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Abstract
While fat-tailed densities commonly arise as pos-
terior and marginal distributions in robust models
and scale mixtures, they present challenges when
Gaussian-based variational inference fails to cap-
ture tail decay accurately. We first improve previ-
ous theory on tails of Lipschitz flows by quantify-
ing how the tails affect the rate of tail decay and
by expanding the theory to non-Lipschitz polyno-
mial flows. We then develop an alternative theory
for multivariate tail parameters which is sensitive
to tail-anisotropy. In doing so, we unveil a fun-
damental problem which plagues many existing
flow-based methods: they can only model tail-
isotropic distributions (i.e., distributions having
the same tail parameter in every direction). To mit-
igate this and enable modeling of tail-anisotropic
targets, we propose anisotropic tail-adaptive flows
(ATAF). Experimental results on both synthetic
and real-world targets confirm that ATAF is com-
petitive with prior work while also exhibiting ap-
propriate tail-anisotropy.

1. Introduction
Flow-based methods (Papamakarios et al., 2021) have
proven to be effective techniques to model complex prob-
ability densities. They compete with the state of the art
on density estimation (Huang et al., 2018; Durkan et al.,
2019; Jaini et al., 2020), generative modeling (Chen et al.,
2019; Kingma & Dhariwal, 2018), and variational inference
(Kingma et al., 2016; Agrawal et al., 2020) tasks. These
methods start with a random variableX having a simple and
tractable distribution µ, and then apply a learnable transport
map fθ to build another random variable Y = fθ(X) with
a more expressive pushforward probability measure (fθ)∗µ
(Papamakarios et al., 2021). In contrast to the implicit distri-
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butions (Huszár, 2017) produced by generative adversarial
networks (GANs), flow-based methods restrict the transport
map fθ to be invertible and to have efficiently-computable
Jacobian determinants. As a result, probability density func-
tions can be tractably computed through direct application
of a change of variables

pY (y) = pX(f−1θ (y))

∣∣∣∣∣det
df−1θ (z)

dz

∣∣∣∣
z=y

∣∣∣∣∣ . (1)

While recent developments (Chen et al., 2019; Huang et al.,
2018; Durkan et al., 2019) have focused primarily on the
transport map fθ, the base distribution µ has received com-
paratively less investigation. The most common choice for
the base distribution is standard Gaussian µ = N (0, I).
However, in Theorem 3.2, we show this choice results in
significant restrictions on the expressivity of the model,
limiting its utility for data that exhibits fat-tailed (or heavy-
tailed) structure. Prior work addressing heavy-tailed flows
(Jaini et al., 2020) are limited to tail-isotropic base distribu-
tions. In Proposition 3.6, we prove flows built on these base
distributions are unable to model accurately multivariate
anisotropic fat-tailed structure.

Our work here aims to identify and address these deficien-
cies. To understand the impact of the base distribution µ
in flow-based models, we develop and apply theory for
fat-tailed random variables and their transformations un-
der Lipschitz-continuous functions. Our approach lever-
ages the theory of concentration functions (Ledoux, 2001,
Chapter 1.2) to sharpen significantly and extend prior re-
sults (Jaini et al., 2019, Theorem 4) by describing precisely
the tail parameters of the pushforward distribution (fθ)∗µ
under both Lipschitz-continuous (Theorem 3.2) and poly-
nomial (Corollary 3.4) transport maps. In the multivariate
setting, we develop a theory of direction-dependent tail pa-
rameters (Definition 3.5), and we show that tail-isotropic
base distributions yield tail-isotropic pushforward measures
(Proposition 3.6). As a consequence of Proposition 3.6,
prior methods (Jaini et al., 2020) are limited in that they
are unable to capture tail-anisotropy. This motivates the
construction of anisotropic tail adaptive flows (ATAF, Defi-
nition 3.7) as a means to alleviate this issue (Remark 3.8)
and to improve modeling of tail-anisotropic distributions.
Our experiments show that ATAF exhibits correct tail be-
haviour in synthetic target distributions exhibiting fat-tails
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Figure 1: Variational inference against a tail-anisotropic target distribution N (0, 1) ⊗ StudentT(ν = 1) (top left). Only
ATAF (bottom right) is able to correctly reproduce the tail-anisotropy (fat-tailed along x-axis, Gaussian along y-axis).
In contrast, ADVI’s (top right) Gaussian base distribution and TAF’s (bottom left) tail-isotropic

∏2
i=1 StudentT(ν) base

distribution can only model tail-isotropic distributions (Proposition 3.6), which erroneously imposes power-law tails with
the same rate of decay along both the x and y axes.

(Figure 4 of Appendix A) and tail-anisotropy (Figure 1).
On realistic targets, we find that ATAF can yield improve-
ments in variational inference (VI) by capturing potential
tail-anisotropy (Section 4).

Related Work
Fat-Tails in Variational Inference. Recent work in vari-
ational autoencoders (VAEs) have considered relaxing Gaus-
sian assumptions to heavier-tailed distributions (Mathieu
et al., 2019; Chen et al., 2019; Boenninghoff et al., 2020;
Abiri & Ohlsson, 2020). In Mathieu et al. (2019), a StudentT
prior distribution p(z) is considered over the latent code z
in a VAE with Gaussian encoder q(z | x). They argue
that the anisotropy of a StudentT product distribution leads
to more disentangled representations, as compared to the
standard choice of Normal distributions. A similar modifi-
cation is performed in Chen et al. (2020) for a coupled VAE
(Cao et al., 2022). This result showed improvements in the
marginal likelihoods of reconstructed images. In addition,
Boenninghoff et al. (2020) consider a mixture of StudentTs
for the prior p(z). To position our work in context, note
that the encoder q(z | x) may be viewed as a variational ap-
proximation to the posterior p(z | x) defined by the decoder
model p(x | z) and the prior p(z). Our work differs from
Mathieu et al. (2019); Chen et al. (2020); Boenninghoff et al.
(2020), in that we consider fat-tailed variational approxima-
tions q(z | x) rather than priors p(z). Although Abiri &
Ohlsson (2020) also considers a StudentT approximate pos-
terior, our work involves a more general variational family
which uses normalizing flows. Similarly, although Wang
et al. (2018) also deals with fat-tails in variational inference,

their goal is to improve α-divergence VI by controlling
the moments of importance sampling ratios (which may be
heavy-tailed). Our work here adopts Kullback-Leibler diver-
gence and is concerned with enriching the variational family
to include anisotropic fat-tailed distributions. More directly
comparable recent work (Ding et al., 2011; Futami et al.,
2017) studies the t-exponential family variational approxi-
mation which includes StudentTs and other heavier-tailed
densities. Critically, the selection of their parameter t (di-
rectly related to the StudentT’s degrees of freedom ν), and
the issue of tail anisotropy, are not discussed.

Flow-Based Methods. Normalizing flows and other flow-
based methods have a rich history within variational infer-
ence (Kingma et al., 2016; Rezende & Mohamed, 2015;
Agrawal et al., 2020; Webb et al., 2019). Consistent with
our experience (Figure 3), Webb et al. (2019) documents
normalizing flows can offer improvements over ADVI and
NUTS across thirteen different Bayesian linear regression
models from Gelman & Hill (2006). Agrawal et al. (2020)
shows that normalizing flows compose nicely with other
advances in black-box VI (e.g., stick the landing, impor-
tance weighting). However, none of these works treat the
issue of fat-tailed targets and inappropriate tail decay. To
our knowledge, only TAFs (Jaini et al., 2020) explicitly con-
sider flows with tails heavier than Gaussians. Our work here
can be viewed as a direct improvement of Jaini et al. (2020),
and we make extensive comparison to this work throughout
the body of this paper. At a high level, we provide a the-
ory for fat-tails which is sensitive to the rate of tail decay
and develop a framework to characterize and address the
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tail-isotropic limitations plaguing TAFs.

2. Flow-Based Methods for Fat-Tailed
Variational Inference

2.1. Flow-Based VI Methods

The objective of VI is to approximate a target distribution
π(x) by searching over a variational family Q = {qφ : φ ∈
Φ} of probability distributions qφ. While alternatives exist
(Li & Turner, 2016; Wang et al., 2018), VI typically seeks to
find qφ “close” to π, as measured by Kullback-Leibler diver-
gence D(qφ ‖ π). To ensure tractability without sacrificing
generality, in practice (Wingate & Weber, 2013; Ranganath
et al., 2014) a Monte-Carlo approximation of the evidence
lower bound (ELBO) is maximized:

ELBO(φ) =

∫
qφ(x) log

π̄(x)

qφ(x)
dx

≈ 1

n

n∑
i=1

log
π̄(xi)

qφ(xi)
, xi

iid∼ qφ, π̄ ∝ π.

To summarize, this procedure enables tractable black-box
VI by replacing π with π̄ ∝ π and approximating expecta-
tions with respect to qφ (which are tractable only in simple
variational families) through Monte-Carlo approximation.
In Bayesian inference and probabilistic programming ap-
plications, the target posterior π(x) = p(x | y) = p(x,y)

p(y)

is typically intractable but π̄(x) = p(x, y) is computable
(i.e., represented by the probabilistic program’s generative /
forward execution).

While it is possible to construct a variational family Q tai-
lored to a specific task, we are interested in VI methods
which are more broadly applicable and convenient to use: Q
should be automatically constructed from introspection of a
given probabilistic model/program. Automatic differentia-
tion variational inference (ADVI, Kucukelbir et al. (2017))
is an early implementation of automatic VI and it is still
the default in certain probabilistic programming languages
(Carpenter et al., 2017). ADVI uses a Gaussian base distri-
bution µ and a transport map fθ = f ◦ ΦAffine comprised
of an invertible affine transform composed with a determin-
istic transformation f from R to the target distribution’s
support (e.g., exp : R → R≥0, sigmoid : R → [0, 1]). As
Gaussians are closed under affine transformations, ADVI’s
representational capacity is limited to deterministic transfor-
mations of Gaussians. Hence it cannot represent complex
multi-modal distributions. To address this, more recent work
(Kingma et al., 2016; Webb et al., 2019) replaces the affine
map ΦAffine with a flow ΦFlow typically parameterized by an
invertible neural network:

Definition 2.1. ADVI (with normalizing flows) comprise
the variational family QADVI := {(f ◦ ΦFlow)∗µ}, where
µ = Normal(0d, Id), ΦFlow is an invertible flow transform

(e.g., Table 1) and f is a deterministic bijection between
constrained supports (Kucukelbir et al., 2017).

As first noted in Jaini et al. (2020), the pushforward
of a light-tailed Gaussian base distribution under a
Lipschitz-continuous flow will remain light-tailed and pro-
vide poor approximation to fat-tailed targets. Despite
this, many major probabilistic programming packages
still make a default choice of Gaussian base distribution
(AutoNormalizingFlow/AutoIAFNormal in Pyro
(Bingham et al., 2019), method=variational in Stan
(Carpenter et al., 2017), NormalizingFlowGroup in
PyMC (Patil et al., 2010)). To address this issue, tail-
adaptive flows (Jaini et al., 2020) use a base distribu-
tion µν =

∏d
i=1 StudentT(ν), where a single degrees-of-

freedom ν ∈ R is used across all d dimensions. Here is a
more precise definition.

Definition 2.2. Tail adaptive flows (TAF) comprise the vari-
ational family QTAF := {(f ◦ ΦFlow)∗µν}, where µν =∏d
i=1 StudentT(ν) with ν shared across all d dimensions,

ΦFlow is an invertible flow, and f is a bijection between con-
strained supports (Kucukelbir et al., 2017). During training,
the shared degrees of freedom ν is treated as an additional
variational parameter.

2.2. Fat-Tailed Variational Inference
Fat-tailed variational inference (FTVI) considers the setting
where the target π(x) is fat-tailed. Such distributions com-
monly arise during a standard “robustification” approach
where light-tailed noise distributions are replaced with fat-
tailed ones (Tipping & Lawrence, 2005). They also appear
when weakly informative prior distributions are used in
Bayesian hierarchical models (Gelman et al., 2006).

To formalize these notions of fat-tailed versus light-tailed
distributions, a quantitative classification for tails is required.
While prior work classified distribution tails according to
quantiles and the existence of moment generating functions
(Jaini et al., 2020, Section 3), here we propose a more natural
and finer-grained classification based upon the theory of
concentration functions (Ledoux, 2001, Chapter 1.2), which
is sensitive to the rate of tail decay.

Definition 2.3 (Classification of tails). For each α, p > 0,
we let

• Epα denote the set of exponential-type random variables X
with P(|X| ≥ x) = Θ(e−αx

p

);

• Lpα denote the set of logarithmic-type random variables
X with P(|X| ≥ x) = Θ(e−α(log x)

p

).

In both cases, we call p the class index and α the tail param-
eter for X . Note that every Epα and Lqβ are disjoint, that is,
Epα ∩ Lqβ = ∅ for all α, β, p, q > 0. For brevity, we define
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Model Autoregressive transform Suff. cond. for Lipschitz-continuity

NICE(Dinh et al., 2015) zj + µj · 1k 6∈[j] µj Lipschitz
MAF(Papamakarios et al., 2017) σjzj + (1− σj)µj σj bounded

IAF(Kingma et al., 2016) zj · exp(λj) + µj λj bounded, µj Lipschitz
Real-NVP(Dinh et al., 2017) exp(λj · 1k 6∈[j]) · zj + µj · 1k 6∈[j] λj bounded, µj Lipschitz

Glow(Kingma & Dhariwal, 2018) σj · zj + µj · 1k 6∈[j] σj bounded, µj Lipschitz
NAF(Huang et al., 2018) σ−1(w> · σ(σjzj + µj)) Always (logistic mixture CDF)
NSF(Durkan et al., 2019) zj1zj 6∈[−B,B] +Mj(zj ; z<j)1xj∈[−B,B] Always (linear outside [−B,B])

FFJORD(Grathwohl et al., 2019) n/a (not autoregressive) Always (required for invertibility)
ResFlow(Chen et al., 2019) n/a (not autoregressive) Always (required for invertibility)

Table 1: Some popular / recently developed flows, the autoregressive transform used in the flow (if applicable), and sufficient
conditions conditions for Lipschitz-continuity. A subset of this table was first presented in Jaini et al. (2020). M(·) denotes
monotonic rational quadratic splines (Durkan et al., 2019).

the ascending families Epα and Lpα analogously as before
except with Θ(·) replaced byO(·). Similarly, we denote the
class of distributions with exponential-type tails with class
index at least p by Ep = ∪α∈R+Epα, and similarly for Lp.

For example, E2α corresponds to α−1/2-sub-Gaussian ran-
dom variables, E1α corresponds to sub-exponentials, and (of
particular relevance to this paper) L1

α corresponds to the
class of power-law distributions.

3. Tail Behavior of Lipschitz Flows
This section states our main theoretical contributions; proofs
are deferred to Appendix B. We sharpen previous impos-
sibility results approximating fat-tailed targets using light-
tailed base distributions (Jaini et al., 2020, Theorem 4) by
characterizing the effects of Lipschitz-continuous transport
maps on not only the tail class but also the class index and
tail parameter (Definition 2.3). Furthermore, we extend
the theory to include polynomial flows (Jaini et al., 2019).
For the multivariate setting, we define the tail-parameter
function (Definition 3.5) to help formalize the notion of
tail-isotropic distributions and prove a fundamental limita-
tion that tail-isotropic pushforwards remain tail-isotropic
(Proposition 3.6).

Most of our results are developed within the context of
Lipschitz-continuous transport maps fθ. In practice, many
flow-based methods exhibit Lipschitz-continuity in their
transport map, either by design (Grathwohl et al., 2019;
Chen et al., 2019), or as a consequence of choice of archi-
tecture and activation function (Table 1). The following
assumption encapsulates this premise.

Assumption 3.1. fθ is invertible, and both fθ and f−1θ are
L-Lipschitz continuous (e.g., sufficient conditions in Table 1
are satisfied).

It is worth noting that domains other than Rd may require an
additional bijection between supports (e.g. exp : R→ R+)
which could violate Assumption 3.1.

3.1. Closure of Tail Classes
Our first set of results pertains to the closure of the tail
classes in Definition 2.3 under Lipschitz-continuous trans-
port maps. While earlier work (Jaini et al., 2020) demon-
strated closure of exponential-type distributions ∪p>0Ep un-
der flows satisfying Assumption 3.1, our results in Theorem
3.2 and Corollaries 3.3 and 3.4 sharpen these observations,
showing that: (1) Lipschitz transport maps cannot decrease
the class index p for exponential-type random variables, but
they can alter the tail parameter α; and (2) under additional
assumptions, they cannot change either class index p or the
tail parameter α for logarithmic-type random variables.

Theorem 3.2 (Lipschitz maps of tail classes). Under As-
sumption 3.1, the distribution classes Ep and Lpα (with
p, α > 0) are closed under every flow transformation in
Table 1.

Informally, Theorem 3.2 asserts that light-tailed base distri-
butions cannot be transformed via Lipschitz transport maps
into fat-tailed target distributions. Note this does not vio-
late universality theorems for certain flows (Huang et al.,
2018) as these results only apply in the infinite-dimensional
limit. Indeed, certain exponential-type families (such as
Gaussian mixtures) are dense in the class of all distributions,
including those that are fat-tailed.

Note that Lpα ⊃ Eqβ for all p, q, α, β, so Theorem 3.2 by
itself does not preclude transformations of fat-tailed base
distributions to light-tailed targets. Under additional as-
sumptions on fθ, we further establish a partial converse that
a fat-tailed base distribution’s tail parameter is unaffected
after pushfoward, hence heavy-to-light transformations are
impossible. Note here there is no ascending union over tail
parameters (i.e., Lpα instead of Lpα).

Corollary 3.3 (Closure of Lpα). If in addition fθ is smooth
with no critical points on the interior or boundary of its
domain, then Lpα is closed.

This implies that simply fixing a fat-tailed base distribution
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a priori is insufficient; the tail-parameter(s) of the base dis-
tribution must be explicitly optimized alongside the other
variational parameters during training. While these addi-
tional assumptions may seem restrictive, note that many
flow transforms explicitly enforce smoothness and mono-
tonicity (Wehenkel & Louppe, 2019; Huang et al., 2018;
Durkan et al., 2019) and hence satisfy the premises. In fact,
we can show a version of Theorem 3.2 ensuring closure
of exponential-type distributions under polynomial trans-
port maps which do not satisfy Assumption 3.1. This is
significant because it extends the closure results to include
polynomial flows such as sum-of-squares flows (Jaini et al.,
2019).

Corollary 3.4 (Closure under polynomial maps). For any
α, β, p, q ∈ R+, there does not exist a finite-degree polyno-
mial map from Epα into Lqβ .

3.2. Multivariate Fat-Tails and Anisotropic Tail
Adaptive Flows

Next, we restrict attention to power-law tails L1
α, and

we develop a multivariate fat-tailed theory and notions of
isotropic/anisotropic tail indices. Using our theory, we prove
that both ADVI and TAF are fundamentally limited because
they are only capable of fitting tail-isotropic target measures
(Proposition 3.6). We consider anisotropic tail adaptive
flows (ATAF): a density modeling method which can repre-
sent tail-anisotropic distributions (Remark 3.8).

For example, consider the target distribution shown ear-
lier in Figure 1 formed as the product of N (0, 1) and
StudentT(ν = 1) distributions. The marginal/conditional
distribution along a horizontal slice (e.g., the distribution
of 〈X, e0〉) is fat-tailed, while along a vertical slice (e.g.,
〈X, e1〉) it is Gaussian. Another extreme example of tail-
anisotropy where the tail parameter for 〈X, v〉 is different
in every direction v ∈ S1 is given in Figure 2. Here Sd−1
denotes the (d − 1)-sphere in d dimensions. Noting that
the tail parameter depends on the choice of direction, we
are motivated to consider the following direction-dependent
definition of multivariate tail parameters.

Definition 3.5. For a d-dimensional random vector X , its
tail parameter function αX : Sd−1 → R̄+ is defined as
αX(v) = − limx→∞ logP(〈v,X〉 ≥ x)/ log x when the
limit exists, and αX(v) = +∞ otherwise. In other words,
αX(v) maps directions v into the tail parameter of the cor-
responding one-dimensional projection 〈v,X〉. The random
vector X is tail-isotropic if αX(v) ≡ c is constant and
tail-anisotropic if αX(v) is not constant but bounded.

Of course, one can construct pathological densities where
this definition is not effective (see Appendix C), but it
will suffice for our purposes. It is illustrative to contrast
with the theory presented for TAF (Jaini et al., 2020),
where only the tail exponent of ‖X‖2 is considered. For

X = (X1, . . . , Xd) with Xi ∈ L1
αi , by Fatou-Lebesgue

and Lemma B.1

P[‖X‖2 ≥ t] = P
[

sup
z∈Sd−1

〈X, z〉 ≥ t
]

≥ sup
z∈Sd−1

P[〈X, z〉 ≥ t] = max
1≤i≤d

νi = max
0≤i≤d−1

αX(ei).

Therefore, considering only the tail exponent of ‖X‖2 is
equivalent to summarizing αX(·) by an upper bound. Given
the absence of the tail parameters for other directions (i.e.,
αX(v) 6= sup‖v‖=1 αX(v)) in the theory for TAF (Jaini
et al., 2020), it should be unsurprising that both their mul-
tivariate theory as well as their experiments only consider
tail-isotropic distributions obtained either as an elliptically-
contoured distribution with fat-tailed radial distribution or∏d
i=1 StudentT(ν) (tail-isotropic by Lemma B.1). Our next

proposition shows that this presents a significant limitation
when the target distribution is tail-anisotropic.

Proposition 3.6 (Pushforwards of tail-isotropic distribu-
tions). Let µ be tail isotropic with non-integer parameter
ν and suppose fθ satisfies Assumption 3.1. Then (fθ)∗µ is
tail isotropic with parameter ν.

To work around this limitation without relaxing Assump-
tion 3.1, it is evident that tail-anisotropic base distributions µ
must be considered. Perhaps the most straightforward modi-
fication to incorporate a tail-anisotropic base distribution re-
places TAF’s isotropic base distribution

∏d
i=1 StudentT(ν)

with
∏d
i=1 StudentT(νi). Note that ν is no longer shared

across dimensions, enabling d different tail parameters to
be represented:

Definition 3.7. Anisotropic Tail-Adaptive Flows (ATAF)
comprise the variational family QATAF := {(f ◦
ΦFlow)∗µν}, where µν =

∏d
i=1 StudentT(νi), each νi is

distinct, and f is a bijection between constrained supports
(Kucukelbir et al., 2017). Analogous to Jaini et al. (2020),
ATAF’s implementation treats νi identically to the other
parameters in the flow and jointly optimizes over them.

Remark 3.8. Anisotropic tail-adaptive flows can repre-
sent tail-anisotropic distributions with up to d different
tail parameters while simultaneously satisfying Assump-
tion 3.1. For example, if ΦFlow = Identity and µν =∏d
i=1 StudentT(i) then the pushforward (ΦFlow)∗µν = µν

is tail-anisotropic.

Naturally, there are other parameterizations of the tail pa-
rameters νi that may be more effective depending on the
application. For example, in high dimensions, one might
prefer not to allow for d unique indices, but perhaps only
fewer. On the other hand, by using only d tail parameters,
an approximation error will necessarily be incurred when
more than d different tail parameters are present. Figure 2
presents a worst-case scenario where the target distribution
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Figure 2: Illustration of the direction-dependent tail-parameter function (right) on a tail-anisotropic distribution (left)
with PDF dP (r, θ) = r−α(θ)rdrdθ and tail parameter α(θ) = 2 + cos(2θ). While prior fat-tailed theory based on
‖X‖2 = sup‖v‖2=1 〈X, v〉 is only sensitive to the largest tail parameter maxθ∈[0,2π] α(θ) = 3.0, our direction-dependent
tail parameter function (bottom, red line) and its values along the standard basis axes (α(0) and α(π/2)) capture tail-
anisotropy.

has a continuum of tail parameters. In theory, this density
could itself be used as an underlying base distribution, al-
though we have not found this to be a good option in practice.
The key takeaway is that to capture several different tails in
the target density, one must consider a base distribution that
incorporates sufficiently many distinct tail parameters.

Concerning the choice of StudentT families, we remark that
since StudentT(ν) ⇒ N (0, 1) as ν → ∞, ATAF should
still provide reasonably good approximations to target dis-
tributions in E2 by taking ν sufficiently large. This can be
seen in practice in Appendix D.

4. Experiments
Here we validate ATAF’s ability to improve a range of prob-
abilistic modeling tasks. Prior work (Jaini et al., 2020)
demonstrated improved density modelling when fat tails
are considered, and our experiments are complementary by
evaluating TAFs and ATAFs for variational inference tasks
as well as by demonstrating the effect of tail-anisotropy for
modelling real-world financial returns and insurance claims
datasets. We implement using the beanmachine proba-
bilistic programming language (Tehrani et al., 2020) and
the flowtorch library for normalizing flows (FlowTorch
Development Team, 2021), and we have open-sourced code
for reproducing experiments in Supplementary Materials.
Additional details for the experiments are detailed in Ap-
pendix E.

4.1. Bayesian Linear Regression

Consider one-dimensional Bayesian linear regression (BLR)
with conjugate priors, defined by priors and likelihood

σ2 ∼ Inv-Gamma(a0, b0)

β | σ2 ∼ N (0, σ2), y | X,β, σ ∼ N (Xβ, σ2),

where a0, b0 are hyperparameters and the task is to ap-
proximate the posterior distribution p(β, σ2 | X, y). Ow-

ing to conjugacy, the posterior distribution can be explic-
itly computed. Indeed, p(β, σ2 | X, y) = ρ(σ2)ρ(β | σ)

where ρ(β | σ) = N (Σn(X>Xβ̂), σ2Σn), Σn = (X>X+

σ−2)−1, β̂ = (X>X)−1X>y, and

ρ(σ2) = Inv-Gamma
(
a0 +

n

2
, b0 +

1

2
(y>y−µ>nΣnµn)

)
.

This calculation reveals that the posterior distribution is
tail-anisotropic: for fixed c we have that p(σ2, β = c |
X, y) ∝ ρ(σ2) ∈ L1

αn as a function of σ (withαn a function
of n) and p(σ2 = c, β | X, y) ∝ ρ(β | c) ∈ E2 as a
function of β. As a result of Proposition 3.6, we expect
ADVI and TAF to erroneously impose Gaussian and power-
law tails respectively for both β and σ2 as neither method
can produce a tail-anisotropic pushforward. This intuition is
confirmed in Figure 3, where we see that only ATAF is the
only method capable of modeling the tail-anisotropy present
in the data.

Conducting Bayesian linear regression is among the stan-
dard tasks requested of a probabilistic programming lan-
guage, yet it still displays tail-anisotropy. To accurately
capture large quantiles, this tail-anisotropy should not be
ignored, necessitating a method such as ATAF.

4.2. Diamond Price Prediction Using Non-Conjugate
Bayesian Regression

Without conjugacy, the BLR posterior is intractable and
there is no reason a priori to expect tail-anisotropy. Regard-
less, this presents a realistic and practical scenario for evalu-
ating ATAF’s ability to improve VI. For this experiment, we
consider BLR on the diamonds dataset (Wickham, 2011)
included in posteriordb (The Stan Developers, 2021).
This dataset contains a covariate matrix X ∈ R5000×24 con-
sisting of 5000 diamonds each with 24 features as well as an
outcome variable y ∈ R5000 representing each diamond’s
price. The probabilistic model for this inference task is spec-
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Figure 3: Bayesian linear regression’s tail-anisotropic posterior (top left) exhibits a fat-tailed conditional in σ (as evidenced
by the convex power-law decay in the top middle panel) and a Gaussian conditional in β (concave graph in top right panel).
While all methods appear to provide a good approximation of the bulk (left column), Proposition 3.6 implies Gaussian
(Gaussian, second row) or isotropic StudentT product (TAF, third row) base distributions yield Gaussian or power-law
tails, respectively, for both σ and β. In contrast, ATAF (bottom row) illustrates Remark 3.8 by modeling simultaneously a
power-law tail on σ and Gaussian tail on β.

ELBO log p(y)

ADVI 2873.90± 6.95 2969.73± 1.73
TAF 2839.64± 9.10 2973.85± 0.87

ATAF 2842.75± 8.83 2976.75± 0.66
NUTS n/a 3724.59± 0.036

(a) diamonds

ELBO log p(y)

ADVI −72.13± 6.89 −53.25± 3.44
TAF −64.64± 4.88 −52.51± 4.41

ATAF −58.63± 4.75 −51.01± 3.71
NUTS n/a −47.78± 0.093

(b) Eight schools

Table 2: Monte-Carlo ELBO and importance weighted Monte-Carlo marginal likelihood p(y) = Ex∼qθ
p(x,y)
qθ(x)

(higher is
better, ± standard errors) estimates from VI on real-world datasets. To understand the variational approximation gap, we
include marginal likelihoods based on “golden samples” from posteriordb (The Stan Developers, 2021) computed
using No-U-Turn-Sampling (NUTS, Hoffman & Gelman (2014); Carpenter et al. (2017)).

Fama-French 5 Industry Daily CMS 2008-2010 DE-SynPUF

ADVI −5.018± 0.056 −1.883± 0.012
TAF −4.703± 0.023 −1.659± 0.004

ATAF −4.699± 0.024 −1.603± 0.034

Table 3: Log-likelihoods (higher is better, ± standard errors) achieved on density modeling tasks involving financial returns
(Fama & French, 2015) and insurance claims (Centers for Medicare and Medicaid Services, 2010) data.
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ified in Stan code provided by The Stan Developers (2021)
and is reproduced here for convenience:

α ∼ StudentT(ν = 3, loc = 8, scale = 10)

σ ∼ HalfStudentT(ν = 3, loc = 0, scale = 10)

β ∼ N (0, I24), y ∼ N (α+Xβ, σ).

For each VI method, we performed 100 trials each con-
sisting of 5000 descent steps on the Monte-Carlo ELBO
estimated using 1000 samples and report the results in Ta-
ble 2a. We report both the final Monte-Carlo ELBO as
well as a Monte-Carlo importance-weighted approximation
to the log marginal likelihood log p(y) = logEx∼qθ

p(x,y)
qθ(y)

both estimated using 1000 samples.

4.3. Eight Schools SAT Score Modelling with Fat-tailed
Scale Mixtures

The eight-schools model (Rubin, 1981; Gelman et al., 2013)
is a classical Bayesian hierarchical model used originally to
consider the relationship between standardized test scores
and coaching programs in place at eight schools. A vari-
ation using half Cauchy non-informative priors (Gelman
et al., 2006) provides a real-world inference problem involv-
ing fat-tailed distributions, and is formally specified by the
probabilistic model

τ ∼ HalfCauchy(loc = 0, scale = 5)

µ ∼ N (0, 5), θ ∼ N (µ, τ), y ∼ N (θ, σ).

Given test scores and standard errors {(yi, σi)}8i=1, we are
interested in the posterior distribution over treatment effects
θ1, . . . , θd. The experimental parameters are identical to
Section 4.2, and results are reported in Table 2b.

4.4. Financial and Actuarial Applications

To examine the advantage of tail-anisotropic modelling in
practice, we considered two benchmark datasets from finan-
cial (daily log returns for five industry indices during 1926–
2021 (Fama & French, 2015)) and actuarial (per-patient in-
patient and outpatient cumulative Medicare/Medicid (CMS)
claims during 2008–2010 (Centers for Medicare and Med-
icaid Services, 2010)) applications where practitioners ac-
tively seek to model fat-tails and account for black-swan
events. Identical flow architectures and optimizers were
used in both cases, with log-likelihoods presented in Ta-
ble 3. Both datasets exhibited superior fits after allowing for
heavier tails, with a further improved fit using ATAF for the
CMS claims dataset.

5. Conclusion
In this work, we have sharpened existing theory for ap-
proximating fat-tailed distributions with normalizing flows,

and we formalized tail-(an)isotropy through a direction-
dependent tail parameter. With this, we have shown that
many prior flow-based methods are inherently limited by
tail-isotropy. With this in mind, we proposed a simple flow-
based method capable of modeling tail-anisotropic targets.
As we have seen, anisotropic FTVI is already applicable
in fairly elementary examples such as Bayesian linear re-
gression; and ATAFs provide one of the first methods for
using the representational capacity of flow-based methods,
while simultaneously producing tail-anisotropic distribu-
tions. A number of open problems still remain, including
the study of other parameterizations of the tail behaviour
of the base distribution. Even so, going forward, it seems
prudent that density estimators, especially those used in
black-box settings, consider accounting for tail-anisotropy
using a method such as ATAF.
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A. Experiments Performing VI Against a Fat-tailed Cauchy Target
The motivation for the fat-tailed variational families used in TAF/ATAF is easily illustrated on a toy example consisting of
X ∼ Cauchy(x0 = 0, γ = 1) ∈ L1

1. As seen in Figure 4, while ADVI with normalizing flows (Kingma et al., 2016; Webb
et al., 2019) appears to provide a reasonable fit to the bulk of the target distribution (left panel), the improper imposition of
sub-Gaussian tails results in an exponentially bad tail approximation (middle panel). As a result, samples drawn from the
variational approximation fail a Kolmogorov-Smirnov goodness-of-fit test against the true target distribution much more
often (right panel, smaller p-values imply more rejections) than a variational approximation which permits fat-tails. This
example is a special case of Theorem 3.2.
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Figure 4: When performing FTVI to approximate a X ∼ Cauchy(x0 = 0, γ = 1) target (left panel, green dotted line), the
use of a Gaussian variational family (ADVI, solid blue line) can incur exponentially bad tail approximations (middle panel)
compared to methods such as ATAF which permit heavier tails (orange dashed line). As a consequence, ADVI samples
(blue, right panel) are rejected by the Kolmogorov-Smirnov test more often than ATAF samples (orange, right panel).

B. Proofs of Our Main Theoretical Results
Proof of Theorem 3.2. Let X be a random variable from either Epα or Lpα. Its concentration function (Equation 1.6 Ledoux
(2001) is given by

αX(r) := sup{µ{x : d(x,A) ≥ r};A ⊂ supp X,µ(A) ≥ 1/2} = P(|X −mX | ≥ r).
Under Assumption 1, fθ is Lipschitz (say with Lipschitz constant L) so by Proposition 1.3 of Ledoux (2001),

P(|fθ(X)−mfθ(X)| ≥ r) ≤ 2αX(r/L) = O(αX(r/L)),

where mfθ(X) is a median of fθ(X). Furthermore, by the triangle inequality

P(|fθ(X)| ≥ r) = P(|fθ(X)−mfθ(X) +mfθ(X)| ≥ r)
≤ P(|fθ(X)−mfθ(X)| ≥ r − |mfθ(X)|)
= O(P(|fθ(X)−mfθ(X)| ≥ r))
= O(αX(r/L)), (2)

where the asymptotic equivalence holds because |mfθ(X)| is independent of r. When X ∈ Epα, Equation (2) implies

P(|fθ(X)| ≥ r) = O(e−
α
L r

p

) =⇒ fθ(X) ∈ Epα/L,
from whence we find that the Lipschitz transform of exponential-type tails continues to possess exponential-type tails with
the same class index p, although the tail parameter may have changed. Hence, Ep is closed under Lipschitz maps for each
p ∈ R>0. On the other hand, when X ∈ Lpα, Equation (2) also implies that

P(|fθ(X)| ≥ r) = O(e−α(log(r/L))
p

) = O(e−α(log r)
p

),

and therefore, fθ(X) ∈ Lpα. Unlike exponential-type tails, Lipschitz transforms of logarithmic-type tails not only remain
logarithmic, but their tails decay no slower than a logarithmic-type tail of the same class index with the same tail parameter
α. This upper bound suffices to show closure under Lipschitz maps for the ascending family Lpα.
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Proof of Corollary 3.3. Let fθ be as before with the additional assumptions. Since fθ is a smooth continuous bijection,
it is a diffeomorphism. Furthermore, by assumption fθ has invertible Jacobian on the closure of its domain hence
supx∈dom fθ

|(fθ)′(x)| ≥M > 0. By the inverse function theorem, (fθ)
−1 exists and is a diffeomorphism with

d

dx
(fθ)

−1(x) =
1

(fθ)′((fθ)−1(x))
≤ 1

M
.

Therefore, (fθ)
−1 is M−1-Lipschitz and we may apply Theorem 3.2 to conclude the desired result.

Proof of Corollary 3.4. Let X ∈ Epα. By considering sufficiently large X such that leading powers dominate, it suffices to
consider monomials Y = Xk. Notice P(Y ≥ x) = P(X ≥ x1/k) = Θ(e−αx

p/k

), and so Y ∈ Ep/kα . The result follows by
disjointness of E and L.

Lemma B.1. Suppose X ∈ L1
α and Y ∈ L1

β . Then X + Y ∈ L1
min{α,β}.

Proof. First, let γ = min{α, β}. It will suffice to show that (I) P(|X + Y | ≥ r) = O(r−γ), and (II) P(|X + Y | ≥ r) ≥
Θ(r−γ). Since (X,Y ) 7→ |X + Y | is a 1-Lipschitz function on R2 and P(|X| ≥ r) + P(|Y | ≥ r) = O(r−γ), (I) follows
directly from the hypotheses and Proposition 1.11 of Ledoux (2001). To show (II), note that for any M > 0, conditioning
on the event |Y | ≤M ,

P (|X|+ |Y | ≥ r | |Y | ≤M) ≥ P (|X| ≥ r −M) .

Therefore, by taking M to be sufficiently large so that P(|Y | ≤M) ≥ 1
2 ,

P (|X + Y | ≥ r) ≥ P (|X|+ |Y | ≥ r)
≥ P (|X|+ |Y | ≥ r | |Y | ≤M)P (|Y | ≤M)

≥ 1

2
P (|X| ≥ r −M) = Θ(r−α).

The same process with X and Y reversed implies P(|X + Y | ≥ r) ≥ Θ(r−β) as well. Both (II) and the claim follow.

To show Proposition 3.6, we will require a few extra assumptions to rule out pathological cases. The full content of
Proposition 3.6 is contained in the following theorem.

Theorem B.2. Suppose there exists ν > 0 such that C : Sd−1 → (0,∞) satisfies C(v) := limx→∞ xνP(|〈v,X〉| > x) for
all v ∈ Sd−1. If ν is not an integer and f is a bilipschitz function, then f(X) is tail-isotropic with tail index ν.

Proof. Since x 7→ 〈v, f(x)〉 is Lipschitz continuous for any v ∈ Sd−1, Theorem 3.2 implies 〈v, f(X)〉 ∈ L1
ν . Let

θ ∈ (0, π/2) (say, θ = π/4), and let Sv = {x : cos−1(〈x/‖x‖, v〉) ≤ θ} for each v ∈ Sd−1. Then

Hv := {x : 〈v, x〉 > 1} ⊃ {x : ‖x‖ > (1− cos θ)−1} ∩ Sv.

From Theorem C.2.1 of Buraczewski et al. (2016), since ν 6∈ Z, there exists a non-zero measure µ such that

µ(E) = lim
x→∞

P(x−1X ∈ E)

P(‖X‖ > x)
,

for any Borel set E. Consequently, µ is regularly varying, and so by the spectral representation of regularly varying random
vectors (see p. 281 Buraczewski et al. (2016)), there exists a measure P such that

lim
x→∞

P(‖X‖ > tx,X/‖X‖ ∈ E)

P(‖X‖ > x)
= t−νP (E),
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for any Borel set E on Sd−1 and any t > 0. Letting Fv = {y/‖y‖ : f(y) ∈ Sv} ⊂ Sd−1 (noting that P (Fv) > 0 by
assumption), since m‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤M‖x− y‖ for all x, y,

lim inf
x→∞

P(f(X) ∈ xHv)

P(‖f(X)‖ > x)
≥ lim inf

x→∞
P(‖f(X)‖ > x(1− cos θ)−1, f(X) ∈ Sv)

P(‖f(X)‖ > x)

≥ lim inf
x→∞

P(‖X‖ > x(m(1− cos θ))−1, X/‖X‖ ∈ Fv)
‖X‖ > x/M

≥ P (Fv)

(
M

m(1− cos θ)

)−ν
> 0, yaB

where P (Fv) > 0 follows from the bilipschitz condition for f . Therefore, we have shown that P(〈v, f(X)〉 > x) =
Θ(P(‖f(X)‖ > x)) for every v ∈ Sd−1. Since P(‖f(X)‖ > x) obeys a power law with exponent ν by Corollary 3.3,
f(X) is tail-isotropic with exponent ν.

C. Example of Non-existence of Tail Parameter Due to Oscillations
Consider StudentT(ν = 1)⊗ StudentT(ν = 2) and “spin” it using the radial transformation (r, θ) 7→ (r, r + θ) (Figure 5).
Due to oscillations, αX(v) is not well defined for all v ∈ S1.
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Figure 5: Taking a tail-anisotropic distribution (left) and “spinning” it (middle) results in one-dimensional projections which
oscillate between tail parameters (as seen in log p(〈X, e0〉) in right panel) and result in an ill-defined direction-dependent
tail parameter function αX(·) due to a divergent limit.

D. Normal-normal Conjugate Model
We consider a Normal-Normal conjugate inference problem where the posterior is known to be a Normal distribution as
well. Here, we aim to show that ATAF performs no worse than ADVI because StudentT(ν)→ N(0, 1) as ν →∞. Figure 6
shows the resulting density approximation, which can be seen to be reasonable for both a Normal base distribution (the
“correct” one) and a StudentT base distribution. This suggests that mis-specification (i.e., heavier tails in the base distribution
than the target) may not be too problematic.



Fat–Tailed VI with Anisotropic Tail Adaptive Flows

Figure 6: Variational inference against a light tailed Normal posterior. Both light and heavy tail variational families yield
similar results.

E. Additional Details For Experiments
All experiments were performed on an Intel i8700K with 32GB RAM and a NVIDIA GTX 1080 running PyTorch 1.9.0 /
Python 3.8.5 / CUDA 11.2 / Ubuntu Linux 20.04 via Windows Subsystem for Linux. For all flow-transforms ΦFlow, we used
inverse autoregressive flows (Kingma et al., 2016) with a dense autoregressive conditioner consisting of two layers of either
32 or 256 hidden units depending on problem (see code for details) and ELU activation functions. As described in Jaini et al.
(2020), TAF is trained by including ν within the Adam optimizer alongside other flow parameters. For ATAF, we include all
νi within the optimizer. Models were trained using the Adam optimizer with 10−3 learning rate for 10000 iterations, which
we found empirically in all our experiments to result in negligible change in ELBO at the end of training.

For Table 2a and Table 2b, the flow transform ΦFlow used for ADVI, TAF, and ATAF is comprised of two hidden layers
of 32 units each. NUTS uses no such flow transform. Variational parameters for each normalizing flow were initialized
using torch’s default Kaiming initialization (He et al., 2015) Additionally, the tail parameters νi used in ATAF were
initialized to all be equal to the tail parameters learned from training TAF. We empirically observed this resulted in more
stable results (less variation in ELBO / log p(y) across trials), which may be due to the absence of outliers when using a
Gaussian base distribution resulting in more stable ELBO gradients. This suggests other techniques for handling outliers
such as winsorization may also be helpful, and we leave further investigation for future work.

For Figure 3, the closed-form posterior was computed over a finite element grid to produce the “Target” row. A similar
progressive training scheme used for Table 2a was also used here, with the TAF flow transform ΦFlow initialized from the
result of ADVI and ATAF additionally initialized all tail parameters νi based on the final shared tail parameter obtained
from TAF training. Tails are computed along the β = 1 or σ = 1 axes because the posterior is identically zero for σ = 0,
hence it reveals no information about the tails.


