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Abstract

A grammatical gender system divides a lex-
icon into a small number of relatively fixed
grammatical categories. How similar are these
gender systems across languages? To quantify
the similarity, we define gender systems ex-
tensionally, thereby reducing the problem of
comparisons between languages’ gender sys-
tems to cluster evaluation. We borrow a rich
inventory of statistical tools for cluster evalu-
ation from the field of community detection
(Driver and Kroeber, 1932; Cattell, 1945), that
enable us to craft novel information-theoretic
metrics for measuring similarity between gen-
der systems. We first validate our metrics, then
use them to measure gender system similarity
in 20 languages. Finally, we ask whether our
gender system similarities alone are sufficient
to reconstruct historical relationships between
languages. Towards this end, we make phylo-
genetic predictions on the popular, but thorny,
problem from historical linguistics of inducing
a phylogenetic tree over extant Indo-European
languages. Languages on the same branch
of our phylogenetic tree are notably similar,
whereas languages from separate branches are
no more similar than chance.

1 Introduction

As many as half the world’s languages carve
nouns up into classes (Corbett, 2013). In these
languages, nouns are subdivided into gender
categories, which together comprise the language’s
grammatical gender system. A gender system
tends to use a small, fixed number of categories
with fixed usage across speakers. Such categories,
like ‘feminine’, can be defined extensionally,1

and are reflected by agreement with other words
within the noun phrase (i.e., concord). Gender

1When we talk about the extension of a gender system,
we refer to the set of nouns that belong to each gender. This
stands in contrast to the intension of that gender system,
which would be the governing dynamics that gave rise to the
particular partitions observed. See §3.

(a) German, K = 3 (b) Spanish, K = 2

Figure 1: Two gender systems partitioning N = 6 con-
cepts. German (a) has three communities: Obst (fruit)
and Gras (grass) are neuter, Mond (moon) and Baum
(tree) are masculine, Blume (flower) and Sonne (sun)
are feminine. Spanish (b) has two communities: fruta
(fruit), luna (moon), and flor are feminine, and cesped
(grass), arbol (tree), and sol (sun) are masculine.

exhaustively divides up the language’s nouns; that
is, the union of gender categories is the entire
nominal lexicon. Taken this way, a gender system
can be viewed as a partition of the lexicon into
communities of same-gendered nouns. Given this,
a lexical typologist might naturally wish to ask:
how similar are two languages’ gender systems?

Using modern statistical and information-
theoretic tools from the community detection liter-
ature, we offer the first cluster evaluation (Jardine
et al., 1971) perspective on grammatical gender,
and quantify the overlap of gender systems. We
can compare the pairwise overlap of partitions of
gender systems using a rich literature of measures,
such as mutual information and several variants
(Meilă, 2003; Vinh et al., 2010; McCarthy et al.,
2019a), which we survey and contrast. Individual
partitions of lexicons can also be framed as mem-
bers of distributions over partitions—for instance,
the distribution consisting of all partitions of N
items, or of all partitions of N items into K gen-
der clusters, as in Figure 1. For example, Spanish
is bi-gendered (with masculine and feminine): a
lexicon of Spanish nouns (N = 1000) and their
genders would come from a distribution over par-
titions of N = 1000 items into K = 2 clusters.



The same lexicon translated into German, a tri-
gendered language, would come from a distribution
of N = 1000 items partitioned into K = 3 clus-
ters. Indeed, languages needing different numbers
of gender clusters makes this problem non-trivial.
From this, we can compare the similarity to what
we would expect for the same lexica if nouns were
randomly supplied with gender specifications. That
way, we can distinguish meaningful relationships
from noise.

Armed with the first way to quantify community-
wise similarity of gender systems, we ask: Do gen-
der system similarities reflect linguistic phylogeny,
or something else, like areal effects? Across 20
languages, we find that our pairwise overlap results
measurably align with standard pairwise phyloge-
netic relationships. Zooming in on Indo-European,
we find that we can recast pairwise similarities into
an accurate phylogenetic tree, simply by measuring
distance between gender systems and performing
hierarchical agglomerative clustering (see §6.2).

The primary contribution of this work is a novel
metric for lexical typology that measures the pair-
wise similarity of gender systems. We operational-
ize gender systems as partitions over a shared set of
nouns (§3). We design and evaluate our measure-
ments of gender system similarity under this formu-
lation (§4), drawing on insights from community
detection. Then we recover robust phylogenetic re-
lationships between pairs of gender systems by ap-
plying these to 20 gendered languages (§6) and find
that similarity between Slavic and Romance gender
systems does not exceed chance levels. Finally, we
show that our quantification of gender system simi-
larity allows us to construct phylogenetic trees that
closely resemble those posited for Indo-European
in historical linguistics (e.g., Pagel et al. 2000; Gray
and Atkinson 2003; Serva and Petroni 2008).

2 Background: Grammatical Gender

Grammatical gender is a highly fixed classification
system for nouns. Native speakers rarely make
errors in gender recall, which might tentatively ar-
gue against tremendous arbitrary variation (Corbett,
1991). Some regularity can surely be found in the
associations between gender and various features
of the noun, such as orthographic or phonological
form, or semantics. With respect to form-based
regularities, Cucerzan and Yarowsky (2003a) de-
vise a system for inferring noun gender (masculine
or feminine) from contextual clues and character

representations, even in inflected forms of the noun.
Nastase and Popescu (2009) also find that phono-
logical form can lead to predictability of gender in
two three-gender systems. With respect to word
semantics, (Williams et al., 2019) quantify the re-
lationship between the gender on inanimate nouns
and their distributional word vectors.

We can’t rely on form. Using phonological or
orthographic form to derive gender is fraught with
complications: particular to our study, nouns (i.e.,
words that can appear in multiple genders) can
pose issues. In German, only gender concord on
the definite article and adjectives can disambiguate
the gender of some nouns; the same wordform
Band means “volume” when masculine, but “rib-
bon” when neuter and “band, musical group” in
feminine. Another complication with determining
gender from the phonological or orthographic form
of the noun is that correspondences between are
rarely absolute. For example, even though nouns
ending in -e are usually ‘feminine’ in German, this
is not universally the case; for example Affe, and
Löwe etc. are masculine. To sidestep these com-
plications, we abstract away from particular word
forms and observe the objective consequences of
gender over sets of cross-lingual concepts, i.e., in-
dices not word forms, and instead compare those
across gender systems (see Figure 1).

Which gender systems are likely to be similar?
Several accounts highlight similarities between
the gender systems of phylogenetically-related
languages (Fodor, 1959; Ibrahim, 2014) and ar-
gue that they are likely to be at least partially
due to historical relations between communities
and socio-political factors governing language use.
Given this, can we recover phylogenetic similarities
across gender systems using our methods? If so,
this should provide validation that we are indeed
measuring at least some of the genuine similarity
that exists between gender systems.

3 Gender Systems as Partitions

Any concept can be related to its referents either
intensionally or extensionally. While linguistic
research has historically sought to uncover the
rules for associating a noun with gender in terms
of surface features or semantics (see Corbett
1991 for an overview), we take an extensional
approach. That is, we treat a gender category in a
language solely as the set of words it covers. This



maps directly to the notion of a community in
the network science task of community detection:
A community is defined by membership, not by
other arbitrary properties, just as a gender here is
defined by the union of all nouns it subsumes, not
by its phonological realization or contributions to
semantics. The disjoint set of communities forms
a partition of the set of nouns: Each noun is a
member of one and only one cluster.

Although some multi-gendered nouns are
present in our investigated languages (see §2),
these are very rare. We thus make the simplifying
modeling assumption of identifying each word
with only a single gender (in our case, the most
frequent). This assumption is necessary for our
reduction of gender system comparison to cluster-
ing evaluation. Without it, we would be forced for
words like German der/die/das Band to consider
overlapping or “fuzzy” partitions, which although
an intriguing option, will be left for future work.

Notation. A language’s gender system is a parti-
tion, named in sans serif (e.g., A). A gender sys-
tem A has K components called gender classes
(i.e., communities, e.g., {AMSC, AFEM, . . .}); these
are in turn sets whose members are items drawn
from a finite base set A ⊆ L, where A is a sub-
lexicon selected from the full lexicon L. In our
case, A holds all inanimate concepts in our data
(see §5). We use Ω to name the set of all partitions
of N = |A| items (in our case, inanimate nouns)
into K communities. When comparing two lan-
guages’ respective gender systems, we will use the
letters A and B.

4 Comparing Partitions

A partition groups items into a set of disjoint cate-
gories. We could compare any two gender systems
(i.e., partitions) which organize the same nouns
by determining how similar their gender labelings
are. A first pass at quantifying the similarity of
two gender partitions would be to measure simple
overlap. We could ask: What fraction of A agrees
in gender across languages? That is, for each noun
in our multilingual vocabulary, do both languages
lexicalize it with the same gender? This is an eas-
ily interpretable, accuracy-like measure, bounded
by 0 and 1. Still, it has no capacity for comparing
systems with different numbers of categories; the
measure would be handicapped when comparing
two-gender systems to three-gender ones.

Comparing systems with different numbers of

categories, though, is a well known problem in the
field of community detection. While this looks in-
surmountable from the gender perspective, where
gender categories refer to something we recog-
nize, in community detection, the labels themselves
are meaningless—there’s no notion of a so-called
“Cluster 2”. The field has circumvented issues aris-
ing from comparing systems differing in number
of categories by introducing information-theoretic
measures to compare partitions. Cluster evaluation
functions in community detection are, by and large,
based on information-theoretic concepts.

We define a gender system A’s entropy as:

H(A)
def
= −

∑
A∈A

|A|
N

log
|A|
N

(1)

where we observe the standard convention that
0 log 0

def
= 0. How is this notion of entropy for

partitions related to the entropy of a probability dis-
tribution? These are connected through maximum-
likelihood estimation (MLE). In our case, the
maximum-likelihood estimate that an inanimate
noun a is located in a given partition turns out to be
the size of that partition divided by N , e.g. we have
pMLE(MSC) = |AMSC|/N . Recall that the Shannon
entropy of a distribution p is defined as

H(p)
def
= −

∑
a∈A

p(a) log p(a) (2)

We have equality between Eq. 1 and Eq. 2 when
we plug the definition of pMLE into Eq. 2, which is
why Eq. 1 is considered the entropy of a partition.

4.1 Mutual information (MI)
Mutual information is a workhorse of quantifying
similarity between two probability distributions,
measuring how much information (in bits) is shared
between two random variables. Now we consider
the case of the similarity between two partitions.
If we have two partition A and B, we may general-
ize the entropy of a single partition to the mutual
information between two partitions as follows:

I(A;B)
def
=

∑
A∈A

∑
B∈B

|A ∩B|
N

log
N |A ∩B|
|A| |B|

(3)

=
∑
a∈A

∑
b∈B

pMLE(a, b) log
pMLE(a, b)

pMLE(a) pMLE(b)

As the equality above shows, we find, again, that
Eq. 3 has an interpretation as the standard defini-
tion of probabilistic mutual information applied to



the maximum-likelihood estimate of joint partition
membership distribution. To foreshadow future dis-
cussion, we note the mutual information between
any two clusterings on N items is bounded below
by 0 and above by logN . Beyond its interpretation
as shared information, mutual information gives lit-
tle in terms of interpretability: It has no consistent
reference points, beyond that the minimum possi-
ble MI is zero. Therefore, several variants of MI
are preferred in community detection.

Normalization. Furthermore, MI is often nor-
malized to increase its interpretability, as:

NMI(A,B)
def
=

I(A;B)√
H(A) H(B)

(4)

While our denominator is the geometric mean, any
generalized mean of the partitions’ entropies can
be used as a bound to normalize MI (Yang et al.,
2016). As we divide bits by bits (or nats by nats),
normalized mutual information (NMI) is unitless,
unlike entropy and MI. It expresses the amount
of revealed information as a percentage. Unfor-
tunately, NMI has both theoretical and empirical
flaws (Peel et al., 2017; McCarthy, 2017; McCarthy
et al., 2019b); namely, it suffers from the finite-size
effect: the baseline rises as N increases. (Recall
that MI is bounded above by logN .) High reward
for guessing even the trivial partition into single-
ton clusters rises, making the measure—like vanilla
mutual information (as in Eq. 3)—difficult to inter-
pret. For its flaws, we exclude NMI in favor of the
following MI-based measures that are both more
interpretable and more pertinent.

4.2 Adjusted mutual information (AMI)
Spurious correlations between two gender systems
can mislead the results, showing a higher-than-
deserved agreement. We select a measure which
adjusts for these chance clusterings: the adjusted
mutual information (AMI; Vinh et al., 2010). We
employ a recent variant (Gates and Ahn, 2017; Mc-
Carthy et al., 2019b):

AMI(A,B)
def
= (5)

I(A;B)− E [I(A′;B′)]

max I(A′,B′)− E [I(A′;B′)]

where the expectation is taken under the uniform
distribution over Ω, all clusterings on N items with
KA and KB clusters (Gates and Ahn, 2017). The
maximum is also taken over Ω. This distinguishes

it from the textbook form of AMI, where the expec-
tation is over a subset of Ω—only those partitions
whose community sizes match those of the argu-
ments. As we have subtracted the mean, the ex-
pected numerator is centered at 0; the denominator
serves to re-normalize the measure. The measure
thus compares the mutual information for the ob-
served pair of gender systems to all others within
their family. Using AMI also lends some beneficial
properties in cluster evaluation:

Remark 1. AMI has a fixed maximum score 1.0
for exactly matching gender systems.

Remark 2. The mathematical expectation of AMI
is 0 so spurious correlations are not rewarded.

4.3 Variation of Information (VI)

Unlike MI and AMI, Variation of Information
(Meilă, 2003) is a distance (metric), meaning each
language becomes a point in this metric space,
whose set is all possible partitions of N items. VI
is useful because it satisfies the triangle inequality
(Meilă, 2007). Additionally, as a metric, it guar-
antees identity of indiscernibles: if two partitions
are at a distance 0, then they are identical. VI is
defined as

VI(A,B)
def
= H(A | B) + H(B | A) (6)

and is the summation of two conditional entropies.
It can also be normalized by dividing by the joint
entropy, H(A,B). (This measure would be topolog-
ically equivalent to Eq. 6.) We do not adjust VI for
chance. This would deprive it of its metric property,
because of the subtraction in the numerator.

5 Data

Swadesh lists & NorthEuraLex. Our starting
point is Swadesh lists (Buck, 1949; Swadesh,
1950, 1952, 1955, 1971/2006): concept-aligned
minimal inventories of common, “core” or “basic”
terminology thought to be “frequent, universal, and
resistant to change over time” (Kaplan, 2017). For
our purposes, concept-aligned sources are appeal-
ing, because they ensure a consistently present base
set A across all our languages, maximizing com-
parability. We also use the NorthEuraLex dataset
(Dellert and Jäger, 2017)—essentially, an extended
Swadesh list covering 1016 concepts—to further
validate our findings on the original Swadesh lists.
Because grammatical gender on animate nouns has
the added complication that it generally matches



“natural” gender (or expressed preference) of liv-
ing creatures across languages (Corbett, 1991; Ro-
maine, 1997; Kramer, 2015), we omit animate
nouns to remove semantic confounds from our
investigation of cross-lingual gender assignments.
We now take the base setA from the larger concept
list in a broader swath of languages. We have 69
inanimate nouns in the Swadesh lists and 387 in
NorthEuraLex.

Gender dictionaries. We choose a corpus-based
approach to identifying a word’s gender. We study
the gendered languages available in Universal De-
pendencies v2.32 (Nivre et al., 2018), resulting in
a sample of 20 (Hebrew, Greek, Hindi, Lithua-
nian, Latvian, Polish, Croatian, Slovak, Ukrainian,
Russian, Slovenian, Bulgarian, Swedish, Danish,
Romanian, French, Catalan, Italian, Spanish, Por-
tuguese). This sample is somewhat skewed based
on family, with all but one language (Hebrew) be-
longing to Indo-European. All are members of the
Standard Average European Sprachbund (Whorf,
1997; Haspelmath, 2001), except Hebrew, Hindi,
and Greek, which are the only representatives of
their groups. Why the Indo-European focus? First,
we needed aligned concept lists with gender and
animacy annotations in languages which possess a
gender system. Second, it is natural to test unsuper-
vised methods on a sample with a known ground
truth. Indo-European phylogeny, while not with-
out its debates, is relatively well studied, making
it a strong testbed for verifying our methods. Fu-
ture work can enable greater linguistic diversity by
scraping annotated dictionaries.

Gender labels are drawn from the MarMoT
contextual morphological tagger (Müller et al.,
2013) trained on Universal Dependencies corpora
(Nivre et al., 2018) in each language and applied
to Wikipedia in that language. In the case of ho-
mophony (particularly with respect to multiple gen-
ders) and polysemy, we select the consensus gender
(Cucerzan and Yarowsky, 2003b) for the character
sequence—its most frequent gender label. We fill
gaps manually using bilingual English-target lan-
guage dictionaries. When multiple words are given
to express a concept in a language, we select the
most frequent.

2 German and Arabic were excluded because of complica-
tions arising through alignment to annotated dictionaries.

6 Experiments

We apply each measure to the gender systems
from our Swadesh lists, then validate our results
on NorthEuraLex. We apply validation to en-
sure that they are picking up robust similarities
as opposed to just reflecting properties of particu-
lar word lists. (See github.com/aryamccarthy/

gender-partitions.) We then reconstruct phylo-
genetic trees of the languages involved. The trees
show high agreement with ground truth, compared
to random baselines.

6.1 Similarity measures

We apply the three evaluation measures (§4) to
the partitions computed for our languages over
the common conceptual lexicon. Figure 2 shows
the pairwise scores for languages’ gender systems
(on the Swadesh list) as partitions. The rows
and columns have been reordered according to
a “ground truth” of pairwise distances (Serva
and Petroni, 2008), for reasons we will explain
in the next subsection.3 Regardless of measure,
a few clusters emerge along the diagonal. The
(Balto-)Slavic branch (i.e., Polish, Croatian,
Slovene, Ukrainian, Slovenian, Russian, and Bul-
garian) is present at the top left, and the Romance
branch (i.e., French, Catalan, Italian, Spanish, and
Portuguese) appears at the bottom right. Outside
of these blocks, AMI shows us that the similarity
of gender systems is no better than a chance
relationship; at the whole-lexicon level, influence
from the common Indo-European root is absent.

We also apply our measures to the wider swath
of languages and larger aligned inventories of
NorthEuraLex. The Romance languages again
form a block, as do the Balto-Slavic languages.
Figure 3 shows similar separation into families for
both MI (a) and AMI (c), though this is less pro-
nounced for Variation of Information (b). Variation
of Information shows some surprising associations
not present in AMI, such as associating Hebrew
and Slovene highly with the Romance block.

Romanian deserves particular note: It is a
Romance language but has been geographically
isolated from its family for over a millennium,
instead sharing membership in the Balkan Sprach-
bund with Greek and Bulgarian. As such, we

3Selecting a ground truth hierarchy of languages is a con-
tentious and sometimes political matter; even well-accepted
trees suffer from criticism (Ringe et al., 2002; Gray and Atkin-
son, 2003; Greenhill, 2011; Pereltsvaig and Lewis, 2015).

https://github.com/aryamccarthy/gender-partitions
https://github.com/aryamccarthy/gender-partitions
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Figure 2: Heatmaps uncovered in inanimate Swadesh list under each pairwise similarity measure, grouped by
Levenshtein Distance ground-truth phylogenetic trees (Serva and Petroni, 2008). appendix A gives language codes.
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Figure 3: Heatmaps uncovered in inanimate NorthEuraLex under each pairwise similarity measure, grouped by
Levenshtein Distance ground-truth phylogenetic trees (Serva and Petroni, 2008).

may ask whether its phylogeny or its areal effects
are reflected in the gender similarity metrics.
While Romanian differs from other Romance
languages in many ways (Dinu and Dinu, 2005;
Dobrovie-Sorin, 2011)—e.g., it possesses three
genders instead of two4—it is still more similar
to its phylogenetically related Romance relatives
than to Balto-Slavic languages. This is easiest to
discern in the Variation of Information plot: weak
connections surface between Romanian and both
Slovene and Ukrainian, but the majority of the
Balto-Slavic languages are quite distant from it.

6.2 Phylogeny
Inspired by the findings in the previous section
(especially the high similarity among Romance
languages), we further validate our measure, asking
whether the resulting similarities reflect known phy-
logenetic ground truth—namely, the developmental
history of Indo-European languages. Obviously,
there are many more facets to languages’ related-

4This claim can be debated (Bateman and Polinsky, 2010):
The neuter gender manifests as masculine when singular and
feminine when plural (Corbett, 1991).

ness than their gender systems, so it is interesting
to find signal this strong from a single category.
Rabinovich et al. (2017) cluster languages based on
simple features of their translations into a common
target language to craft phylogenetic trees. We take
a similar approach, asking whether the pairwise
similarities of gender systems are enough to reveal
phylogenetic truth or some other relationship. We
create phylogenetic trees through agglomerative
hierarchical clustering, using both VI and one
minus the AMI as distance measures. We use the
weighted pair group method of averages (Sokal and
Michener, 1958; Müllner, 2011) as implemented
in the SciPy library (Jones et al., 2001).

The resulting trees (“dendrograms”) can be visu-
alized showing the sequence of cluster formations
during hierarchical clustering (Figure 4 and Fig-
ure 5). In a dendrogram, any ordering of the leaves
maintains fidelity to the computed tree structure, so
long as the branching is still correct. We choose to
improve upon this by optimally ordering the leaves,
swapping subtrees to convey similarity both within
and across subtrees (Bar-Joseph et al., 2001). On
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Figure 4: Phylogenies for inanimate Swadesh under each similarity measure. Colors label levels of similarity, with
green being most similar, followed by red, then blue (e.g., blue is >70% of max value).
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Figure 5: Phylogenies for inanimate NorthEuraLex under each similarity measure. Colors label levels of similarity,
with green being most similar, followed by red, cyan, and dark blue (e.g., dark blue is >70% of max value).

the whole, our dendrograms recover known phy-
logenetic relationships between the languages we
consider; this serves to largely validate our mea-
sures as having uncovered some meaningful sim-
ilarity between the languages’ gender system. In-
deed, in every case, we reconstruct the subtree of
Romance languages with high fidelity. The only
difference is that on NorthEuraLex, Catalan is more
similar to Portuguese and Spanish than Italian is. In
all trees, Romanian is always grouped with the Ro-
mance languages, matching its ancestry. The Balto-
Slavic subtree is less perfect. MI and AMI recover
similarities between Russian and Ukrainian (East-
ern Slavic), Slovak and Polish (Western Slavic),
and Croatian and Bulgarian (South Slavic) fairly
well. Further, the Slavic and Baltic languages are
properly joined to form a Balto-Slavic group. We
take this as validation of our method.

When measuring with Variation of Information,
though, things go awry. While it correctly pairs
Russian and Ukrainian and recreates the same Ro-
mance subtree as the other measures, there are
some major discrepancies. Hebrew, the only non–
Indo-European language, is found to be closer to
the Romance languages than to the Balto-Slavic

cluster. Hindi’s closeness to others is similarly ex-
aggerated. In fact, everything seems to be close
for VI, except Greek! As the other measures better
capture the phylogeny, we suggest that similarity
measured with Variation of Information is ill suited
to our main task.

6.3 Quantitative Evaluation
Our proposals to measure similarity of gender sys-
tems give rise to dendrograms that resemble phy-
logenetic trees. But how much so? We answer
this by measuring the similarity to the ground
truth tree. To measure the similarity of two trees
T1 and T2, we use Rabinovich et al. (2017)’s
extension of the L2 norm to leaf pair distance.
Here, we sum the number of edges on a path be-
tween two nodes to get their distance d. We then
compute the total distance as the sum of squared
distances:

∑
i 6=j (dT1(`i, `j)− dT2(`i, `j))

2, where
each `i identifies one language (or leaf).

We show that the distance according to any of
our three measures is significantly more like the
ground truth (from Serva and Petroni, 2008) than
chance by comparing the computed trees to 1000
randomly generated trees on the same set of lan-
guages. (We report mean and standard deviation of



distance from the ground truth. We use Rabinovich
et al. (2017)’s unweighted distance.) For each com-
bination of dataset and measure, we use McNe-
mar’s test for significance and find p < 0.0001.

7 Related Work

There is a baffling dearth of work on quantifying
similarity of gender systems. There is, however,
ample work on characterizing intensional gender
systems, i.e., sets of grammatical rules, that can be
divided (Corbett, 1991) into sets of rules based on
morphology (Tucker et al., 1977; Gregersen, 1967;
Wald, 1975; Plank, 1986, i.a.) and on phonology
(Bidot, 1925; Tucker et al., 1977; Newman, 1979;
Hayward and Corbett, 1988; Marchese, 1988). In-
tensional approaches, particularly those with typo-
logical leanings, contribute very fine grained re-
search on particular pairwise similarities for partic-
ular languages and dialects. Although we cannot
survey these in detail here, we would love for our
measures to contribute findings that can comple-
ment these approaches.

Relatedly, other recent works have investigated
grammatical gender and other types of noun clas-
sification systems with information theoretic tools.
For example, Williams et al. 2020b uses mutual
information to quantify the strength of the rela-
tionships between declension class, grammatical
gender, distributional semantics, and orthographic
form respectively in several languages. Williams
et al. 2020a, which is arguably closest to this work,
measures the strength of semantic relationships be-
tween inanimate nouns and verbs or adjectives that
takes those nouns as arguments, and that work can
be seen as comparing the similarity of nouns clus-
tered by their gender, with the same nouns clustered
by the adjectives that modify them or the verbs that
take them as arguments.

Although we adopt information theoretic mea-
sures, here there are two other major classes of clus-
ter evaluation measures: set-matching measures,
and pair-counting measures, which tally which
pairs of items are in the same or different com-
munities. One popular set-matching measure in
information retrieval, purity (Manning et al., 2008),
is asymmetric and biased by the size and number
of communities (Danon et al., 2005). Its symmetric
form, the F-measure (Artiles et al., 2007), has clear
bounds but gives no indication of average-case per-
formance.

The adjusted Rand index (ARI; Hubert and Ara-

Dataset Measure Score St. Dev.

Swadesh MI 344 -
VI 312 -
AMI 344 -
Random 1184 133.4

NorthEuraLex MI 1231 -
VI 1164 -
AMI 1548 -
Random 2531 209.6

Table 1: Distances of generated trees from gold tree.

bie, 1985) is the preeminent pair-counting measure.
It is related to AMI, adjusting the Rand index in the
same way that AMI adjusts MI. ARI also computes
an expectation, which can be computed over the
proper distribution (Gates and Ahn, 2017), but it
is empirically better suited to large, balanced clus-
ters. In our case of small and uneven clusters, AMI
should be preferred (Romano et al., 2016).

We can only survey a representative handful of
the numerous cluster evaluation measures in the
limited space we have here. See McCarthy et al.
(2019b) for an outline of desiderata for comparing
partitions, as well as a general class of appropriate
measures, and for further motivation for AMI us-
ing a different null model—languages have a fixed
number of gender classes, so we select one over N
items with K communities, rather than an arbitrary
number of communities.

8 Conclusion

We have presented a clean method for comparing
grammatical gender systems across languages: By
defining gender classes extensionally, we reduced
the problem to cluster evaluation from community
detection. We validate three metrics by recovering
known phylogenic relationships in our languages,
with measurable success. Separate Indo-European
branches are no more similar than chance.

We emphasize that our methods are not specifi-
cally tailored to gender systems. One could apply
them more broadly other aspects of the lexicon, e.g.
to Indo-European verb classes, Bantu noun classes,
or diachronic time slices of a single language’s gen-
der system, data permitting. A related challenge
is East and Southeast Asian numeral classifier sys-
tems, which associate nouns with classifiers based
largely on the semantic properties of the nouns
(Kuo and Sera, 2009; Zhan and Levy, 2018; Liu
et al., 2019). They display more idiolectal variation,
and often more than one classifier can accompany
a given noun (Hu, 1993), unlike for gender (where



this is rare). We note that we could further extend
our measures to fuzzy partitions, which remain less
explored in community detection, but are a promis-
ing avenue for future work.
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A Languages

While there are over 70 languages in the Univer-
sal Dependencies treebanks, only a select handful
possess grammatical gender. We use 20 languages
in the Universal Dependencies corpora that have
gender and also present in our concept lists. Below
find their ISO 639-1 codes (used in the paper to con-
serve space), ISO 639-3 codes (widely preferred),
and their major family (in the case of Hebrew) or
subfamily (in the case of our Indo-European lan-
guages), and the number of grammatical genders
they have:

Language ISO 639-1 ISO 639-3 (Sub-)Family Genders

Bulgarian bg bul Balto-Slavic 3
Catalan ca cat Romance 2
Danish da dan Germanic 2
Greek el ell Hellenic 3
Spanish es spa Romance 2
9 French fr fra Romance 2
Hebrew he heb Semitic 2
Hindi hi hin Indo-Iranian 2
Croatian hr hrv Balto-Slavic 3
Italian it ita Romance 2
Lithuanian lt lit Balto-Slavic 2
Latvian lv lav Balto-Slavic 2
Polish pl pol Balto-Slavic 3
Portuguese pt por Romance 2
Romanian ro ron Romance 3
Russian ru rus Balto-Slavic 3
Slovak sk slk Balto-Slavic 3
Slovene sl slv Balto-Slavic 3
Swedish sv swe Germanic 2
Ukrainian uk ukr Balto-Slavic 3

Table 2: Languages, with their subfamilies and ISO
codes, used in this study.


