several
researchers have proposed hybrid architecture transplanting
transformer ingredients to convnets to solve vision tasks.

The vision transformer (ViT) introduced by Dosovitskiy
et al. (2020) is an architecture directly inherited from Natu-
ral Language Processing (Vaswani et al., 2017), but applied
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Figure 1. Throughput and accuracy on Imagenet of our method
(no external training data). The throughput is measured as the
number of images processed per second on a V100 GPU. DeiT-B
is identical to ViT-B, but with training adapted to a data-starving
regime. It is learned in a few days on one machine. The symbol ⚗
refers to models trained with our transformer-specific distillation.
See Table 5 for details and more models.

to image classification with raw image patches as input.
Their paper presented excellent results with transformers
trained with a large private labelled image dataset contain-
ing 300 millions images. The paper concluded that vision
transformers “do not generalize well when trained on in-
sufficient amounts of data”. The training of these models
involved extensive computing resources.

In our paper, we train a vision transformer on a single 8-
GPU node in two to three days (53 hours of pre-training,
and optionally 20 hours of fine-tuning) that is competitive
with convnets having a similar number of parameters and
efficiency. It uses Imagenet as the sole training set. We
build upon the visual transformer architecture from Doso-
vitskiy et al. (2020) and improvements included in the timm
library (Wightman, 2019). With our Data-efficient image
Transformers (DeiT), we report large improvements over
previous results, see Figure 1. Our ablation study details
the hyper-parameters and key ingredients for a successful
training, such as repeated augmentation.
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We address another question: how to distill these models?
We introduce a token-based strategy, DeiT⚗, that advanta-
geously replaces the usual distillation for transformers.

In summary, our work makes the following contributions:

• We show that our neural networks that contain no con-
volutional layer can achieve competitive results against
the state of the art on ImageNet with no external data.
They are learned on a single node with 4 GPUs in three
days1. Our two new models DeiT-S and DeiT-Ti have
fewer parameters and can be seen as the counterpart of
ResNet-50 and ResNet-18.

• We introduce a new distillation procedure based on a dis-
tillation token, which plays the same role as the class to-
ken, except that it aims at reproducing the label estimated
by the teacher. Both tokens interact in the transformer
through attention. This transformer-specific strategy out-
performs vanilla distillation by a significant margin.

• Our models pre-learned on Imagenet are competitive
when transferred to different downstream tasks such
as fine-grained classification, on several popular public
benchmarks: CIFAR-10, CIFAR-100, Oxford-102 flow-
ers, Stanford Cars and iNaturalist-18/19.

2. Related work
Image Classification is so core to computer vision that
it is often used as a benchmark to measure progress in
image understanding. Any progress usually translates to
improvement in other related tasks such as detection or
segmentation. Since 2012’s AlexNet (Krizhevsky et al.,
2012), convnets have dominated this benchmark and have
become the de facto standard. The evolution of the state of
the art on the ImageNet dataset (Russakovsky et al., 2015)
reflects the progress with convolutional architectures and
optimization methods (Simonyan & Zisserman, 2015; Tan
& Le, 2019; Touvron et al., 2019).

Despite several attempts to use transformers for image clas-
sification (Chen et al., 2020a), until now their performance
has been inferior to that of convnets. Nevertheless hybrid
architectures that combine convnets and transformers, in-
cluding the self-attention mechanism, have exhibited com-
petitive results in image classification (Bello et al., 2019;
Bello, 2021; Wu et al., 2020), detection (Carion et al., 2020;
Hu et al., 2018), video processing (Sun et al., 2019; Wang
et al., 2018), unsupervised object discovery (Locatello et al.,
2020), and text-vision tasks (Chen et al., 2020b; Li et al.,
2019a; Lu et al., 2019).

Recently Vision transformers (ViT) (Dosovitskiy et al.,
2020) closed the gap with the state of the art on ImageNet,

1We can accelerate the learning of the larger model DeiT-B by
training it on 8 GPUs in two days.

without using any convolution. This performance is remark-
able since convnet methods for image classification have
benefited from years of tuning and optimization (He et al.,
2019; Wightman, 2019). Nevertheless, according to Doso-
vitskiy et al. (2020), a pre-training phase on a large volume
of curated data is required for the learned transformer to be
effective. In our paper we achieve a strong performance with
ImageNet-1k and report decent results even on CIFAR-10.

The Transformer architecture, introduced by Vaswani
et al. (Vaswani et al., 2017) for machine translation is cur-
rently the reference model for all natural language process-
ing (NLP) tasks. Many improvements of convnets for image
classification are inspired by transformers. For example,
Squeeze and Excitation (Hu et al., 2017), Selective Ker-
nel (Li et al., 2019b), Split-Attention Networks (Zhang et al.,
2020) and Stand-Alone Self-Attention (Ramachandran et al.,
2019) exploit mechanism akin to transformers self-attention
(SA) mechanism. Moreover, Cordonnier et al. (Cordonnier
et al., 2020) study the link between SA and convolution.

Knowledge Distillation (Hinton et al., 2015) refers to the
training paradigm in which a student model leverages “soft”
labels coming from a strong teacher network. This is the
output vector of the teacher’s softmax function rather than
just the maximum of scores, wich gives a “hard” label. Such
a training improves the performance of the student model
(alternatively, it can be regarded as a form of compression of
the teacher model into a smaller one – the student). On the
one hand the teacher’s soft labels will have a similar effect
to labels smoothing (Yuan et al., 2020). On the other hand as
shown by Wei et al. (2020) the teacher’s supervision takes
into account the effects of the data augmentation, which
sometimes causes a misalignment between the real label
and the image. For example, let us consider image with a
“cat” label that represents a large landscape and a small cat
in a corner. If the cat is no longer on the crop of the data
augmentation it implicitly changes the label of the image.
Knowledge distillation can transfer inductive biases (Abnar
et al., 2020) in a soft way in a student model using a teacher
model where they would be incorporated in a hard way. In
our paper we study the distillation of a transformer student
by either a convnet or a transformer teacher, motivated by
inducing convolutional bias into transformers.

3. Vision transformer: overview
In this section, we briefly recall preliminaries associated
with the vision transformer (Dosovitskiy et al., 2020;
Vaswani et al., 2017), denoted by ViT. We further discuss
positional encoding and resolution.

Multi-head Self Attention layers (MSA). The attention
mechanism is based on a trainable associative memory with
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(key, value) vector pairs. A query vector q ∈ Rd is matched
against a set of k key vectors (packed together into a matrix
K ∈ Rk×d) using inner products. These inner products
are then scaled and normalized with a softmax function to
obtain k weights. The output of the attention is the weighted
sum of a set of k value vectors (packed into V ∈ Rk×d). For
a sequence of N query vectors (packed into Q ∈ RN×d), it
produces an output matrix (of size N × d):

Attention(Q,K, V ) = Softmax(QK>/
√
d)V, (1)

where the Softmax function is applied on each row of the
input matrix. The

√
d term provides proper normalization.

Vaswani et al. (2017) propose a self-attention layer. Query,
key and values matrices are themselves computed from a
sequence of N input vectors (packed into X ∈ RN×D):
Q = XWQ, K = XWK, V = XWV, using linear transfor-
mations WQ,WK,WV with the constraint k = N , meaning
that the attention is in between all the input vectors.
Finally, Multi-head self-attention layer (MSA) is defined by
considering h attention “heads”, ie h self-attention functions
applied to the input. Each head provides a sequence of size
N × d. These h sequences are rearranged into a N × dh
sequence that is reprojected by a linear layer into N ×D.

Transformer block for images. To get a full transformer
block as in (Vaswani et al., 2017), we add a Feed-Forward
Network (FFN) on top of the MSA layer. This FFN is
composed of two linear layers separated by a GeLu acti-
vation (Hendrycks & Gimpel, 2016). The first linear layer
expands the dimension from D to 4D, and the second layer
reduces it back from 4D back toD. Both MSA and FFN are
operating as residual operators thank to skip-connections,
and with a layer normalization (Ba et al., 2016).

In order to get a transformer to process images, our work
builds upon the ViT model (Dosovitskiy et al., 2020). It
is a simple and elegant architecture that processes an input
image as if it was a sequence of input tokens. The fixed-size
input RGB image is decomposed into a batch of N patches
of a fixed size of 16× 16 pixels (N = 14× 14). Each patch
is projected with a linear layer that conserves its overall
dimension 3× 16× 16 = 768.
The transformer block described above is invariant to the or-
der of the patch embeddings, and thus ignores their positions.
The positional information is incorporated as fixed (Vaswani
et al., 2017) or trainable (Gehring et al., 2017) positional
embeddings. They are added before the first transformer
block to the patch tokens, which are then fed to the stack of
transformer blocks.

The class token is a trainable vector, appended to the
patch tokens before the first layer, that goes through the
transformer layers, and is then projected with a linear layer
to predict the class. This class token is inherited from

NLP (Devlin et al., 2018), and departs from the typical
pooling layers used in computer vision to predict the class.
The transformer thus process batches of (N + 1) tokens
of dimension D, of which only the class vector is used to
predict the output. This architecture forces the self-attention
to spread information between the patch tokens and the class
token: at training time the supervision signal comes only
from the class embedding, while the patch tokens are the
model’s only variable input.

Fixing the positional encoding across resolutions. Tou-
vron et al. (2019) show that it is desirable to use a lower
training resolution and fine-tune the network at the larger
resolution. This speeds up the full training and improves
the accuracy under prevailing data augmentation schemes.
When increasing the resolution of an input image, we keep
the patch size the same, therefore the number N of input
patches does change. Due to the architecture of transformer
blocks and the class token, the model and classifier do not
need to be modified to process more tokens. In contrast, one
needs to adapt the positional embeddings, because there are
N of them, one for each patch. Dosovitskiy et al. (2020)
interpolate the positional encoding when changing the res-
olution and demonstrate that this method works with the
subsequent fine-tuning stage.

4. Distillation through attention
In this section, we assume we have access to a strong image
classifier as a teacher model. It could be a convnet, or a
mixture of classifiers. We address the question of how to
learn a transformer by exploiting this teacher. As we will
see in Section 5 by comparing the trade-off between accu-
racy and image throughput, it can be beneficial to replace a
convolutional neural network by a transformer. This section
covers two axes of distillation: hard versus soft distillation,
and classical distillation vs distillation token.

Soft distillation (Hinton et al., 2015; Wei et al., 2020)
minimizes the Kullback-Leibler divergence between the
softmax of the teacher and the softmax of the student model.

Let Zt be the logits of the teacher model, Zs the logits of the
student model. We denote by τ the temperature for the distil-
lation, λ the coefficient balancing the Kullback–Leibler di-
vergence loss (KL) and the cross-entropy (LCE) on ground
truth labels y, and ψ the softmax function. The distillation
objective is

Lglobal = (1− λ)LCE(ψ(Zs), y)

+ λτ2KL(ψ(Zs/τ), ψ(Zt/τ)). (2)

Hard-label distillation. We introduce a variant of distil-
lation where we take the hard decision of the teacher as a
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Figure 2. Our distillation procedure: we simply include a new dis-
tillation token. It interacts with the class and patch tokens through
the self-attention layers. This distillation token is employed in
a similar fashion as the class token, except that on output of the
network its objective is to reproduce the (hard) label predicted by
the teacher, instead of true label. Both the class and distillation
tokens input to the transformers are learned by back-propagation.

true label. Let yt = argmaxcZt(c) be the hard decision
of the teacher, the objective associated with this hard-label
distillation is:

LhardDistill
global =

1

2
LCE(ψ(Zs), y)+

1

2
LCE(ψ(Zs), yt). (3)

For a given image, the hard label associated with the teacher
may change depending on the specific data augmentation.
We will see that this choice is better than the traditional one,
while being parameter-free and conceptually simpler: The
teacher prediction yt plays the same role as the true label y.

Label smoothing. Hard labels can also be converted into
soft labels with label smoothing (Szegedy et al., 2016),
where the true label is considered to have a probability
of 1− ε, and the remaining ε is shared across the remaining
classes. We fix ε = 0.1 in our all experiments that use true
labels. Note that we do not smooth pseudo-labels provided
by the teacher (e.g., in hard distillation).

Distillation token. We now focus on our proposal, which
is illustrated in Figure 2. We add a new token, the distillation
token, to the initial embeddings (patches and class token).
Our distillation token is used similarly as the class token:
it interacts with other embeddings through self-attention,
and is output by the network after the last layer. Its target
objective is given by the distillation component of the loss.
The distillation embedding allows our model to learn from

the output of the teacher, as in a regular distillation, while
remaining complementary to the class embedding.

Fine-tuning with distillation. We use both the true label
and teacher prediction during the fine-tuning stage at higher
resolution. We use a teacher with the same target resolution,
typically obtained from the lower-resolution teacher by the
method of Touvron et al. (2019). We have also tested with
true labels only but this reduces the benefit of the teacher
and leads to a lower performance.

Classification with our approach: joint classifiers. At
test time, both the class or the distillation embeddings pro-
duced by the transformer are associated with linear classi-
fiers and able to infer the image label. Our referent method
is the late fusion of these two separate heads, for which we
add the softmax output by the two classifiers to make the
prediction. We evaluate these three options in Section 5.

5. Experiments
This section presents a few analytical experiments and re-
sults. We first discuss our distillation strategy. Then we
comparatively analyze the efficiency and accuracy of con-
vnets and vision transformers.

5.1. Transformer models

As mentioned earlier, our architecture design is identical to
the one proposed by Dosovitskiy et al. (2020) with no con-
volutions. Our only differences are the training strategies,
and the distillation token. Also we do not use a MLP head
for the pre-training but only a linear classifier. To avoid
any confusion, we refer to the results obtained in the prior
work by ViT, and prefix ours by DeiT. If not specified, DeiT
refers to our referent model DeiT-B, which has the same
architecture as ViT-B. When we fine-tune DeiT at a larger
resolution, we append the resulting operating resolution at
the end, e.g, DeiT-B↑384. Last, when using our distillation
procedure, we identify it with an alembic sign as DeiT⚗.

The parameters of ViT-B (and therefore of DeiT-B) are fixed
as D = 768, h = 12 and d = D/h = 64. We introduce
two smaller models, namely DeiT-S and DeiT-Ti, for which
we change the number of heads, keeping d fixed. Table 1
summarizes the models that we consider in our paper.

5.2. Distillation

Our distillation method produces a vision transformer that
becomes on par with the best convnets in terms of the trade-
off between accuracy and throughput, see Table 5. Interest-
ingly, the distilled model outperforms its teacher in terms
of the trade-off between accuracy and throughput. Our
best model on ImageNet-1k is 85.2% top-1 accuracy out-
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Table 1. Variants of our DeiT architecture. The larger model, DeiT-
B, has the same architecture as the ViT-B (Dosovitskiy et al., 2020).
The only parameters that vary across models are the embedding di-
mension and the number of heads, and we keep the dimension per
head constant (equal to 64). Smaller models have a lower parame-
ter count, and a faster throughput. The throughput is measured for
images at resolution 224×224.

Model embedding #heads #layers #params training throughput
dimension resolution (im/sec)

DeiT-Ti 192 3 12 5M 224 2536
DeiT-S 384 6 12 22M 224 940
DeiT-B 768 12 12 86M 224 292

Table 2. ImageNet-1k top-1 accuracy of the student as a function of
the teacher model used for distillation. The convolutional Regnet
by Radosavovic et al. (2020) have been trained with a similar
training as our transformers, except that we used SGD. We provide
more details about their performance and efficiency in Table 5.
Interestingly, image transformers learn more from a convnet than
from another transformer with comparable performance.

Teacher Student: DeiT-B
Models acc. pretrain ↑384

DeiT-B 81.8 81.9 83.1

RegNetY-4GF 80.0 82.7 83.6
RegNetY-8GF 81.7 82.7 83.8
RegNetY-12GF 82.4 83.0 83.9
RegNetY-16GF 82.9 83.0 84.0

performs the best Vit-B model pre-trained on JFT-300M
and fine-tuned on ImageNet-1k at resolution 384 (84.15%).
Note, the current state of the art of 88.55% achieved with
extra training data is the ViT-H model (632M parameters)
trained on JFT-300M and fine-tuned at resolution 512. Here-
after we provide several analysis and observations.

Convnets teachers. We have observed that using a con-
vnet teacher gives better performance than using a trans-
former. Table 2 compares distillation results with different
teacher architectures. The fact that the convnet is a better
teacher is probably due to the inductive bias inherited by
the transformers through distillation, as explained in Abnar
et al. (2020). In all of our subsequent distillation experi-
ments the default teacher is a RegNetY-16GF (Radosavovic
et al., 2020) with 84M parameters, that we trained with
the same data and same data-augmentation as DeiT. This
teacher reaches 82.9% top-1 accuracy on ImageNet.

Comparison of distillation methods. We compare the
performance of different distillation strategies in Table 3.
Hard distillation significantly outperforms soft distillation
for transformers, even when using only a class token: hard
distillation reaches 83.0% at resolution 224×224, compared
to the soft distillation accuracy of 81.8%. Our distillation

Table 3. Distillation experiments on ImageNet-1k with DeiT, 300
epochs of pre-training. We report the results for the architecture
augmented with an additional token/embedding in the last three
rows. We separately report the performance when classifying
with only one of the class or distillation embedding, and then
with a classifier taking both of them as input. In the last row
(class+distillation), the result correspond to the late fusion of the
class and distillation classifiers.

supervision ImageNet top-1 (%)
DeiT: method ↓ label teacher Ti 224 S 224 B 224 B↑384

no distillation 3 7 72.2 79.8 81.8 83.1
usual distillation 7 soft 72.2 79.8 81.8 83.2
hard distillation 7 hard 74.3 80.9 83.0 84.0

class embedding 3 hard 73.9 80.9 83.0 84.2
distil. embedding 3 hard 74.6 81.1 83.1 84.4
DeiT⚗: class+distil. 3 hard 74.5 81.2 83.4 84.5

strategy from Section 4 further improves the performance,
showing that the two tokens provide complementary infor-
mation useful for classification: the classifier on the two
tokens is significantly better than the independent class and
distillation classifiers, which by themselves already outper-
form the distillation baseline.

The embedding associated with the distillation token gives
slightly better results than the class token. It is also more
correlated to the convnets prediction. In all cases, including
it improves the performance of the different classifiers. We
give more details and an analysis in the next paragraph.

Agreement with the teacher & inductive bias? As dis-
cussed above, the architecture of the teacher has an im-
portant impact. Does it inherit existing inductive bias that
would facilitate the training? While we believe it difficult
to formally answer this question, we analyze in Table 4 the
decision agreement between the convnet teacher, our image
transformer DeiT learned from labels only, and our trans-
former DeiT⚗. Our distilled model is more correlated to the
convnet than with a transformer learned from scratch. As
to be expected, the classifier associated with the distillation
embedding is closer to the convnet that the one associated
with the class embedding, and conversely the one associated
with the class embedding is more similar to DeiT learned
without distillation. Unsurprisingly, the joint class+distil
classifier offers a middle ground.

Analysis of the tokens. We observe that the learned class
and distillation tokens converge towards different vectors:
the average cosine similarity (cos) between these tokens
equal to 0.06. The class and distillation embeddings com-
puted at each layer gradually become more similar through
the network, all the way through the last layer at which their
similarity is high (cos=0.93), but still lower than 1. This
is expected since as they aim at producing targets that are
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Table 4. Disagreement analysis between convnet, image transform-
ers and distillated transformers: We report the fraction of sample
classified differently for all classifier pairs, i.e., the rate of different
decisions. We include two models without distillation (a RegNetY
and DeiT-B), so that we can compare how our distilled models and
classification heads are correlated to the RegNetY teacher.

no distillation DeiT⚗ student
convnet DeiT class distil. DeiT⚗

groundtruth 0.171 0.182 0.170 0.169 0.166
convnet (RegNetY) 0.000 0.133 0.112 0.100 0.102
DeiT 0.133 0.000 0.109 0.110 0.107

DeiT⚗– class only 0.112 0.109 0.000 0.050 0.033
DeiT⚗– distil. only 0.100 0.110 0.050 0.000 0.019
DeiT⚗– class+distil. 0.102 0.107 0.033 0.019 0.000

similar but not identical.

We verified that our distillation token adds something to
the model, compared to simply adding an additional class
token associated with the same target label: instead of a
teacher pseudo-label, we experimented with a transformer
with two class tokens. Even if we initialize them randomly
and independently, during training they converge towards
the same vector (cos=0.999), and the output embedding are
also quasi-identical. In contrast to our distillation strategy,
an additional class token does not bring anything to the
classification performance.

Number of epochs. Increasing the number of epochs sig-
nificantly improves the performance of training with distilla-
tion, see Figure 3. With 300 epochs2, our distilled network
DeiT-B⚗ is already better than DeiT-B. But while for the
latter the performance saturates with longer schedules, the
distilled network benefits from a longer training time.

5.3. Efficiency vs accuracy: a comparison to convnets

In the literature, image classificaton methods are often com-
pared as a compromise between accuracy and another cri-
terion, such as FLOPs, number of parameters, size of the
network, etc. We focus in Figure 1 on the tradeoff between
the throughput (images per second) and the top-1 classifi-
cation accuracy on ImageNet. The throughput is measured
as the number of images that we can process per second on
one 16GB V100 GPU: we take the largest possible batch
size and average the processing time over 30 runs. We focus
on the popular EfficientNet convnet, which has benefited
from years of research on convnets and was optimized by
architecture search on the ImageNet validation set.

2Formally we have 100 epochs, but each is 3x longer because
of the repeated augmentations. We prefer to refer to this as 300
epochs in order to have a direct comparison on the effective training
time with and without repeated augmentation.

⚗↑
⚗

Figure 3. Distillation on ImageNet1k with DeiT-B: top-1 accuracy
as a function of the training epochs. The performance without
distillation (horizontal dotted line) saturates after 400 epochs.

Our method DeiT is slightly below EfficientNet, which
shows that we have almost closed the gap between vision
transformers and convnets when training with Imagenet
only. These results are a major improvement (+6.3% top-1
in a comparable setting) over previous ViT models trained
on Imagenet1k only (Dosovitskiy et al., 2020). Furthermore,
when DeiT benefits from the distillation from a relatively
weaker RegNetY to produce DeiT⚗, it outperforms Effi-
cientNet. It also outperforms by 1% (top-1 acc.) the Vit-B
model pre-trained on JFT300M at resolution 384 (85.2% vs
84.15%), while being significantly faster to train.

Table 5 reports the numerical results in more details and
additional evaluations on ImageNet V2 and ImageNet Real,
that have a test set distinct from the ImageNet validation,
which reduces overfitting on the validation set. Our results
show that DeiT-B⚗ and DeiT-B⚗ ↑384 outperform, by some
margin, the state of the art on the trade-off between accuracy
and inference time on GPU.

5.4. Transfer learning to downstream tasks

Although DeiT perform very well on ImageNet it is impor-
tant to evaluate them on other datasets with transfer learning
in order to measure the power of generalization of DeiT.
We evaluated this on transfer learning tasks by fine-tuning
on the datasets in Table 8. Table 6 compares DeiT transfer
learning results to those of ViT and EfficientNet. DeiT is on
par with competitive convnet models, which is in line with
our previous conclusion on ImageNet1k.

Comparison vs training from scratch. We investigate
the performance when training from scratch on a small
dataset, without Imagenet pre-training. We get the following
results on the small CIFAR-10, which is small both w.r.t.
the number of images and labels:
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Table 5. Throughput (images/s) vs accuracy on Imagenet (Rus-
sakovsky et al., 2015), Imagenet Real (Beyer et al., 2020) and
Imagenet V2 matched frequency (Recht et al., 2019) of models
trained without external data. We compare DeiT and Vit-B (Doso-
vitskiy et al., 2020) to several state-of-the-art convnets: ResNet (He
et al., 2016), Regnet (Radosavovic et al., 2020), EfficientNet (Tan
& Le, 2019; Cubuk et al., 2019; Wei et al., 2020). We use for
each model the definition in the same GitHub (Wightman, 2019)
repository. The reported results are from corresponding papers.

nb of image ImNet Real V2
Network param. size im/s top-1 top-1 top-1

ResNet-18 12M 224 4458.4 69.8 77.3 57.1
ResNet-50 25M 224 1226.1 76.2 82.5 63.3
ResNet-101 45M 224 753.6 77.4 83.7 65.7
ResNet-152 60M 224 526.4 78.3 84.1 67.0

RegNetY-4GF? 21M 224 1156.7 80.0 86.4 69.4
RegNetY-8GF? 39M 224 591.6 81.7 87.4 70.8
RegNetY-16GF? 84M 224 334.7 82.9 88.1 72.4

EfficientNet-B0 5M 224 2694.3 77.1 83.5 64.3
EfficientNet-B1 8M 240 1662.5 79.1 84.9 66.9
EfficientNet-B2 9M 260 1255.7 80.1 85.9 68.8
EfficientNet-B3 12M 300 732.1 81.6 86.8 70.6
EfficientNet-B4 19M 380 349.4 82.9 88.0 72.3
EfficientNet-B5 30M 456 169.1 83.6 88.3 73.6
EfficientNet-B6 43M 528 96.9 84.0 88.8 73.9
EfficientNet-B7 66M 600 55.1 84.3

EfficientNet-B5 RA 30M 456 96.9 83.7
EfficientNet-B7 RA 66M 600 55.1 84.7

KDforAA-B8 87M 800 25.2 85.8

Transformers: training 300 epochs

ViT-B/16 86M 384 85.9 77.9 83.6
ViT-L/16 307M 384 27.3 76.5 82.2

DeiT-Ti 5M 224 2536.5 72.2 80.1 60.4
DeiT-S 22M 224 940.4 79.8 85.7 68.5
DeiT-B 86M 224 292.3 81.8 86.7 71.5
DeiT-B↑384 86M 384 85.9 83.1 87.7 72.4

DeiT-Ti⚗ 6M 224 2529.5 74.5 82.1 62.9
DeiT-S⚗ 22M 224 936.2 81.2 86.8 70.0
DeiT-B⚗ 87M 224 290.9 83.4 88.3 73.2
DeiT-B⚗ ↑384 87M 384 85.8 84.5 89.0 74.8

Transformers: training 1000 epochs

DeiT-Ti⚗ 6M 224 2529.5 76.6 83.9 65.4
DeiT-S⚗ 22M 224 936.2 82.6 87.8 71.7
DeiT-B⚗ 87M 224 290.9 84.2 88.7 73.9
DeiT-B⚗ ↑384 87M 384 85.8 85.2 89.3 75.2

?: our trained teachers with SGD, whose optimization procedure is closer to DeiT

Table 6. We compare Transformers based models on different trans-
fer learning task with ImageNet pre-training. We also give results
obtained with Efficient-B7 for reference (Tan & Le, 2019).
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EfficientNet-B7 84.3 98.9 91.7 98.8 94.7 55.1

ViT-B/32 73.4 97.8 86.3 85.4 394.5
ViT-B/16 77.9 98.1 87.1 89.5 85.9
ViT-L/32 71.2 97.9 87.1 86.4 124.1
ViT-L/16 76.5 97.9 86.4 89.7 27.3

DeiT-B 81.8 99.1 90.8 98.4 92.1 73.2 77.7 292.3
DeiT-B↑384 83.1 99.1 90.8 98.5 93.3 79.5 81.4 85.9
DeiT-B⚗ 83.4 99.1 91.3 98.8 92.9 73.7 78.4 290.9
DeiT-B⚗ ↑384 84.4 99.2 91.4 98.9 93.9 80.1 83.0 85.9

Table 7. Ablation study on training methods on ImageNet (top-1
acc.). The top row (”none”) corresponds to our default configura-
tion employed for DeiT. The symbols 3 and 7 indicate that we
use and do not use the corresponding method, respectively. We
report the accuracy scores (%) after the initial training at resolution
224×224, and after fine-tuning at resolution 384×384. The hyper-
parameters are fixed according to Table 9, and may be suboptimal.
* indicates that the model did not train well, possibly because
hyper-parameters are not adapted.
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adamw adamw 3 7 3 3 3 3 3 7 7 81.8±0.2 83.1±0.1

SGD adamw 3 7 3 3 3 3 3 7 7 74.5 77.3
adamw SGD 3 7 3 3 3 3 3 7 7 81.8 83.1

adamw adamw 7 7 3 3 3 3 3 7 7 79.6 80.4
adamw adamw 7 3 3 3 3 3 3 7 7 81.2 81.9
adamw adamw 3 7 7 3 3 3 3 7 7 78.7 79.8
adamw adamw 3 7 3 7 3 3 3 7 7 80.0 80.6
adamw adamw 3 7 7 7 3 3 3 7 7 75.8 76.7

adamw adamw 3 7 3 3 7 3 3 7 7 4.3* 0.1
adamw adamw 3 7 3 3 3 7 3 7 7 3.4* 0.1
adamw adamw 3 7 3 3 3 3 7 7 7 76.5 77.4
adamw adamw 3 7 3 3 3 3 3 3 7 81.3 83.1
adamw adamw 3 7 3 3 3 3 3 7 3 81.9 83.1

Method RegNetY-16GF DeiT-B DeiT-B⚗
Top-1 98.0 97.5 98.5

For this experiment, we tried we get as close as possible
to the Imagenet pre-training counterpart, meaning that (1)
we consider longer training schedules (up to 7200 epochs,
which corresponds to 300 Imagenet epochs) so that the
network has been fed a comparable number of images in
total; (2) we re-scale images to 224× 224 to ensure that we
have the same augmentation. The results are not as good
as with Imagenet pre-training (98.5% vs 99.1%), which is
expected since the network has seen a much lower diversity.
However they show that it is possible to learn a reasonable
transformer on CIFAR-10 only.

6. Training details & ablation
This section discusses the DeiT training strategy to learn vi-
sion transformers in a data-efficient manner. We build upon
PyTorch (Paszke et al., 2019) and the timm3 library (Wight-
man, 2019). We provide hyper-parameters and an ablation
study in which we analyze the impact of each choice.

3The timm implementation includes a training procedure that
improved the accuracy of ViT-B from 77.91% to 79.35% top-1,
and trained on Imagenet-1k with a 8xV100 GPU machine.
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Initialization and hyper-parameters. Transformers are
relatively sensitive to initialization. After testing several
options, some of them not converging, we follow Hanin &
Rolnick (2018) and initialize the weights with a truncated
normal distribution. Table 9 indicates the hyper-parameters
that we use by default at training time for all our experi-
ments, unless stated otherwise. For distillation we follow the
recommendations from Cho & Hariharan (2019) to select
the parameters τ and λ. We take the typical values τ = 3.0
or τ = 1.0 and λ = 0.1 for the usual (soft) distillation.

Data-Augmentation. Compared to models that integrate
more priors (such as convolutions), transformers require a
larger amount of data. Thus, in order to train with datasets
of the same size, we rely on extensive data augmentation.
We evaluate different types of strong data augmentation,
with the objective to reach a data-efficient training regime.

Auto-Augment (Cubuk et al., 2018), Rand-Augment (Cubuk
et al., 2019), and random erasing (Zhong et al., 2020) im-
prove the results. For the two latter we use the timm (Wight-
man, 2019) customizations, and after ablation we choose
Rand-Augment instead of AutoAugment. Overall our exper-
iments confirm that transformers require a strong data aug-
mentation: almost all the data-augmentation methods that
we evaluate prove to be useful. One exception is dropout,
which we exclude from our training procedure.

Regularization & Optimizers. We have considered dif-
ferent optimizers and cross-validated different learning rates
and weight decays. Transformers are sensitive to the set-
ting of optimization hyper-parameters. Therefore, dur-
ing cross-validation, we tried 3 different learning rates
(5.10−4, 3.10−4, 5.10−5) and 3 weight decay (0.03, 0.04,
0.05). We scale the learning rate according to the batch size
with the formula: lrscaled = lr

512 × batchsize, similarly to
Goyal et al. (2017) except that we use 512 instead of 256 as
the base value. The best results use the AdamW optimizer
with a much smaller weight decay than in ViT.

We have employed stochastic depth (Huang et al., 2016),
which facilitates the convergence of transformers, especially
deep ones (Fan et al., 2019; 2020). For vision transform-
ers, they were first adopted in the training procedure by
Wightman (2019). Regularization like Mixup (Zhang et al.,
2017) and Cutmix (Yun et al., 2019) improve performance.
We also use repeated augmentation (Berman et al., 2019;
Hoffer et al., 2020), which is one of the key ingredients of
our proposed training procedure.

Exponential Moving Average (EMA). We evaluate the
EMA of our network obtained after training. There are small
gains, which vanish after fine-tuning: the EMA model has
an edge of is 0.1 accuracy points, but when fine-tuned the
two models reach the same (improved) performance.

Fine-tuning at different resolution. We adopt the fine-
tuning procedure from Touvron et al. (2020): our schedule,
regularization and optimization procedure are identical to
that of FixEfficientNet but we keep the training-time data
augmentation, unlike the dampened data augmentation of
Touvron et al. (2020). We also interpolate the positional
embeddings: In principle any classical image scaling tech-
nique, like bilinear interpolation, could be used. However, a
bilinear interpolation of a vector from its neighbors reduces
its `2-norm compared to its neighbors. These low-norm
vectors are not adapted to the pre-trained transformers and
we observe a significant drop in accuracy if we employ
use directly without any form of fine-tuning. Therefore we
adopt a bicubic interpolation that approximately preserves
the norm of the vectors, before fine-tuning the network with
either AdamW (Loshchilov & Hutter, 2017) or SGD. These
optimizers have a similar performance for the fine-tuning
stage, see Table 7.

By default and similar to ViT we train DeiT models with
at resolution 224 and fine-tune at resolution 384. We detail
how to do this interpolation in Section 3.

Training time. A typical training of 300 epochs takes 37
hours with 2 nodes or 53 hours on a single 8-GPU node
for the DeiT-B. As a comparison point, a similar training
with a RegNetY-16GF (Radosavovic et al., 2020) (84M
parameters) is 20% slower. DeiT-S and DeiT-Ti are trained
in less than 3 days on 4 GPU. Then, optionally we fine-tune
the model at a larger resolution. This takes 20 hours on
8 GPUs to fine-tune a DeiT-B model at resolution 384×384,
which corresponds to 25 epochs. Not having to rely on batch-
norm allows one to reduce the batch size without impacting
performance, which makes it easier to train larger models.
Note that, since we use repeated augmentation (Berman
et al., 2019; Hoffer et al., 2020) with 3 repetitions, we only
see one third of the images during a single epoch.

7. Conclusion
We have introduced a data-efficient training procedure for
image transformers so that do not require very large amount
of data to be trained, thanks to improved training and in par-
ticular a novel distillation procedure. Convolutional neural
networks have been optimized, both in terms of architecture
and optimization, during almost a decade, including through
extensive architecture search prone to overfiting.

For DeiT we relied on existing data augmentation and regu-
larization strategies pre-existing for convnets, not introduc-
ing any significant architectural change beyond our novel
distillation token. Therefore we expect that further research
on image transformers will bring further gains.
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Supplementary material
Training data-efficient image transformers & distillation through attention

This supplemental material provides complementary tables referred in the main document, in particular a more detailed
description of the datasets that we used for transfer learning in Table 8. Table 9 provides the hyper-parameters used
for Imagenet1k training. Table 10 compare different aspect of efficiency of DeiT against state of the art convnets and
transformers. We also provide the PyTorch code associated with our paper in the supplemental material.

Table 8. Datasets used for our different tasks.

Dataset Train size Test size #classes

ImageNet (Russakovsky et al., 2015) 1,281,167 50,000 1000
iNaturalist 2018 (Horn et al., 2018) 437,513 24,426 8,142
iNaturalist 2019 (Horn et al., 2019) 265,240 3,003 1,010
Flowers-102 (Nilsback & Zisserman, 2008) 2,040 6,149 102
Stanford Cars (Krause et al., 2013) 8,144 8,041 196
CIFAR-100 (Krizhevsky, 2009) 50,000 10,000 100
CIFAR-10 (Krizhevsky, 2009) 50,000 10,000 10

Table 9. Ingredients and hyper-parameters for Vit-B (Dosovitskiy et al., 2020) and our method.

Methods ViT-B DeiT-B

Epochs 300 300

Batch size 4096 1024
Optimizer AdamW AdamW
learning rate 0.003 0.0005× batchsize

512
Learning rate decay cosine cosine
Weight decay 0.3 0.05
Warmup epochs 3.4 5

Label smoothing ε 7 0.1
Dropout 0.1 7
Stoch. Depth 7 0.1
Repeated Aug 7 3
Gradient Clip. 3 7

Rand Augment 7 9/0.5
Mixup prob. 7 0.8
Cutmix prob. 7 1.0
Erasing prob. 7 0.25

Table 10. Efficiency comparison of our DeiT models with transformers and convnets architecture.

Model Top-1 #params FLOPs im/s GPU im/s GPU im/s GPU im/s GPU im/s CPU im/s CPU GPU mem. used
acc. ×106 ×109 (BS=1,fp16) (BS=1,fp32) (BS=32,fp16) (BS=32,fp32) (BS=1) (BS=32) (BS=32,fp32)

EfficientNet B7 84.3 66 37.0 20.5 26.1 90.8 54.3 0.6 0.5 6207.0 MB
ViT-B 77.9 86 55.4 76.8 71.6 192.8 89.3 2.2 1.9 1686.2 MB
DeiT-Ti⚗ 76.6 6 1.2 78.5 99.0 2363.2 2386.4 37.3 84.9 97.6 MB
DeiT-S⚗ 82.6 22 4.6 76.5 95.5 1693.0 942.5 15.1 26.9 217.5 MB
DeiT-B⚗ 84.2 87 17.5 79.5 95.0 745.5 303.9 5.5 7.1 579.2 MB
DeiT-B⚗ ↑384 85.2 87 55.4 76.6 71.5 192.7 89.3 2.1 1.9 1693.7 MB


