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Abstract
We consider infinite-horizon discounted Markov decision processes and study the convergence rates of the natural policy
gradient (NPG) and the Q-NPG methods with the log-linear policy class. Using the compatible function approximation
framework, NPG and Q-NPG with log-linear policies can be written as approximate versions of the policy mirror descent
(PMD) method. By extending a recent analysis of PMD in the tabular setting, we obtain linear convergence rates
and O(1/ε2) sample complexities for both NPG and Q-NPG with log-linear policy parametrization using a simple,
non-adaptive geometrically increasing step size, without resorting to entropy or other strongly convex regularization. As a
byproduct, we obtain sublinear convergence rates for both NPG and Q-NPG with arbitrary large constant step sizes.

Keywords: discounted Markov decision process, natural policy gradient, policy mirror descent, log-linear policy, sample
complexity.

1. Introduction

Policy gradient (PG) methods have emerged as a popular class of algorithms for reinforcement learning. Unlike classical
methods based on (approximate) dynamic programming (e.g., Puterman, 1994; Sutton and Barto, 2018), PG methods
update directly the policy and its parametrization along the gradient direction of the value function (e.g., Williams, 1992;
Sutton et al., 2000; Konda and Tsitsiklis, 2000; Baxter and Bartlett, 2001). An important variant of PG is the natural
policy gradient (NPG) method (Kakade, 2001). NPG uses the Fisher information matrix of the policy distribution as
a preconditioner to improve the policy gradient direction, similar to quasi-Newton methods in classical optimization.
Variants of NPG with policy parametrization through deep neural networks were shown to have impressive empirical
successes (Schulman et al., 2015; Lillicrap et al., 2016; Mnih et al., 2016; Schulman et al., 2017).

Motivated by the success of NPG in practice, there is now a concerted effort to develop convergence theories for the NPG
method. Neu et al. (2017) provide the first interpretation of NPG as a mirror descent (MD) method (Nemirovski and
Yudin, 1983; Beck and Teboulle, 2003). By leveraging different techniques for analyzing MD, it has been established
that NPG converges to the global optimum in the tabular case (Agarwal et al., 2021; Khodadadian et al., 2021; Xiao,
2022) and some more general settings (Shani et al., 2020; Tomar et al., 2022; Vaswani et al., 2022; Kuba et al., 2022).
In order to get fast linear convergence rate for NPG, several recent works consider the regularized NPG methods, such
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as the entropy-regularized NPG (Cen et al., 2021) and other convex regularized NPG (Lan, 2022; Zhan et al., 2021). By
designing appropriate step sizes, Khodadadian et al. (2021) and Xiao (2022) obtain linear convergence of NPG without
regularization. However, all these linear convergence results are limited in the tabular setting (direct parametrization). It
remains unclear whether same convergence rate can be established in the function approximation regime.

In this paper we provide an affirmative answer to this question for the log-linear policy class. Our approach is based
on the framework of compatible function approximation (Sutton et al., 2000; Kakade, 2001), which was extensively
developed by Agarwal et al. (2021). Using this framework, variants of NPG with log-linear policies can be written as
policy mirror descent (PMD) methods with approximate evaluations of the advantage function or Q-function (giving rise
to NPG or Q-NPG respectively). Then by extending a recent analysis of PMD (Xiao, 2022), we obtain non-asymptotic
linear convergence of both NPG and Q-NPG with log-linear policies. A distinctive feature of this approach is the use
of a simple, non-adaptive geometrically increasing step size, without resorting to entropy or other strongly convex
regularization. See Appendix A for a thorough review.

2. Preliminaries on Markov Decision Processes

We consider an MDP denoted as M = {S,A,P, c, γ}, where S is a finite state space, A is a finite action space,
P : S × A → S is a Markovian transition model with P(s′ | s, a) being the transition probability from state s to s′
under action a, c is a cost function with c(s, a) ∈ [0, 1] for all (s, a) ∈ S × A, and γ ∈ [0, 1) is a discounted factor.
Here we use cost instead of reward to better align with the convention in the optimization literature.

The agent’s behavior is modeled as a stochastic policy π ∈ ∆(A)|S|, where πs ∈ ∆(A) is the probability distribution
over actions A in state s ∈ S . At each time t, the agent takes an action at ∈ A given the current state st ∈ S , following
the policy π, i.e., at ∼ πst . Then the MDP transitions into the next state st+1 with probability P(st+1 | st, at) and the
agent encounters the cost ct = c(st, at). Thus, a policy induces a distribution over trajectories {st, at, ct}t≥0. In the
infinite-horizon discounted setting, the cost function of π with an initial state s is defined as

Vs(π)
def
= E

at∼πst
st+1∼P(·|st,at)

[ ∞∑
t=0

γtc(st, at) | s0 = s

]
. (1)

Given an initial state distribution ρ ∈ ∆(S), the goal of the agent is to find a policy π that (approximately) minimizes
the expected cost function

Vρ(π)
def
= Es∼ρ [Vs(π)] =

∑
s∈S

ρsVs(π) = 〈V (π), ρ〉 .

A more granular characterization of the performance of a policy is the state-action cost function (Q-function). For any
pair (s, a) ∈ S ×A, it is defined as

Qs,a(π)
def
= E

at∼πst
st+1∼P(·|st,at)

[ ∞∑
t=0

γtc(st, at) | s0 = s, a0 = a

]
. (2)

Let Qs ∈ R|A| denote the vector [Qs,a]a∈A. Then we have Vs(π) = Ea∼πs [Qs,a(π)] = 〈πs, Qs(π)〉. The advantage
function1 is a centered version of the Q-function:

As,a(π)
def
= Qs,a(π)− Vs(π), (3)

which satisfies Ea∼πs [As,a(π)] = 0 for all s ∈ S.

Visitation probabilities. Given a starting state distribution ρ ∈ ∆(S), we define the state visitation distribution
dπ(ρ) ∈ ∆(S), induced by a policy π, as

dπs (ρ)
def
= (1− γ)Es0∼ρ

[ ∞∑
t=0

γt Prπ(st = s | s0)

]
,

1. An advantage function should measure how much better is a compared to π, while here A is positive when a is worse than π.
We keep calling A advantage function to better align with the convention in the RL literature.
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where Prπ(st = s | s0) is the probability that the t-th state is equal to s by following the trajectory generated by π
starting from s0. We define the state-action visitation distribution d̄π(ρ) ∈ ∆(S ×A) as

d̄πs,a(ρ)
def
= dπs (ρ)πs,a = (1− γ)Es0∼ρ

[ ∞∑
t=0

γt Prπ(st = s, at = a | s0)

]
. (4)

In addition, we extend the definition of d̄π(ρ) by specifying the initial state-action distribution ν ∈ ∆(S ×A), i.e.,

d̃πs,a(ν)
def
= (1− γ)E(s0,a0)∼ν

[ ∞∑
t=0

γt Prπ(st = s, at = a | s0, a0)

]
. (5)

The difference in the last two definitions is that for the former, the initial action a0 is sampled directly from π, whereas
for the latter, it is prescribed by the initial state-action distribution ν. We use d̃ compared to d̄ to better distinguish
the cases with ν and ρ. Without specification, we even omit the argument ν or ρ throughout the paper to simplify the
presentation as they are self-evident. From these definitions, we have for all (s, a) ∈ S ×A,

dπs ≥ (1− γ)ρs, d̄πs,a ≥ (1− γ)ρsπs,a, d̃πs,a ≥ (1− γ)νs,a. (6)

Policy parametrization. In general, both the state and action spaces S and A can be very large and some form of
function approximation is needed to make the computation feasible. In particular, the policy π is often parametrized as
π(θ) with θ ∈ Rm, where m is much smaller than |S| and |A|. In this paper, we focus on the log-linear policy class.
Specifically, we assume that for each state-action pair (s, a), there is a feature mapping φs,a ∈ Rm and the policy takes
the form

πs,a(θ) =
exp(φ>s,aθ)∑

a′∈A exp(φ>s,a′θ)
. (7)

To simplify notation in the rest of this paper, we use the shorthand Vρ(θ) for Vρ(π(θ)) and similarly Qs,a(θ) for
Qs,a(π(θ)), As,a(θ) for As,a(π(θ)), dθs for dπ(θ)

s , d̄ θs,a for d̄π(θ)
s,a , and d̃ θs,a for d̃π(θ)

s,a .

Natural Policy Gradient (NPG) Method. Using the notations defined above, the parametrized policy optimization
problem is to minimize the function Vρ(θ) over θ ∈ Rm. The policy gradient is given by (see, e.g., Williams, 1992;
Sutton et al., 2000)

∇θVρ(θ) =
1

1− γ
Es∼dθ, a∼πs(θ) [Qs,a(θ)∇θ log πs,a(θ)] . (8)

For parametrizations that are differentiable and satisfy
∑
a∈A πs,a(θ) = 1, including the log-linear class defined in (7),

we can replace Qs,a(θ) by As,a(θ) in the above expression (Agarwal et al., 2021). The NPG method (Kakade, 2001)
takes the form

θ(k+1) = θ(k) − ηkFρ
(
θ(k)

)†∇θVρ(θ(k)
)
, (9)

where ηk > 0 is a scalar step size, Fρ(θ) is the Fisher information matrix

Fρ(θ)
def
= Es∼dθ, a∼πs(θ)

[
∇θ log πs,a(θ)

(
∇θ log πs,a(θ)

)>]
,

and Fρ(θ)† denotes the Moore-Penrose pseudoinverse of Fρ(θ).

3. NPG with Compatible Function Approximation

The parametrized value function Vρ(θ) is non-convex in general (see, e.g., Agarwal et al., 2021). Treating policy
optimization as a general non-convex optimization problem thus loses certain problem structure and results in weak
convergence results. Following Agarwal et al. (2021), we adopt the framework of the compatible function approximation
(Sutton et al., 2000; Kakade, 2001), which retains the MDP structure and leads to tight convergence rate analysis.

Kakade (2001) showed that the NPG update (9) is equivalent to (up to a constant scaling of ηk)

θ(k+1) = θ(k) − ηkw(k)
? , w

(k)
? ∈ argminw∈Rm LA

(
w, θ(k), d̄ (k)

)
, (10)
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where d̄ (k) is a shorthand for the state-action visitation distribution d̄π(θ(k))(ρ) defined in (4), and for a state-action
distribution ζ, LA(w, θ, ζ) is the compatible function approximation error defined as

LA(w, θ, ζ)
def
= E(s,a)∼ζ

[(
w>∇θ log πs,a(θ)−As,a(θ)

)2]
. (11)

A derivation of (10) is provided in Lemma 16 in Appendix B for the completeness. In other words, w(k)
? is the solution

to a regression problem that tries to approximate As,a(θ(k)) using ∇θ log πs,a(θ(k)) as features. For the log-linear
policy class defined in (7), we have

∇θ log πs,a(θ) = φ̄s,a(θ)
def
= φs,a −

∑
a′∈A πs,a′(θ)φs,a′ = φs,a − Ea′∼πs(θ) [φs,a′ ] , (12)

where φ̄s,a(θ) are called centered features vectors.

In practice, we cannot minimize LA exactly; instead, a sample-based regression problem is solved to obtain an
approximate solution w(k). This leads to the following approximate NPG update rule:

θ(k+1) = θ(k) − ηkw(k), w(k) ≈ argminw LA
(
w, θ(k), d̄ (k)

)
. (13)

Alternatively, as proposed by Agarwal et al. (2021), we can define the compatible function approximation error as

LQ(w, θ, ζ)
def
= E(s,a)∼ζ

[(
w>φs,a −Qs,a(θ)

)2]
(14)

and use it to derive a variant of the approximate NPG update called Q-NPG:

θ(k+1) = θ(k) − ηkw(k), w(k) ≈ argminw LQ
(
w, θ(k), d̄ (k)

)
. (15)

The approximate NPG and Q-NPG updates require samples of unbiased estimates of As,a(θ) and Qs,a(θ) respectively,
and the corresponding sampling procedures are given in the Appendix as Algorithms 4 and 3, respectively.

Following Agarwal et al. (2021), we consider slightly different variants of NPG and Q-NPG, where d̄ (k) in (13) and (15)
is replaced by a more general state-action visitation distribution d̃ (k) = d̃π(θ(k))(ν) defined in (5) with ν ∈ ∆(S ×A).
The advantage of using d̃ (k) is that it allows better exploration than d̄ (k) as ν can be chosen to be independent of the
policy π(θ(k)). For example, it can be seen from (6) that the lower bound of d̃π is independent of π, which is not the
case for d̄π . This property is crucial in the forthcoming convergence analysis.

3.1 Formulation as Approximate Policy Mirror Descent

Given an approximate solutionw(k) for minimizingLQ
(
w, θ(k), d̃ (k)

)
, the Q-NPG update rule θ(k+1) = θ(k)−ηkw(k),

when plugged in the log-linear parametrization (7), results in a new policy

π(k+1)
s,a =

1

Z
(k)
s

π(k)
s,a exp

(
−ηk φTs,aw(k)

)
, ∀ (s, a) ∈ S ×A,

where π(k) is a shorthand for πs,a(θ(k)) and Z(k)
s is a normalization factor to ensure

∑
a∈A π

(k+1)
s,a = 1, for each s ∈ S .

Notice that the above π(k+1) can also be obtained by a mirror descent update:

π(k+1)
s = arg min

p∈∆(A)

{
ηk

〈
Φsw

(k), p
〉

+D(p, π(k)
s )
}
, ∀s ∈ S, (16)

where Φs ∈ R|A|×m is a matrix with rows (φs,a)> ∈ Rm for a ∈ A, and D(p, q) denotes the Kullback-Leibler (KL)
divergence between two distributions p, q ∈ ∆(A), i.e.,

D(p, q)
def
=
∑
a∈A

pa log

(
pa
qa

)
.

A derivation of (16) is provided in Lemma 17 in Appendix B for the completeness.
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If we replace Φsw
(k) in (16) by the vector

[
Qs,a(π(k))

]
a∈A ∈ R|A|, then it becomes the policy mirror descent (PMD)

method in the tabular setting studied by, for example, Shani et al. (2020), Lan (2022) and Xiao (2022). In fact, the
update rule (16) can be viewed as an approximate PMD method where Qs(π(k)) is linearly approximated by Φsw

(k)

through compatible function approximation (14). Similarly, we can write the approximate NPG update rule as

π(k+1)
s = arg min

p∈∆(A)

{
ηk

〈
Φ̄(k)
s w(k), p

〉
+D(p, π(k)

s )
}
, ∀s ∈ S, (17)

where w(k) is an approximate solution for minimizing LA
(
w, θ(k), d̃ (k)

)
defined in (11), and Φ̄

(k)
s ∈ R|A|×m is a

matrix whose rows consist of the centered feature maps φ̄s,a(θ(k)), as defined in (12).

Reformulating Q-NPG and NPG into the mirror descent forms (16) and (17), respectively, allows us to adapt the
analysis of PMD method developed in Xiao (2022) to obtain sharper convergence rates. In particular, we show that with
an increasing step size ηk ∝ γk, both NPG and Q-NPG with log-linear policy parametrization has linear convergence
up to an error floor determined by the quality of the compatible function approximation.

4. Analysis of Q-NPG with Log-Linear Policies

In this section, we provide the convergence analysis of the following approximate Q-NPG method:

θ(k+1) = θ(k) − ηkw(k), w(k) ≈ argminw LQ
(
w, θ(k), d̃π(θ(k))(ν)

)
, (18)

where ν ∈ ∆(S ×A) is an arbitrary state-action distribution and does not depend on ρ. The exact minimizer is denoted
as w(k)

? ∈ argminw LQ
(
w, θ(k), d̃ (k)

)
, where d̃ (k) is a shorthand for d̃π(θ(k))(ν). The corresponding update from π(k)

to π(k+1) can be described by the PMD method (16). We note that the variant of Q-NPG analyzed in Agarwal et al.
(2021) requires that w(k) has a bounded norm. It is not needed here because we rely on quite different techniques for
convergence analysis.

The compatible function approximation error can be decomposed as

LQ
(
w(k), θ(k), d̃ (k)

)
= LQ

(
w(k), θ(k), d̃ (k)

)
− LQ

(
w

(k)
? , θ(k), d̃ (k)

)︸ ︷︷ ︸
Statistical error (excess risk)

+LQ
(
w

(k)
? , θ(k), d̃ (k)

)
.︸ ︷︷ ︸

Approximation error

The statistical error measures how accurate we solve the regression problem, i.e., how good w(k) is compared with
w

(k)
? . The approximation error measures the best possible quality of approximating Qs,a(θ(k)) using φs,a as features in

the regression problem (modeling error). One way to proceed with the analysis is to assume that both the statistical
error and the approximation error are bounded for all iterations, which is the approach we take in Section 4.2. In
Section 4.1, we first take an alternative approach proposed by Agarwal et al. (2021), where the assumption of bounded
approximation error is replaced by a bounded transfer error. The transfer error refers to LQ

(
w

(k)
? , θ(k), d̃ ∗

)
, where

the iteration-dependent visitation distribution d̃ (k) is shifted to a fixed one d̃ ∗ (defined in Section 4.1). These two
approaches require different additional assumptions and result in slightly different convergence rates. Here we first state
the common assumption on the bounded statistical error.

Assumption 1 (Bounded statistical error, Assumption 6.1.1 in Agarwal et al. (2021)) There exists εstat > 0 such
that for all iterations k ≥ 0 of the Q-NPG method (18), we have

E
[
LQ
(
w(k), θ(k), d̃ (k)

)
− LQ

(
w

(k)
? , θ(k), d̃ (k)

)]
≤ εstat. (19)

By solving the regression problem with sampling based approaches, we can expect εstat = O(1/
√
T ) (Agarwal et al.,

2021) or εstat = O(1/T ) (see Corollary 24, (also see Liu et al., 2020)) where T is the number of iterations used to find
the approximate solution w(k).
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4.1 Analysis with Bounded Transfer Error

Here we introduce some additional notation. For any state distributions p, q ∈ ∆(S), we define the distribution
mismatch coefficient of p relative to q as ∥∥∥∥pq

∥∥∥∥
∞

def
= max

s∈S

ps
qs
.

Let π∗ be an arbitrary comparator policy, which is not necessarily an optimal policy and does not need to belong to the
log-linear policy class. Fix a state distribution ρ ∈ ∆(S). We denote d∗ as dπ

∗
(ρ) and d(k) as dπ(θ(k))(ρ), and define

the following distribution mismatch coefficients:

ϑk
def
=

∥∥∥∥ d∗d(k)

∥∥∥∥
∞

(6)
≤ 1

1− γ

∥∥∥∥d∗ρ
∥∥∥∥
∞

and ϑρ
def
=

1

1− γ

∥∥∥∥d∗ρ
∥∥∥∥
∞
≥ 1

1− γ
. (20)

Thus, for all k ≥ 0, we have ϑk ≤ ϑρ. We assume that ϑρ <∞, which is the case, for example, if ρs > 0 for all s ∈ S .

We also introduce a weighted KL divergence given by

D∗k
def
= Es∼d∗

[
D(π∗s , π

(k)
s )
]
.

If we choose the uniform initial policy, i.e., π(0)
s,a = 1/|A| for all (s, a) ∈ S ×A (or θ(0) = 0), then D∗0 ≤ log |A| for

all ρ ∈ ∆(S) and for any π∗ ∈ ∆(A)S . The choice of the step size will directly depend on D∗0 in all our forthcoming
convergence results.

Given a state distribution ρ and a comparator policy π∗, we define a state-action measure d̃ ∗ as

d̃ ∗s,a
def
= d∗s · UnifA(a)

def
=

d∗s
|A|

, (21)

and use it to express the transfer error as LQ
(
w

(k)
? , θ(k), d̃ ∗

)
.

Assumption 2 (Bounded transfer error, Assumption 6.1.2 in Agarwal et al. (2021)) There exists εbias > 0 such
that for all iterations k ≥ 0 of the Q-NPG method (18), we have

E
[
LQ
(
w

(k)
? , θ(k), d̃ ∗

)]
≤ εbias. (22)

The transfer error bound εbias characterizes how well the Q-values can be linearly approximated by the feature maps
φs,a. It can be shown that εbias = 0 when π(k) is the softmax tabular policy (Agarwal et al., 2021) or the MDP has
certain low-rank structure (Jiang et al., 2017; Yang and Wang, 2019; Jin et al., 2020). For rich neural parametrizations,
εbias can be made small (Wang et al., 2020).

The next assumption concerns the relative condition number between two covariance matrices of φs,a defined under
different state-action distributions.

Assumption 3 (Bounded relative condition number, Assumption 6.2 in Agarwal et al. (2021)) Fix a state distri-
bution ρ, a state-action distribution ν and a comparator policy π∗. Let

Σd̃ ∗
def
= E(s,a)∼d̃ ∗

[
φs,aφ

>
s,a

]
, and Σν

def
= E(s,a)∼ν

[
φs,aφ

>
s,a

]
, (23)

where d̃ ∗ is specified in (21). We define the relative condition number between Σd̃ ∗ and Σν as

κν
def
= max

w∈Rm
w>Σd̃ ∗w

w>Σνw
, (24)

and assume that κν is finite.
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Notice that Assumption 3 benefits from the us e of ν. In fact, it is shown in Agarwal et al. (2021, Remark 22 and
Lemma 23) that κν can be reasonably small (e.g., κν ≤ m is always possible) and independent of the size of the state
space by controlling ν.

Our analysis also needs the following assumption, which does not appear in Agarwal et al. (2021).

Assumption 4 (Concentrability coefficient for state visitation) There exists a finite Cρ > 0 such that for all itera-
tions k ≥ 0 of the Q-NPG method (18), it holds that

Es∼d∗
[(

d
(k)
s

d∗s

)2]
≤ Cρ. (25)

Let ρmin = mins∈S ρs. A sufficient condition for Assumption 4 to hold is that ρmin > 0. Indeed,√√√√Es∼d∗
[(

d
(k)
s

d∗s

)2]
≤
∥∥∥∥d(k)

d∗

∥∥∥∥
∞

(6)
≤ 1

1− γ

∥∥∥∥d(k)

ρ

∥∥∥∥
∞
≤ 1

(1− γ)ρmin
. (26)

In reality,
√
Cρ can be much smaller than the pessimistic bound shown above. This is especially the case if we choose

π∗ to be the optimal policy and d(k) → d∗. We further replace Cρ by a weaker one independent of ρ in Section 4.2.

Now we present our first main result.

Theorem 5 Fix a state distribution ρ, an state-action distribution ν and a comparator policy π∗. We consider the
Q-NPG method (18) with the step sizes satisfying η0 ≥ 1−γ

γ D∗0 and ηk+1 ≥ 1
γ ηk. Suppose that Assumptions 1, 2, 3

and 4 all hold. Then we have for all k ≥ 0,

E
[
Vρ(θ

(k))
]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)k
2

1− γ
+

2
√
|A|
(
ϑρ
√
Cρ + 1

)
1− γ

(√
κν

1− γ
εstat +

√
εbias

)
. (27)

The main differences between our Theorem 5 and Theorem 20 of Agarwal et al. (2021), which is their corresponding
result on the approximate Q-NPG method, are summarized as follows.

• The convergence rate of Agarwal et al. (2021, Theorem 20) is O(1/
√
k) up to an error floor determined by

εstat and εbias. We have linear convergence up to an error floor that also depends on εstat and εbias. However,
the magnitude of our error floor is worse (larger) by a factor of ϑρ

√
Cρ, due to the concentrability and the

distribution mismatch coefficients used in our proof. A very pessimistic bound on this factor is as large as
|S|2/(1− γ)2.

• In terms of required conditions, both results use Assumptions 1, 2 and 3. Agarwal et al. (2021, Theorem 20)
further assume that the norms of the feature maps φs,a are uniformly bounded and w(k) has a bounded norm
(e.g., obtained by a projected stochastic gradient descent). Due to different analysis techniques referred next, we
instead rely on a concentrability coefficient Cρ defined in Assumption 4.

• Agarwal et al. (2021, Theorem 20) uses a diminishing step size η ∝ 1/
√
k where k is the total number of

iterations, but we uses a geometrically increasing step size ηk ∝ γk for all k ≥ 0. This discrepancy reflects
the quite different analysis techniques adopted. The key analysis tool in Agarwal et al. (2021) is a NPG Regret
Lemma (their Lemma 34) which relies on the smoothness of the functions log πs,a(θ) (thus the boundedness of
‖φs,a‖) and the boundedness of ‖w(k)‖, and thus the classicalO(1/

√
k) diminishing step size in the optimization

literature. Our analysis exploits the three-point descent lemma (Chen and Teboulle, 1993) and the performance
difference lemma (Kakade and Langford, 2002), without reliance on smoothness parameters. As a consequence,
we take advantage of exponentially growing step sizes and avoid assuming the boundedness of ‖φs,a‖ or ‖w(k)‖.

As a by product, we also obtain a sublinear convergence result while using a constant step size.
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Theorem 6 Fix a state distribution ρ, an state-action distribution ν and an optimal policy π∗. We consider the Q-NPG
method (18) with a constant step size ηk = η satisfying η ≥ 1

2ϑρ
D∗0 . Suppose that Assumptions 1, 2, 3 and 4 all hold.

Then we have for all k ≥ 0,

1

k

k−1∑
t=0

E
[
Vρ(θ

(t))
]
− Vρ(π∗) ≤

4ϑρ
(1− γ)k

+
2
√
|A|
(
ϑρ
√
Cρ + 1

)
1− γ

(√
κν

1− γ
εstat +

√
εbias

)
. (28)

A deviation from the setting of Theorem 5 is that here we require π∗ to be an optimal policy 2. Compared to Theorem
20 in Agarwal et al. (2021), our convergence rate is also sublinear, but improves from O(1/

√
k) to O(1/k). Moreover,

they use a diminishing step size of order O(1/
√
k) while our constant step size is unbounded, independent of k and can

be arbitrary large.

4.2 Analysis with Bounded Approximation Error

In this section, instead of assuming bounded transfer error, we provide a convergence analysis based on the usual notion
of approximation error and a different concentrability coefficient.

Assumption 7 (Bounded approximation error) There exists εapprox > 0 such that for all iterations k ≥ 0 of the
Q-NPG method (18), it holds that

E
[
LQ
(
w

(k)
? , θ(k), d̃ (k)

)]
≤ εapprox. (29)

As mentioned in Agarwal et al. (2021), Assumption 7 is stronger than Assumption 2 (bounded transfer error). Indeed,

LQ
(
w

(k)
? , θ(k), d̃ ∗

)
≤

∥∥∥∥∥ d̃ ∗d̃ (k)

∥∥∥∥∥
∞

LQ
(
w

(k)
? , θ(k), d̃ (k)

) (6)
≤ 1

1− γ

∥∥∥∥∥ d̃ ∗ν
∥∥∥∥∥
∞

LQ
(
w

(k)
? , θ(k), d̃ (k)

)
.

Assumption 8 (Concentrability coefficient for state-action visitation) There exists Cν <∞ such that for all itera-
tions of the Q-NPG method (18), we have

E(s,a)∼d̃ (k)

[(
h

(k)
s,a

d̃
(k)
s,a

)2]
≤ Cν , (30)

where h(k)
s,a represents any of the following quantities:

d(k+1)
s π(k+1)

s,a , d(k+1)
s π(k)

s,a , d∗sπ
(k)
s,a , and d∗sπ

∗
s,a . (31)

Since ν is completely at our disposal and independent of ρ, it suffices to choose νs,a > 0 for all (s, a) ∈ S × A for
Assumption 8 to hold. Indeed, with νmin denoting min(s,a)∈S×A νs,a, we have

√√√√E(s,a)∼d̃ (k)

[(
h

(k)
s,a

d̃
(k)
s,a

)2]
≤ max

(s,a)∈S×A

h
(k)
s,a

d̃
(k)
s,a

(6)
≤ 1

(1− γ)νmin
, (32)

where the upper bound can be smaller than that in (26) if ρmin is smaller than νmin.

2. In our analysis, we need to drop the positive term E
[
Vρ(θ

(k))− Vρ(π∗)
]

to obtain a lower bound, thus require π∗ to be an
optimal policy.
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Theorem 9 Fix a state distribution ρ, an state-action distribution ν and a comparator policy π∗. We consider the
Q-NPG method (18) with the step sizes satisfying η0 ≥ 1−γ

γ D∗0 and ηk+1 ≥ 1
γ ηk. Suppose that Assumptions 1, 7 and 8

hold. Then we have for all k ≥ 0,

E
[
Vρ(θ

(k))
]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)k
2

1− γ
+

2
√
Cν (ϑρ + 1)

1− γ
(√
εstat +

√
εapprox

)
. (33)

Compared to Theorem 5, while the approximation error assumption is stronger than the transfer error assumption, we
do not require the assumption on relative condition number κν and the error floor does not depends on κν nor explicitly
on |A|. Besides, we can always choose ν so that the concentrability coefficient Cν is finite even if Cρ is unbounded.

Remark 10 Note that all Theorem 5, 6 and 9 benefit from using the visitation distribution d̃ (k) instead of d̄ (k) (i.e.,
benefit from using ν instead of ρ). In particular, from (6), d̃ (k) has a lower bound that is independent of the policy π(k)

or ρ. This property allows us to define a weak notion of relative condition number (Assumption 3) that is independent of
the iterates, and also get a finite upper bound of Cν (Assumption 8 and (32)) that is independent of ρ.

By further assuming that the feature maps are bounded and has non-singular covariance matrix, we obtain an Õ(1/ε2)
sample complexity for Q-NPG with log-linear policies. We postpone the formal statement of this result to Appendix E
for the sake of space.

5. Analysis of NPG with Log-Linear Policies

We now return to the convergence analysis of the approximate NPG method, specifically,

θ(k+1) = θ(k) − ηkw(k), w(k) ≈ argminw LA
(
w, θ(k), d̃π(θ(k))(ν)

)
, (34)

where ν ∈ ∆(S × A) is an arbitrary state-action distribution and does not depend on ρ. Again, we use d̃ (k) denote
d̃π(θ(k))(ν) and let w(k)

? ∈ argminw LA
(
w, θ(k), d̃ (k)

)
denote the minimizer. Our analysis of NPG is analogous to

that of Q-NPG shown in the previous section, by exploiting the approximate PMD formulation (17) using techniques
developed in Xiao (2022).

The set of assumptions we use for NPG is analogous to the assumptions used in Section 4.2. In particular, we assume
bounded approximation error instead of transfer error (c.f., Assumption 2) in minimizing LA and do not need the
assumption on relative condition number.

Assumption 11 (Bounded statistical error, Assumption 6.5.1 in Agarwal et al. (2021)) There exists εstat > 0 such
that for all iterations k ≥ 0 of the NPG method (34), we have

E
[
LA
(
w(k), θ(k), d̃ (k)

)
− LA

(
w

(k)
? , θ(k), d̃ (k)

)]
≤ εstat. (35)

Assumption 12 (Bounded approximation error) There exists εapprox > 0 such that for all terations k ≥ 0 of the
NPG method (34), we have

E
[
LA
(
w

(k)
? , θ(k), d̃ (k)

)]
≤ εapprox. (36)

Assumption 13 (Concentrability coefficient for state-action visitation) There exists Cν <∞ such that for all tera-
tions k ≥ 0 of the NPG method (34), we have

E(s,a)∼d̃ (k)

[(
d̄

(k+1)
s,a

d̃
(k)
s,a

)2]
≤ Cν and E(s,a)∼d̃ (k)

[(
d̄π
∗

s,a

d̃
(k)
s,a

)2]
≤ Cν . (37)

9
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Under the above assumptions, we have the following result.

Theorem 14 Fix a state distribution ρ, a state-action distribution ν, and a comparator policy π∗. We consider the
NPG method (34) with the step sizes satisfying η0 ≥ 1−γ

γ D∗0 and ηk+1 ≥ 1
γ ηk. Suppose that Assumptions 11, 12 and 13

hold. Then we have for all k ≥ 0,

E
[
Vρ(θ

(k))
]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)k
2

1− γ
+

√
Cν (ϑρ + 1)

1− γ
(√
εstat +

√
εapprox

)
. (38)

Now we compare Theorem 14 with Theorem 29 in Agarwal et al. (2021), which is their corresponding results on the
approximate NPG method. The main differences are similar to those for Q-NPG as summarized right after Theorem 5:
Their convergence rate is sublinear while ours is linear; they assume uniformly bounded φs,a and w(k) while we
required bounded concentrability coefficient Cν due to different proof techniques; they use diminishing step sizes
and we use geometrically increasing ones. Moreover, Theorem 14 requires bounded approximation error, which is a
stronger assumption than the bounded transfer error used by their Theorem 29, but we do not need the assumption on
bounded relative condition number.

We note that the bounded relative condition number required by Agarwal et al. (2021, Theorem 29) needs to be held for
the covariance matrix of φ̄(k)

s,a for all k ≥ 0 because the centered feature maps φ̄(k)
s,a depends on the iterates θ(k). This is

in contrast to the use of a single fixed covariance matrix for Q-NPG as defined in (23).

In addition, the inequalities in (37) only involve half of the state-action visitation distributions listed in (31), i.e., the
first and the fourth terms. From (32), the upper bound of Cν is obtained only through (6), which is the property of d̃π
itself for all policy π ∈ ∆(A)S . Thus, Cν in (37) can share the same upper bound in (32) independent to the use of
the algorithm Q-NPG or NPG. Consequently, our concentrability coefficient assumption is weaker than Assumption 2
in Cayci et al. (2021) which studies the linear convergence of NPG with entropy regularization for the log-linear policy
class. The reason is that the bound on Cν in (32) does not depend on the policies throughout the iterations thanks to the
use of d̃ (k) instead of d̄ (k) (see Remark 10 as well).

Similar to Theorem 6, we also obtain a sublinear rate for NPG while using a constant step size.

Theorem 15 Fix a state distribution ρ, an state-action distribution ν and an optimal policy π∗. We consider the NPG
method (34) with a constant step size ηk = η satisfying η ≥ 1

2ϑρ
D∗0 . Suppose that Assumptions 11, 12 and 13 hold.

Then we have for all k ≥ 0,

1

k

k−1∑
t=0

E
[
Vρ(θ

(t))
]
− Vρ(π∗) ≤

4ϑρ
(1− γ)k

+

√
Cν (ϑρ + 1)

1− γ
(√
εstat +

√
εapprox

)
. (39)

Despite the difference of using ν instead of ρ, note that same convergence rate O(1/k) is established by Liu et al.
(2020) for NPG with constant step size, while they require that the feature maps are bounded and the Fisher information
matrix is strictly lower bounded for all parameters θ ∈ Rm. With such additional conditions, we are able to provide an
Õ(1/ε2) sample complexity result of NPG in Appendix G.
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Here we provide the related work discussion, the missing proofs from the main paper and some additional noteworthy
observations made in the main paper.

Appendix A. Related work

NPG for the softmax tabular policies. For the softmax tabular policies, Shani et al. (2020) show that the unregularized
NPG has a O(1/

√
k) convergence rate and the regularized NPG has a faster O(1/k) convergence rate by using a

decaying step size. Agarwal et al. (2021) improve the convergence rate to O(1/k) with constant step sizes. By using
the entropy regularization, Cen et al. (2021) achieve linear convergence rate of NPG. Similar linear convergence result
is obtained by rewriting the NPG update under the PMD framework with the Kullback–Leibler (KL) divergence (Lan,
2022) or with a more general convex regularizer (Zhan et al., 2021). However, adding regularization might induce bias
for the solution. Recently, Bhandari and Russo (2021), Khodadadian et al. (2021, 2022) and Xiao (2022) show that
regularization is unnecessary for obtaining linear convergence, and it suffices to use appropriate step sizes for NPG. In
particular, Bhandari and Russo (2021) use an exact line search for the step size and Khodadadian et al. (2021, 2022)
choose an adaptive step size. In this paper, with non-adaptive geometrically increasing step size, we extend the results
of Xiao (2022) from the tabular setting to the log-linear policies, obtaining the linear convergence rate of NPG without
regularization.

NPG with function approximation. In the function approximation regime, Wang et al. (2020) establish theO(1/
√
k)

convergence rate for two-layer neural-network parametrization with a projection step. Same convergence rate is obtained
for the smooth policy with projections by Agarwal et al. (2021), which is later improved to O(1/k) by Liu et al. (2020)
by replacing the projection step with a strong regularity condition on the Fisher information matrix. With entropy
regularization and a projection step, Cayci et al. (2021) obtains linear convergence for log-linear policies. In contrast,
we show that by using a simple geometrically increasing step size, fast linear convergence can be achieved for log-linear
policies without any regularization nor a projection step.

Fast linear convergence of other policy gradient methods. Different to the PMD analysis approach, by leveraging a
gradient dominance property (Polyak, 1963), fast linear convergence results are also established in the PG methods
under different settings, such as the linear quadratic control problems (Fazel et al., 2018) and the exact PG method with
softmax tabular policy and entropy regularization (Mei et al., 2020; Yuan et al., 2022). Linear convergence of PG can
also be obtained by exploiting non-uniform smoothness (Mei et al., 2021).

Appendix B. Standard Reinforcement Learning Results

In this section, we prove the standard reinforcement learning results used in our main paper, including the NPG updates
written through the compatible function approximation (10) and the NPG updates formalized as policy mirror descent
((16) and (17)). Then, we also prove the performance difference lemma (Kakade and Langford, 2002) used in our
proofs, which is the first key ingredient for our PMD analysis. See later the three-point descent lemma 28, the second
key ingredient for our PMD analysis.

Lemma 16 (NPG updates via compatible function approximation, Theorem 1 in Kakade (2001)) Consider the NPG
updates (9)

θ(k+1) = θ(k) − ηkFρ
(
θ(k)

)†∇θVρ(θ(k)
)
,

and the updates using the compatible function approximation (10)

θ(k+1) = θ(k) − ηkw(k)
? ,

where w(k)
? ∈ argminw∈Rm LA

(
w, θ(k), d̄ (k)

)
. If the parametrized policy is differentiable for all θ ∈ Rm, then the two

updates are equivalent up to a constant scaling (1− γ) of ηk.

14



LINEAR CONVERGENCE OF NATURAL POLICY GRADIENT METHODS WITH LOG-LINEAR POLICIES

Proof Indeed, by the policy gradient (8) and by using the fact that
∑
a∈A∇πs,a(θ) = 0 for all s ∈ S, as π(θ) is

differentiable on θ and
∑
a∈A πs,a = 1, we have the policy gradient theorem (Sutton et al., 2000)

∇θVρ(θ) =
1

1− γ
Es∼dθ, a∼πs(θ) [As,a(θ)∇θ log πs,a(θ)] . (40)

Furthermore, consider the optima w(k)
? . By the first-order optimality condition, we have

∇wLA(w
(k)
? , θ(k), d̄ (k)) = 0

⇐⇒ E(s,a)∼d̄ (k)

[(
(w

(k)
? )>∇θ log π(k)

s,a −As,a(θ(k))
)
∇θ log π(k)

s,a

]
= 0

⇐⇒ E(s,a)∼d̄ (k)

[
∇θ log π(k)

s,a

(
∇θ log π(k)

s,a

)>]
w

(k)
? = E(s,a)∼d̄ (k)

[
As,a(θ(k))∇θ log π(k)

s,a

]
(9)+(40)⇐⇒ Fρ(θ

(k))w
(k)
? = (1− γ)∇θVρ(θ(k)).

Thus, we have
w

(k)
? = (1− γ)Fρ(θ)

†∇θVρ(θ(k))

which yields the update (9) up to a constant scaling (1− γ) of ηk.

Lemma 17 (NPG updates as policy mirror descent) The closed form solution to (16) is given by

π(k+1)
s = π(k)

s �
exp

(
−ηkΦsw

(k)
)∑

a∈A π
(k)
s,a exp

(
−ηkφ>s,aw(k)

) (41)

= π(k)
s �

exp
(
−ηkΦ̄

(k)
s w(k)

)
∑
a∈A π

(k)
s,a exp

(
−ηk

(
φ̄s,a(θ(k))

)>
w(k)

) (42)

= arg min
p∈∆(A)

{
ηk

〈
Φ̄(k)
s w(k), p

〉
+D(p, π(k)

s )
}
, ∀s ∈ S, (43)

where � is the element-wise product between vectors, and Φ̄
(k)
s ∈ R|A|×m is defined in (17), i.e.(

Φ̄(k)
s,a

)> def
= φ̄s,a(θ(k))

(12)
= φs,a − E

a′∼π(k)
s

[φs,a′ ] .

Such policy update coincides the approximate NPG updates (34) of the log-linear policy, if θ(k+1) = θ(k) − ηkw(k)

with w(k) ≈ argminw LA(w, θ(k), d̃(k)); and coincides the approximate Q-NPG updates (18) of the log-linear policy,
if θ(k+1) = θ(k) − ηkw(k) with w(k) ≈ argminw LQ(w, θ(k), d̃(k)).

Proof For shorthand, let g = Φsw
(k). Thus, (16) fits the format of Lemma 27 where q = π

(k)
s . Consequently, the

closed form solution is given by (104), that is

π(k+1)
s =

π
(k)
s � e−ηkg∑

a∈A π
(k)
s,ae−ηkga

=
π

(k)
s � e−ηkΦsw

(k)∑
a∈A π

(k)
s,ae

−ηkφ>s,aw(k)

= π(k)
s �

exp
(
−ηkΦ̄s(θ

(k))w(k)
)∑

a∈A π
(k)
s,a exp

(
−ηk

(
φ̄s,a(θ(k))

)>
w(k)

) , (44)

where the last equality is obtained as

φ̄s,a(θ(k)) = φs,a − E
a′∼π(k)

s
[φs,a′ ] = φs,a − cs,
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with cs ∈ R some constant independent to a.

Similarly, by applying Lemma 27 with g = Φ̄
(k)
s w(k), the closed form solution to (43) is (44).

As for the closed form updates of the policy for NPG (34) and Q-NPG (18) with the parameter updates θ(k+1) =
θ(k) − ηkw(k), it is straightforward to verify that it coincides (41) and (42) given the specific structure of the log-linear
policy (7), which concludes the proof.

Lemma 18 (Performance difference lemma (Kakade and Langford, 2002)) For any policy π, π′ ∈ ∆(A)S and
ρ ∈ ∆(S),

Vρ(π)− Vρ(π′) =
1

1− γ
E(s,a)∼d̄π [As,a(π′)] (45)

=
1

1− γ
Es∼dπ [〈Qs(π′), πs − π′s〉] , (46)

where Qs(π) is the shorthand for [Qs,a(π)]a∈A ∈ R|A| for any policy π.

Proof From Lemma 2 in Agarwal et al. (2021), we have

Vρ(π)− Vρ(π′) =
1

1− γ
E(s,a)∼d̄π [As,a(π′)] =

1

1− γ
Es∼dπ [〈As(π′), πs〉] ,

where As(π) is the shorthand for [As,a(π)]a∈A ∈ R|A| for any policy π. To show (46), it suffices to show

〈As(π′), πs〉 = 〈Qs(π′), πs − π′s〉 , for all s ∈ S and π, π′ ∈ ∆(A)S .

Denote 1n as a vector in Rn with coordinates equal to 1 element-wisely. Indeed, we have

〈As(π′), πs〉
(3)
=

〈
Qs(π

′)− Vs(π′) · 1|A|, πs
〉

= 〈Qs(π′), πs〉 −
〈
Vs(π

′) · 1|A|, πs
〉

= 〈Qs(π′), πs〉 − Vs(π′)
(1)
= 〈Qs(π′), πs − π′s〉 ,

from which we conclude the proof.

Appendix C. Algorithms

C.1 NPG and Q-NPG Algorithm

Algorithm 1 combined with the sampling procedure (Algorithm 4) and the averaged SGD procedure, called NPG-SGD
(Algorithm 5), provide the sample-based NPG methods.

Idem, Algorithm 2 combined with the sampling procedure (Algorithm 3) and the averaged SGD procedure, called
Q-NPG-SGD (Algorithm 6), provide the sample-based Q-NPG methods.

C.2 Sampling Procedures

In practice, we cannot compute the true minimizer w(k)
? of the regression problem in either (34) or (18), since computing

the expectation LA or LQ requires averaging over all state-action pairs (s, a) ∼ d̃ (k) and averaging over all trajectories
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Algorithm 1: Natural policy gradient

Input: Initial state-action distribution ν, policy π(0), discounted factor γ ∈ [0, 1), step size η0 > 0 for NPG update,
step size α > 0 for NPG-SGD update, number of iterations T for NPG-SGD

1 for k = 0 to K − 1 do
2 Compute w(k) of (34) by NPG-SGD, i.e., Algorithm 5 with inputs (T, ν, π(k), γ, α)

3 Update θ(k+1) = θ(k) − ηkw(k) and ηk
Output: π(K)

Algorithm 2: Q-Natural policy gradient

Input: Initial state-action distribution ν, policy π(0), discounted factor γ ∈ [0, 1), step size η0 > 0 for Q-NPG
update, step size α > 0 for Q-NPG-SGD update, number of iterations T for Q-NPG-SGD

1 for k = 0 to K − 1 do
2 Compute w(k) of (18) by Q-NPG-SGD, i.e., Algorithm 6 with inputs (T, ν, π(k), γ, α)

3 Update θ(k+1) = θ(k) − ηkw(k) and ηk
Output: πθ(K)

(s0, a0, c0, s1, · · · ) to compute the values of Q(k)
s,a and A(k)

s,a. So instead, we provide a sampler which is able to obtain
unbiased estimates of Qs,a(θ) (or As,a(θ)) with (s, a) ∼ d̃ θ(ν) for any π(θ).

To solve (18), we sample (s, a) ∼ d̃ (k) and Q̂(k)
s,a by a standard rollout, formalized in Algorithm 3. This sampling

procedure is commonly used, for example in Agarwal et al. (2021, Algorithm 1).

Algorithm 3: Sampler for: (s, a) ∼ d̃ θ(ν) and unbiased estimate Q̂s,a(θ) of Qs,a(θ)

Input: Initial state-action distribution ν, policy π(θ), discounted factor γ ∈ [0, 1)
1 Initialize (s0, a0) ∼ ν, the time step h, t = 0, the variable X = 1
2 while X = 1 do
3 With probability γ:
4 Sample sh+1 ∼ P(· | sh, ah)
5 Sample ah+1 ∼ πsh+1

(θ)
6 h← h+ 1

7 Otherwise with probability (1− γ):
8 X = 0 . Accept (sh, ah)

9 X = 1

10 Set the estimate Q̂sh,ah(θ) = c(sh, ah) . Start to estimate Q̂sh,ah(θ)
11 t = h
12 while X = 1 do
13 With probability γ:
14 Sample st+1 ∼ P(· | st, at)
15 Sample at+1 ∼ πst+1

(θ)

16 Q̂sh,ah(θ)← Q̂sh,ah(θ) + c(st+1, at+1)
17 t← t+ 1

18 Otherwise with probability (1− γ):
19 X = 0 . Accept Q̂sh,ah(θ)

Output: (sh, ah) and Q̂sh,ah(θ)
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It is straightforward to verify that (sh, ah) and Q̂sh,ah(θ) obtained in Algorithm 3 are unbiased for any π(θ). The
expected length of the trajectory is 1

1−γ . We provide its proof here for the completeness.

Lemma 19 Consider the output (sh, ah) and Q̂sh,ah(θ) of Algorithm 3. It follows that

E [h+ 1] =
1

1− γ
,

Pr(sh = s, ah = a) = d̃ θs,a(ν),

E
[
Q̂sh,ah(θ) | sh, ah

]
= Qsh,ah(θ).

Proof The expected length (h+ 1) of sampling (s, a) is

E [h+ 1] =

∞∑
k=0

Pr(h = k)(k + 1) = (1− γ)

∞∑
k=0

γk(k + 1) =
1

1− γ
.

The probability of the state-action pair (s, a) being sampled by Algorithm 3 is

Pr(sh = s, ah = a) =
∑

(s0,a0)∈S×A

νs0,a0

∞∑
k=0

Pr(h = k) Prπ(θ)(sh = s, ah = a | h = k, s0, a0)

=
∑

(s0,a0)∈S×A

νs0,a0(1− γ)

∞∑
k=0

γk Prπ(θ)(sk = s, ak = a | s0, a0)
(5)
= d̃ θs,a(ν).

Now we verify that Q̂sh,ah(θ) obtained from Algorithm 3 is an unbiased estimate of Qsh,ah(θ). Indeed, from
Algorithm 3, we have

Q̂sh,ah(θ) =

H∑
t=0

c(st+h, at+h), (47)

where (H + 1) is the length of the horizon executed between lines 13 and 19 in Algorithm 3 for calculating Q̂sh,ah(θ).
Taking expectation, we have

E
[
Q̂sh,ah(θ) | sh, ah

]
= E

[
H∑
t=0

c(st, at) | s0 = sh, a0 = ah

]

=

∞∑
k=0

Pr(H = k)E

[
H∑
t=0

c(st, at) | s0 = sh, a0 = ah, H = k

]

=

∞∑
k=0

(1− γ)γkE

[
k∑
t=0

c(st, at) | s0 = sh, a0 = ah

]

= (1− γ)E

[ ∞∑
t=0

c(st, at)

∞∑
k=t

γk | s0 = sh, a0 = ah

]

= E

[ ∞∑
t=0

γkc(st, at) | s0 = sh, a0 = ah

]
(2)
= Qsh,ah(θ).

Similar to Algorithm 3, to solve (34), we sample (s, a) ∼ d̃ (k) by the same procedure and estimate Â (k)
s,a with a slight

modification, namely Algorithm 4 (also see Agarwal et al., 2021, Algorithm 3).
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Algorithm 4: Sampler for: (s, a) ∼ d̃ θ(ν) and unbiased estimate Âs,a(θ) of As,a(θ)

Input: Initial state-action distribution ν, policy π(θ), discounted factor γ ∈ [0, 1)
1 Initialize (s0, a0) ∼ ν, the time step h, t = 0, the variable X = 1
2 while X = 1 do
3 With probability γ:
4 Sample sh+1 ∼ P(· | sh, ah)
5 Sample ah+1 ∼ πsh+1

(θ)
6 h← h+ 1

7 Otherwise with probability (1− γ):
8 X = 0 . Accept (sh, ah)

9 X = 1

10 Set the estimate Q̂sh,ah(θ) = c(sh, ah) . Start to estimate Q̂sh,ah(θ)
11 t = h
12 while X = 1 do
13 With probability γ:
14 Sample st+1 ∼ P(· | st, at)
15 Sample at+1 ∼ πst+1(θ)

16 Q̂sh,ah(θ)← Q̂sh,ah(θ) + c(st+1, at+1)
17 t← t+ 1

18 Otherwise with probability (1− γ):
19 X = 0 . Accept Q̂sh,ah(θ)

20 X = 1

21 Set the estimate V̂sh(θ) = 0 . Start to estimate V̂sh(θ)
22 t = h
23 while X = 1 do
24 Sample at ∼ πst(θ)
25 V̂sh(θ)← V̂sh(θ) + c(st, at)
26 With probability γ:
27 Sample st+1 ∼ P(· | st, at)
28 t← t+ 1

29 Otherwise with probability (1− γ):
30 X = 0 . Accept V̂sh(θ)

Output: (sh, ah) and Âsh,ah(θ) = Q̂sh,ah(θ)− V̂sh(θ)

19



YUAN, DU, GOWER, LAZARIC AND XIAO

Notice that the sampling procedure for estimating Qs,a(θ) in Algorithm 3 is simpler than that for estimating As,a(θ) in
Algorithm 4, as Algorithm 4 requires an additional estimation of Vs(θ). As in Lemma 19, we verify in the following
lemma that the output (sh, ah) ∼ d̃ θ and Âsh,ah(θ) in Algorithm 4 is an unbiased estimator of Ash,ah(θ) for all policy
π(θ).

Lemma 20 Consider the output (sh, ah) and Âsh,ah(θ) of Algorithm 4. It follows that

E [h+ 1] =
1

1− γ
,

Pr(sh = s, ah = a) = d̃ θs,a(ν),

E
[
Âsh,ah(θ) | sh, ah

]
= Ash,ah(θ).

Proof Since the procedure of sampling (sh, ah) in Algorithm 4 is identical to the one in Algorithm 3, from Lemma 19,
the first two results are verified. It remains to show that Âsh,ah(θ) is unbiased.

The estimation of Âsh,ah(θ) is decomposed into the estimations of Q̂sh,ah(θ) and V̂sh(θ). The procedure of estimating
Q̂sh,ah(θ) is also identical to the one in Algorithm 3. Thus, from Lemma 19, we have

E
[
Q̂sh,ah(θ) | sh, ah

]
= Qsh,ah(θ).

By following the similar arguments of Lemma 19, one can verify that

E
[
V̂sh(θ) | sh, ah

]
= Vsh(θ).

Combine the above two equalities and obtain that

E
[
Âsh,ah(θ) | sh, ah

]
= E

[
Q̂sh,ah(θ)− V̂sh(θ) | sh, ah

]
= Qsh,ah(θ)− Vsh(θ)

(3)
= Ash,ah(θ).

C.3 SGD Procedures for Solving the Regression Problems of NPG and Q-NPG

Once we obtain the sampled (s, a) and Âs,a(θ(k)) from Algorithm 4, we can apply the averaged SGD algorithm as
in Bach and Moulines (2013) to solve the regression problem (34) of NPG for every iteration k.

Here we suppress the superscript (k). For any parameter θ ∈ Rm, recall the compatible function approximation LA
in (34)

LA(w, θ, d̃ θ) = E(s,a)∼d̃ θ

[(
w>φ̄s,a(θ)−As,a(θ)

)2]
.

With the output (s, a) ∼ d̃ θ and Âs,a(θ) from Algorithm 4 (here we suppress the subscript h), we compute the
stochastic gradient estimator of the function LA in (34) by

∇̂wLA(w, θ, d̃ θ)
def
= 2

(
w>φ̄s,a(θ)− Âs,a(θ)

)
φ̄s,a(θ). (48)

Next, we show that (48) is an unbiased gradient estimator of the loss function LA

Lemma 21 Consider the output (s, a) and Âs,a(θ) of Algorithm 4 and the stochastic gradient (48). It follows that

E
[
∇̂wLA(w, θ, d̃ θ)

]
= ∇wLA(w, θ, d̃ θ),

where the expectation is with respect to the randomness in the sequence of the sampled s0, a0, · · · , st, at from
Algorithm 4.
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Proof The total expectation of the stochastic gradient is given by

E
[
∇̂wLA(w, θ, d̃ θ)

]
(48)
= Es, a, Âs,a(θ)

[
2
(
w>φ̄s,a(θ)− Âs,a(θ)

)
φ̄s,a(θ)

]
= E(s,a)∼d̃ θ, Âs,a(θ)

[
2
(
w>φ̄s,a(θ)− Âs,a(θ)

)
φ̄s,a(θ) | s, a

]
, (49)

where the second line is obtained by (s, a) ∼ d̃ θ from Lemma 20.

From Lemma 20, we have

Es0,a0,··· ,st,at
[
Âs,a(θ) | s0 = s, a0 = a

]
= As,a(θ). (50)

Combining the above two equalities yield

E
[
∇̂wLA(w, θ, d̃ θ)

]
(49)
= E(s,a)∼d̃ θ

[
2
(
w>φ̄s,a(θ)− E

[
Âs,a(θ) | s, a

])
φ̄s,a(θ)

]
(50)
= E(s,a)∼d̃ θ

[
2
(
w>φ̄s,a(θ)−As,a(θ)

)
φ̄s,a(θ)

]
= ∇wLA(w, θ, d̃ θ).

Since (48) is unbiased shown in Lemma 21, we can use it for the averaged SGD algorithm to minimize LA, called
NPG-SGD in Algorithm 5 (also see Agarwal et al., 2021, Algorithm 4).

Algorithm 5: NPG-SGD
Input: Number of iterations T , step size α > 0, initialization w0 ∈ Rm, initial state-action measure ν, policy π(θ),

discounted factor γ ∈ [0, 1)
1 for t = 0 to T − 1 do
2 Call Algorithm 4 with the inputs (ν, π(θ), γ) to sample (s, a) ∼ d̃ θ and Âs,a(θ)

3 Update wt+1 = wt − α∇̂wLA(w, θ, d̃ θ) by using (48)

Output: wout = 1
T

∑T
t=1 wt

Similar to Algorithm 5, once we obtain the sampled (s, a) and Q̂s,a(θ) from Algorithm 3, we can apply the averaged
SGD algorithm to solve (18) of Q-NPG.

Recall the compatible function approximation LQ in (18)

LQ(w, θ, d̃ θ) = E(s,a)∼d̃ θ

[(
w>φs,a(θ)−Qs,a(θ)

)2]
.

With the output (s, a) ∼ d̃ θ and Q̂s,a(θ) from Algorithm 3, we compute the stochastic gradient estimator of the function
LQ in (18) by

∇̂wLQ(w, θ, d̃ θ)
def
= 2

(
w>φs,a(θ)− Q̂s,a(θ)

)
φs,a(θ), (51)

and use it for the averaged SGD algorithm to minimize LQ, called Q-NPG-SGD in Algorithm 6 (also see Agarwal
et al., 2021, Algorithm 2).

The estimator ∇̂wLQ(w, θ, d̃ θ) is also unbiased following the similar argument of the proof of Lemma 21. We formalize
this in the following and omit the proof.

Lemma 22 Consider the output (s, a) and Q̂s,a(θ) of Algorithm 3 and the stochastic gradient (51). It follows that

E
[
∇̂wLQ(w, θ, d̃ θ)

]
= ∇wLQ(w, θ, d̃ θ),

where the expectation is with respect to the randomness in the sequence of the sampled s0, a0, · · · , st, at from
Algorithm 3.
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Algorithm 6: Q-NPG-SGD
Input: Number of iterations T , step size α > 0, initialization w0 ∈ Rm, initial state-action measure ν, policy π(θ),

discounted factor γ ∈ [0, 1)
1 for t = 0 to T − 1 do
2 Call Algorithm 3 with the inputs (ν, π(θ), γ) to sample (s, a) ∼ d̃ θ and Q̂s,a(θ)

3 Update wt+1 = wt − α∇̂wLQ(w, θ, d̃ θ) by using (51)

Output: wout = 1
T

∑T
t=1 wt

Appendix D. Proof of Section 4

Throughout this section and the next, we use the shorthand V (k)
ρ for Vρ(θ(k)) and similarly, Q(k)

s,a for Qs,a(θ(k))

and A(k)
s,a for As,a(θ(k)). We also use the shorthand Q(k)

s for the vector
[
Q

(k)
s,a

]
a∈A

∈ R|A| and A(k)
s for the vector[

A
(k)
s,a

]
a∈A
∈ R|A|.

We first provide the one step analysis of the Q-NPG update, which will be helpful for proving Theorem 5, 6 and 9.

D.1 The One Step Q-NPG Lemma

The following one step analysis of Q-NPG is based on the mirror descent approach developed in Xiao (2022).

Lemma 23 (One step Q-NPG lemma) Fix a state distribution ρ; an initial state-action distribution ν; an arbitrary
comparator policy π∗. Denote w(k)

? ∈ argminw LQ(w, θ(k), d̃ (k)) as the exact minimizer. Consider the w(k) and π(k)

given in (18) and (16) respectively. We have that

ϑρ(1− γ)
(
V (k+1)
ρ − V (k)

ρ

)
+ (1− γ)

(
V (k)
ρ − Vρ(π∗)

)
+ ϑρ

(∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a φ>s,a

(
w(k) − w(k)

?

)
︸ ︷︷ ︸

1

+
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

(
φ>s,aw

(k)
? −Q(k)

s,a

)
︸ ︷︷ ︸

2

+
∑
s∈S

∑
a∈A

d(k+1)
s π(k)

s,aφ
>
s,a

(
w

(k)
? − w(k)

)
︸ ︷︷ ︸

3

+
∑
s∈S

∑
a∈A

d(k+1)
s π(k)

s,a

(
Q(k)
s,a − φ>s,aw

(k)
?

)
︸ ︷︷ ︸

4

)

+
∑

(s,a)∈S×A

d∗sπ
(k)
s,aφ

>
s,a

(
w(k) − w(k)

?

)
︸ ︷︷ ︸

a

+
∑

(s,a)∈S×A

d∗sπ
(k)
s,a

(
φ>s,aw

(k)
? −Q(k)

s,a

)
︸ ︷︷ ︸

b

+
∑

(s,a)∈S×A

d∗sπ
∗
s,aφ

>
s,a

(
w

(k)
? − w(k)

)
︸ ︷︷ ︸

c

+
∑

(s,a)∈S×A

d∗sπ
∗
s,a

(
Q(k)
s,a − φ>s,aw

(k)
?

)
︸ ︷︷ ︸

d

≤ 1

ηk
D∗k −

1

ηk
D∗k+1. (52)

Proof In the context of the PMD method (16), we apply the three-point descent lemma 28 with C = ∆(A), f is the
linear function ηk

〈
Φsw

(k), ·
〉

and h : ∆(A)→ R is the negative entropy with h(p) =
∑
a∈A pa log pa. Thus, h is of
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Legendre type with rint domh ∩ C = rint ∆(A) 6= ∅ and Dh(·, ·) is the KL divergence D(·, ·). From Lemma 28, we
obtain that for any p ∈ ∆(A), we have

ηk

〈
Φsw

(k), π(k+1)
s

〉
+D(π(k+1)

s , π(k)
s ) ≤ ηk

〈
Φsw

(k), p
〉

+D(p, π(k)
s )−D(p, π(k+1)

s ).

Rearranging terms and dividing both sides by ηk, we get〈
Φsw

(k), π(k+1)
s − p

〉
+

1

ηk
D(π(k+1)

s , π(k)
s ) ≤ 1

ηk
D(p, π(k)

s )− 1

ηk
D(p, π(k+1)

s ). (53)

Letting p = π
(k)
s yields〈

Φsw
(k), π(k+1)

s − π(k)
s

〉
≤ − 1

ηk
D(π(k+1)

s , π(k)
s )− 1

ηk
D(π(k)

s , π(k+1)
s ) ≤ 0. (54)

Letting p = π∗s and subtract and add π(k)
s within the inner product term in (53) yields〈

Φsw
(k), π(k+1)

s − π(k)
s

〉
+
〈

Φsw
(k), π(k)

s − π∗s
〉
≤ 1

ηk
D(π∗s , π

(k)
s )− 1

ηk
D(π∗s , π

(k+1)
s ).

Note that we dropped the nonnegative term 1
ηk
D(π

(k+1)
s , π

(k)
s ) on the left hand side to the inequality.

Taking expectation with respect to the distribution d∗, we have

Es∼d∗
[〈

Φsw
(k), π(k+1)

s − π(k)
s

〉]
+ Es∼d∗

[〈
Φsw

(k), π(k)
s − π∗s

〉]
≤ 1

ηk
D∗k −

1

ηk
D∗k+1. (55)

For the first expectation in (55), we have

Es∼d∗
[〈

Φsw
(k), π(k+1)

s − π(k)
s

〉]
=

∑
s∈S

d∗s

〈
Φsw

(k), π(k+1)
s − π(k)

s

〉
=

∑
s∈S

d∗s

d
(k+1)
s

d(k+1)
s

〈
Φsw

(k), π(k+1)
s − π(k)

s

〉
≥ ϑk+1

∑
s∈S

d(k+1)
s

〈
Φsw

(k), π(k+1)
s − π(k)

s

〉
≥ ϑρ

∑
s∈S

d(k+1)
s

〈
Φsw

(k), π(k+1)
s − π(k)

s

〉
= ϑρ

∑
s∈S

d(k+1)
s

〈
Q(k)
s , π(k+1)

s − π(k)
s

〉
+ ϑρ

∑
s∈S

d(k+1)
s

〈
Φsw

(k) −Q(k)
s , π(k+1)

s − π(k)
s

〉
= ϑρ(1− γ)

(
V (k+1)
ρ − V (k)

ρ

)
+ ϑρ

∑
s∈S

d(k+1)
s

〈
Φsw

(k) −Q(k)
s , π(k+1)

s − π(k)
s

〉
, (56)

where the last equality is due to the performance difference lemma (46) in Lemma 18 and the two inequalities above are
obtained by the negative sign of

〈
Φsw

(k), π
(k+1)
s − π(k)

s

〉
shown in (54) and by using the following inequality

d∗s

d
(k+1)
s

(20)
≤ ϑk+1

(20)
≤ ϑρ.
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The second term of (56) can be decomposed into four terms. That is,∑
s∈S

d(k+1)
s

〈
Φsw

(k) −Q(k)
s , π(k+1)

s − π(k)
s

〉
=
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

(
φ>s,aw

(k) −Q(k)
s,a

)
+
∑
s∈S

∑
a∈A

d(k+1)
s π(k)

s,a

(
Q(k)
s,a − φ>s,aw(k)

)
=
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a φ>s,a

(
w(k) − w(k)

?

)
+
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

(
φ>s,aw

(k)
? −Q(k)

s,a

)
+
∑
s∈S

∑
a∈A

d(k+1)
s π(k)

s,aφ
>
s,a

(
w

(k)
? − w(k)

)
+
∑
s∈S

∑
a∈A

d(k+1)
s π(k)

s,a

(
Q(k)
s,a − φ>s,aw

(k)
?

)
= 1 + 2 + 3 + 4 , (57)

where 1 , 2 , 3 and 4 are defined in (52).

For the second expectation in (55), by applying again the performance difference lemma (46), we have

Es∼d∗
[〈

Φsw
(k), π(k)

s − π∗s
〉]

= Es∼d∗
[〈
Q(k)
s , π(k)

s − π∗s
〉]

+ Es∼d∗
[〈

Φsw
(k) −Q(k)

s , π(k)
s − π∗s

〉]
(46)
= (1− γ)

(
V (k)
ρ − Vρ(π∗)

)
+ Es∼d∗

[〈
Φsw

(k) −Q(k)
s , π(k)

s − π∗s
〉]
. (58)

Similarly, we decompose the second term of (58) into four terms. That is,

Es∼d∗
[〈

Φsw
(k) −Q(k)

s , π(k)
s − π∗s

〉]
=
∑
s∈S

∑
a∈A

d∗sπ
(k)
s,a

(
φ>s,aw

(k) −Q(k)
s,a

)
+
∑
s∈S

∑
a∈A

d∗sπ
∗
s,a

(
Q(k)
s,a − φ>s,aw(k)

)
=

∑
(s,a)∈S×A

d∗sπ
(k)
s,aφ

>
s,a

(
w(k) − w(k)

?

)
+

∑
(s,a)∈S×A

d∗sπ
(k)
s,a

(
φ>s,aw

(k)
? −Q(k)

s,a

)
+

∑
(s,a)∈S×A

d∗sπ
∗
s,aφ

>
s,a

(
w

(k)
? − w(k)

)
+

∑
(s,a)∈S×A

d∗sπ
∗
s,a

(
Q(k)
s,a − φ>s,aw

(k)
?

)
= a + b + c + d , (59)

where a , b , c and d are defined in (52).

Plugging (56) with the decomposition (57) and (58) with the decomposition (59) into (55) concludes the proof.

Consequently, the convergence analysis of Q-NPG (Theorem 5, 6 and 9) will be obtained by upper bounding the
absolute values of 1 , 2 , 3 , 4 , a , b , c , d in (52) with different set of assumptions (assumptions in Theorem 5 or
assumptions in Theorem 9) and with different step size scheme (geometrically increasing step size for Theorem 5 and 9
or constant step size for Theorem 6).

D.2 Proof of Theorem 5

Proof From (52) in Lemma 23, we will upper bound | 1 | and | 3 | by the statistical error assumption (19) and upper
bound | 2 | and | 4 | by using the transfer error assumption (22).
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Indeed, to upper bound | 1 |, by Cauchy-Schwartz’s inequality, we have

| 1 | ≤
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

∣∣∣φ>s,a (w(k) − w(k)
?

)∣∣∣
≤

√√√√√ ∑
(s,a)∈S×A

(
d

(k+1)
s

)2 (
π

(k+1)
s,a

)2

d∗s · UnifA(a)
·

∑
(s,a)∈S×A

d∗s · UnifA(a)
(
φ>s,a

(
w(k) − w(k)

?

))2

(23)
=

√√√√√ ∑
(s,a)∈S×A

(
d

(k+1)
s

)2 (
π

(k+1)
s,a

)2

d∗s · UnifA(a)

∥∥∥w(k) − w(k)
?

∥∥∥2

Σd̃ ∗

≤

√√√√√Es∼d∗

(d(k+1)
s

d∗s

)2
 |A|∥∥∥w(k) − w(k)

?

∥∥∥2

Σd̃ ∗

(25)
≤

√
Cρ|A|

∥∥∥w(k) − w(k)
?

∥∥∥2

Σd̃ ∗
, (60)

where the second inequality is obtained by Cauchy-Schwartz’s inequality, and the third inequality is obtained by the
following inequality ∑

a∈A

(
π(k+1)
s,a

)2

≤
∑
a∈A

π(k+1)
s,a = 1. (61)

Then, by using Assumption 3 with the definition of κν , (60) is upper bounded by

| 1 |
(24)
≤

√
Cρ|A|κν

∥∥∥w(k) − w(k)
?

∥∥∥2

Σν

(6)
≤

√
Cρ|A|κν

1− γ

∥∥∥w(k) − w(k)
?

∥∥∥2

Σ
d̃ (k)

, (62)

where we use the shorthand

Σd̃ (k)

def
= E(s,a)∼d̃ (k)

[
φs,aφ

>
s,a

]
. (63)

Besides, by the first-order optimality conditions for the optima w(k)
? ∈ argminw LQ(w, θ(k), d̃ (k)), we have

(w − w(k)
? )>∇wLQ(w

(k)
? , θ(k), d̃ (k)) ≥ 0, for all w ∈ Rm. (64)

Therefore, for all w ∈ Rm,

LQ(w, θ(k), d̃ (k))− LQ(w
(k)
? , θ(k), d̃ (k))

= E(s,a)∼d̃ (k)

[(
φ>s,aw − φ>s,aw

(k)
? + φ>s,aw

(k)
? −Q(k)

s,a

)2
]
− LQ(w

(k)
? , θ(k), d̃ (k))

= E(s,a)∼d̃ (k)

[
(φ>s,aw − φ>s,aw

(k)
? )2

]
+ 2(w − w(k)

? )>E(s,a)∼d̃ (k)

[
(φ>s,aw

(k)
? −Q(k)

s,a)φs,a

]
=

∥∥∥w − w(k)
?

∥∥∥2

Σ
d̃ (k)

+ (w − w(k)
? )>∇wLQ(w

(k)
? , θ(k), d̃ (k))

(64)
≥

∥∥∥w − w(k)
?

∥∥∥2

Σ
d̃ (k)

. (65)

Define

ε
(k)
stat

def
= LQ(w(k), θ(k), d̃ (k))− LQ(w

(k)
? , θ(k), d̃ (k)).
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Note that from (19), we have

E
[
ε
(k)
stat

]
≤ εstat. (66)

Plugging (65) into (62), we have

| 1 | ≤

√
Cρ|A|κν

1− γ
ε
(k)
stat. (67)

Similar to (60), we get the same upper bound for | 3 | by just replacing π(k+1)
s,a into π(k)

s,a . That is,

| 3 | ≤

√
Cρ|A|κν

1− γ
ε
(k)
stat. (68)

To upper bound | 2 | and | 4 |, we introduce the following term

ε
(k)
bias

def
= LQ(w

(k)
? , θ(k), d̃ ∗).

Note that from (22), we have

E
[
ε
(k)
bias

]
≤ εbias. (69)

By Cauchy-Schwartz’s inequality, we have

| 2 | ≤
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

∣∣∣φ>s,aw(k)
? −Q(k)

s,a

∣∣∣
≤

√√√√√ ∑
(s,a)∈S×A

(
d

(k+1)
s

)2 (
π

(k+1)
s,a

)2

d∗s · UnifA(a)
·

∑
(s,a)∈S×A

d∗s · UnifA(a)
(
φ>s,aw

(k)
? −Q(k)

s,a

)2

=

√√√√√ ∑
(s,a)∈S×A

(
d

(k+1)
s

)2 (
π

(k+1)
s,a

)2

d∗s · UnifA(a)
· ε(k)

bias

(61)
≤

√√√√√Es∼d∗

(d(k+1)
s

d∗s

)2
 |A|ε(k)

bias

(25)
≤

√
Cρ|A|ε(k)

bias. (70)

Similar to (70), we get the same upper bound for | 4 | by just replacing π(k+1)
s,a into π(k)

s,a . That is,

| 4 | ≤
√
Cρ|A|ε(k)

bias. (71)

Next, we will upper bound the absolute values of a , b , c and d of (52) separately by using again the statistical
error (19) and by using the transfer error assumption (22).
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Indeed, to upper bound | a |, by Cauchy-Schwartz’s inequality, we have

| a | ≤
∑

(s,a)∈S×A

d∗sπ
(k)
s,a

∣∣∣φ>s,a (w(k) − w(k)
?

)∣∣∣
≤

√√√√√ ∑
(s,a)∈S×A

(d∗s)
2
(
π

(k)
s,a

)2

d∗s · UnifA(a)

∑
(s,a)∈S×A

d∗s · UnifA(a)
(
φ>s,a

(
w(k) − w(k)

?

))2

(23)
=

√√√√√ ∑
(s,a)∈S×A

(d∗s)
2
(
π

(k)
s,a

)2

d∗s · UnifA(a)

∥∥∥w(k) − w(k)
?

∥∥∥2

Σd̃ ∗

(61)
≤

√
|A|
∥∥∥w(k) − w(k)

?

∥∥∥2

Σd̃ ∗
.

From the definition of κν , we further obtain

| a |
(24)
≤

√
|A|κν

∥∥∥w(k) − w(k)
?

∥∥∥2

Σν

(6)
≤

√
|A|κν
1− γ

∥∥∥w(k) − w(k)
?

∥∥∥2

Σ
d̃ (k)

(65)
≤

√
|A|κν
1− γ

ε
(k)
stat. (72)

Similar to (72), we get the same upper bound for | c | by just replacing π(k)
s,a into π∗s,a. That is,

| c | ≤

√
|A|κν
1− γ

ε
(k)
stat. (73)

To upper bound | b |, by Cauchy-Schwartz’s inequality, we have

| b | ≤
∑

(s,a)∈S×A

d∗sπ
(k)
s,a

∣∣∣(φ>s,aw(k)
? −Q(k)

s,a

)∣∣∣
≤

√√√√√ ∑
(s,a)∈S×A

(d∗s)
2
(
π

(k)
s,a

)2

d∗s · UnifA(a)

∑
(s,a)∈S×A

d∗s · UnifA(a)
(
φ>s,aw

(k)
? −Q(k)

s,a

)2

=

√√√√√ ∑
(s,a)∈S×A

(d∗s)
2
(
π

(k)
s,a

)2

d∗s · UnifA(a)
ε
(k)
bias

(61)
≤

√
|A|ε(k)

bias. (74)

Similar to (74), we get the same upper bound for | d | by just replacing π(k)
s,a into π∗s,a. That is,

| d | ≤
√
|A|ε(k)

bias. (75)

Plugging all the upper bounds (67) of | 1 |, (70) of | 2 |, (68) of | 3 |, (71) of | 4 |, (72) of | a |, (74) of | b |, (73) of | c |
and (75) of | d | into (52) yields

ϑρ (δk+1 − δk) + δk ≤
D∗k

(1− γ)ηk
−

D∗k+1

(1− γ)ηk
+

2
√
|A|
(
ϑρ
√
Cρ + 1

)
1− γ

(√
κν

1− γ
ε
(k)
stat +

√
ε
(k)
bias

)
, (76)
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where δk
def
= V

(k)
ρ − Vρ(π∗). Dividing both sides by ϑρ and rearranging terms, we get

δk+1 +
D∗k+1

(1− γ)ηkϑρ
≤
(

1− 1

ϑρ

)(
δk +

D∗k
(1− γ)ηk(ϑρ − 1)

)

+
2
√
|A|
(√

Cρ + 1
ϑρ

)
1− γ

(√
κν

1− γ
ε
(k)
stat +

√
ε
(k)
bias

)
.

If the step sizes satisfy ηk+1(ϑρ − 1) ≥ ηkϑρ, which is implied by ηk+1 ≥ ηk/γ and (20), then

δk+1 +
D∗k+1

(1− γ)ηk+1(ϑρ − 1)
≤
(

1− 1

ϑρ

)(
δk +

D∗k
(1− γ)ηk(ϑρ − 1)

)

+
2
√
|A|
(√

Cρ + 1
ϑρ

)
1− γ

(√
κν

1− γ
ε
(k)
stat +

√
ε
(k)
bias

)
≤
(

1− 1

ϑρ

)k+1(
δ0 +

D∗0
(1− γ)η0(ϑρ − 1)

)

+

k∑
t=0

(
1− 1

ϑρ

)k−t 2
√
|A|
(√

Cρ + 1
ϑρ

)
1− γ

(√
κν

1− γ
ε
(t)
stat +

√
ε
(t)
bias

)
.

Finally, by choosing η0 ≥ 1−γ
γ D∗0 and using the fact that

(1− γ)(ϑρ − 1)
(20)
≥ (1− γ)

(
1

1− γ
− 1

)
= γ,

we obtain

δk ≤ δk +
D∗k

(1− γ)ηkϑρ
≤
(

1− 1

ϑρ

)k
2

1− γ

+
2
√
|A|
(√

Cρ + 1
ϑρ

)
1− γ

k−1∑
t=0

(
1− 1

ϑρ

)k−1−t(√
κν

1− γ
ε
(t)
stat +

√
ε
(t)
bias

)
.

Taking the total expectation with respect to the randomness in the sequence of the iterates w(0), · · · , w(k−1), we have

E
[
Vρ(θ

(k))
]
− Vρ(π∗)

≤
(

1− 1

ϑρ

)k
2

1− γ

+
2
√
|A|
(√

Cρ + 1
ϑρ

)
1− γ

k−1∑
t=0

(
1− 1

ϑρ

)k−1−t(
E
[√

κν
1− γ

ε
(t)
stat

]
+ E

[√
ε
(t)
bias

])

≤
(

1− 1

ϑρ

)k
2

1− γ

+
2
√
|A|
(√

Cρ + 1
ϑρ

)
1− γ

k−1∑
t=0

(
1− 1

ϑρ

)k−1−t
(√

κν
1− γ

E
[
ε
(t)
stat

]
+

√
E
[
ε
(t)
bias

])
(66)+(69)
≤

(
1− 1

ϑρ

)k
2

1− γ

+
2
√
|A|
(√

Cρ + 1
ϑρ

)
1− γ

k−1∑
t=0

(
1− 1

ϑρ

)k−1−t(√
κν

1− γ
εstat +

√
εbias

)

≤
(

1− 1

ϑρ

)k
2

1− γ
+

2
√
|A|
(
ϑρ
√
Cρ + 1

)
1− γ

(√
κν

1− γ
εstat +

√
εbias

)
,
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where the second inequality is obtained by Jensen’s inequality, which concludes the proof.

D.3 Proof of Theorem 6

Proof By (76) and using a constant step size η, we have

ϑρ (δk+1 − δk) + δk ≤
D∗k

(1− γ)η
−

D∗k+1

(1− γ)η
+

2
√
|A|
(
ϑρ
√
Cρ + 1

)
1− γ

(√
κν

1− γ
ε
(k)
stat +

√
ε
(k)
bias

)
.

Taking the total expectation with respect to the randomness in the sequence of the iterates w(0), · · · , w(k−1), summing
up from 0 to k − 1 and rearranging terms, we have

ϑρE [δk] +

k−1∑
t=0

E [δt] ≤
D∗0

(1− γ)η
+ ϑρδ0 + k ·

2
√
|A|
(
ϑρ
√
Cρ + 1

)
1− γ

(√
κν

1− γ
εstat +

√
εbias

)
,

where we use the following inequalities

E
[√

ε
(t)
stat

]
≤
√

E
[
ε
(t)
stat

] (66)
≤
√
εstat,

E
[√

ε
(t)
bias

]
≤
√

E
[
ε
(t)
bias

] (69)
≤
√
εbias.

Finally, dropping the positive term E [δk] on the left hand side as π∗ is the optimal policy and dividing both side by k
yields

1

k

k−1∑
t=0

E
[
Vρ(θ

(t))
]
− Vρ(π∗) ≤

D∗0
(1− γ)ηk

+
2ϑρ

(1− γ)k

+
2
√
|A|
(
ϑρ
√
Cρ + 1

)
1− γ

(√
κν

1− γ
εstat +

√
εbias

)
.

With the constant step size η ≥ D∗0
2ϑρ

, we have

1

k

k−1∑
t=0

E
[
Vρ(θ

(t))
]
− Vρ(π∗) ≤

4ϑρ
(1− γ)k

+
2
√
|A|
(
ϑρ
√
Cρ + 1

)
1− γ

(√
κν

1− γ
εstat +

√
εbias

)
.

D.4 Proof of Theorem 9

Proof Similar to the proof of Theorem 5, by Lemma 23, we upper bound the absolute values of 1 , 2 , 3 , 4 , a , b ,
c , d introduced in (52), separately, with the set of assumptions in Theorem 9.

In comparison with the proof of Theorem 5, we will also upper bound | 1 |, | 3 |, | a | and | c | by the statistical error
assumption (19) as in the proof of Theorem 5. However, we will upper bound | 2 |, | 4 |, | b | and | d | by using the
approximation error assumption (29) instead of the transfer error assumption (22).
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To upper bound | 1 |, by Cauchy-Schwartz’s inequality, we get

| 1 | ≤
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

∣∣∣φ>s,a (w(k) − w(k)
?

)∣∣∣
≤

√√√√√ ∑
(s,a)∈S×A

(
d

(k+1)
s

)2 (
π

(k+1)
s,a

)2

d̃
(k)
s,a

·
∑

(s,a)∈S×A

d̃
(k)
s,a

(
φ>s,a

(
w(k) − w(k)

?

))2

(63)
=

√√√√√E(s,a)∼d̃ (k)

(d(k+1)
s π

(k+1)
s,a

d̃
(k)
s,a

)2
∥∥∥w(k) − w(k)

?

∥∥∥2

Σ
d̃ (k)

(30)
≤

√
Cν

∥∥∥w(k) − w(k)
?

∥∥∥2

Σ
d̃ (k)

(65)
≤

√
Cνε

(k)
stat.

Similar to | 1 |, by using Assumption 8 and Cauchy-Schwartz’s inequality, and by simply replacing π(k+1) into π(k) or
π∗ and replacing d(k+1) into d∗, we obtain the same upper bound of | 3 |, | a | and | c |, that is

| 3 |, | a |, | c | ≤
√
Cνε

(k)
stat.

Next, we define

ε(k)
approx

def
= LQ(w

(k)
? , θ(k), d̃ (k))

By Assumption 7, we know that

E
[
ε(k)
approx

]
≤ εapprox.

To upper bound | 2 |, by Cauchy-Schwartz’s inequality, we have

| 2 | ≤
∑
s∈S

∑
a∈A

d(k+1)
s π(k+1)

s,a

∣∣∣φ>s,aw(k)
? −Q(k)

s,a

∣∣∣
≤

√√√√√ ∑
(s,a)∈S×A

(
d

(k+1)
s

)2 (
π

(k+1)
s,a

)2

d̃
(k)
s,a

·
∑

(s,a)∈S×A

d̃
(k)
s,a

(
φ>s,aw

(k)
? −Q(k)

s,a

)2

=

√√√√√E(s,a)∼d̃(k)

(d(k+1)
s π

(k+1)
s,a

d̃
(k)
s,a

)2
 · ε(k)

approx

(30)
≤

√
Cνε

(k)
approx.

Similar to | 2 |, by using Assumption 7 and Cauchy-Schwartz’s inequality, and by simply replacing π(k+1) into π(k) or
π∗ and replacing d(k+1) into d∗, we obtain the same upper bound for | 4 |, | b | and | d |, that is

| 4 |, | b |, | d | ≤
√
Cνε

(k)
approx.

Consequently, plugging all these upper bounds into (52) leads to the following recurrent inequality

ϑρ (δk+1 − δk) + δk ≤
D∗k

(1− γ)ηk
−

D∗k+1

(1− γ)ηk
+

2
√
Cν (ϑρ + 1)

1− γ

(√
ε
(k)
stat +

√
ε
(k)
approx

)
.
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By using the same increasing step size as in Theorem 5 and following the same arguments in the proof of Theorem 5
after (76), we obtain the final performance bound with the linear convergence rate

E
[
Vρ(θ

(k))
]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)k
2

1− γ
+

2
√
Cν (ϑρ + 1)

1− γ
(√
εstat +

√
εapprox

)
.

Appendix E. Sample complexity of Q-NPG

Here we establish the sample complexity results (i.e., total number of samples of single-step interaction with the
environment) of a sample-based Q-NPG Algorithm 2 in Appendix C. Combined with a regression solver, Q-NPG-SGD
in Algorithm 6, the following corollary shows that Algorithm 2 converges globally by further assuming that the feature
map is bounded and has non-singular covariance matrix.

Corollary 24 Consider the setting of Theorem 9. Suppose that the sample-based Q-NPG Algorithm 2 is run for
K iterations, with T gradient steps of Q-NPG-SGD (Algorithm 6) per iteration. Furthermore, suppose that for all
(s, a) ∈ S ×A, we have ‖φs,a‖ ≤ B with B > 0, and we choose the step size α = 1

2B2 and the initialization w0 = 0
for Q-NPG-SGD. If for all θ ∈ Rm, the covariance matrix of the feature map induced by the policy π(θ) and the initial
state-action distribution ν satisfies

E(s,a)∼d̃ θ
[
φs,aφ

>
s,a

]
≥ µIm, (77)

where Im ∈ Rm×m is the identity matrix and µ > 0, then

E
[
Vρ(θ

(K))
]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)K
2

1− γ
+

2 (ϑρ + 1)
√
Cνεapprox

1− γ

+
4
√
Cν (ϑρ + 1)

(1− γ)2
√
T

(
B2

µ

(√
2m+ 1

)
+
√

2m

)
. (78)

In Q-NPG-SGD, each trajectory has the expected length 1/(1−γ). Consequently, withK = O(log(1/ε) log(1/(1−γ)))

and T = O
(

1
(1−γ)4ε2

)
, Q-NPG requires K ∗ T/(1− γ) = Õ

(
1

(1−γ)5ε2

)
samples such that E

[
Vρ(θ

(K))
]
− Vρ(π∗) ≤

O(ε) +O
(√

εapprox

1−γ

)
.

Compared to Agarwal et al. (2021, Corollary 26) for the sampled based Q-NPG Algorithm 2, their sample complexity
is O

(
1

(1−γ)11ε6

)
with K = 1

(1−γ)2ε2 and T = 1
(1−γ)8ε4 . Despite the difference on the convergence rate for K, they

use the optimization results of Shalev-Shwartz and Ben-David (2014, Theorem 14.8) to obtain εstat = O(1/
√
T ),

while we use the one of Bach and Moulines (2013, Theorem 1) to establish εstat = O(1/T ). Thus, they consider the
projected SGD and require that the feature map is bounded and the stochastic gradient is bounded3. To apply Bach and
Moulines (2013, Theorem 1), we do not require the projection step nor the stochastic gradient bounded. Instead, we
verify conditions on the covariance matrix of the stochastic gradient at the optimum (see (vi) in Theorem 29). Thus, we
require that the feature map has non-singular covariance matrix (77).

Proof From Theorem 9, it remains to upper bound the statistical error
√
εstat produced from the Q-NPG-SGD procedure

(Algorithm 6) for each iteration k. We suppress the superscript (k). Let wout be the output of T steps Q-NPG-SGD with
the constant step size 1

2B2 and the initialization w0 = 0, and let w? ∈ argminw LQ(w, θ, d̃ θ) be the exact minimizer.
To upper bound εstat from (19), we aim to apply the standard analysis for the averaged SGD, i.e., Theorem 29. Now we
verify all the assumptions in order for Q-NPG-SGD.

First, (i) is verified by considering the Euclidean spaceH = Rm.

3. which is not correctly verified in their proof, since each single sampled trajectory has unbounded length.
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The observations
(
φs,a , Q̂s,a(θ)φs,a

)
∈ Rm × Rm are independent and identically distributed, sampled from

Algorithm 3. Thus, (ii) is verified with xn = φs,a ∈ Rm and zn = Q̂s,a(θ)φs,a ∈ Rm.

As the feature map ‖φs,a‖ ≤ B, we have E
[
‖φs,a‖2

]
finite. From (77), we know that the covariance E

[
φs,aφ

>
s,a

]
is

invertible. To verify (iii), it remains to verify that E
[∥∥∥Q̂s,a(θ)φs,a

∥∥∥2
]

is finite. Indeed, by using ‖φs,a‖ ≤ B, we have

E
[∥∥∥Q̂s,a(θ)φs,a

∥∥∥2
]
≤ B2E

[
Q̂s,a(θ)2

]
.

Thus, it remains to show E
[(
Q̂s,a(θ)

)2
]

finite for (iii). From (47), we rewrite Q̂s,a(θ) as

Q̂s,a(θ) =

H∑
t=0

c(st, at)

with (s0, a0) = (s, a) ∼ d̃ θ and H is the length of the trajectory for estimating Qs,a(θ). Thus, (iii) is verified as the
variance of Q̂s,a(θ) is upper bounded by

E
[(
Q̂s,a(θ)

)2
]

= E(s,a)∼d̃ θ

 ∞∑
k=0

Pr(H = k)E

( k∑
t=0

c(st, at)

)2

| H = k, s0 = s, a0 = a


= E(s,a)∼d̃ θ

(1− γ)

∞∑
k=0

γkE

( k∑
t=0

c(st, at)

)2

| H = k, s0 = s, a0 = a


≤ E(s,a)∼d̃ θ

[
(1− γ)

∞∑
k=0

γk(k + 1)2

]
≤ 2

(1− γ)2
, (79)

where the first inequality is obtained as |c(st, at)| ∈ [0, 1] for all (st, at) ∈ S ×A.

Next, we introduce the residual

ξ
def
=
(
Q̂s,a(θ)− w>? φs,a

)
φs,a

(51)
=

1

2
∇̂wLQ(w?, θ, d̃

θ). (80)

From Lemma 22, we know that

E
[
∇̂wLQ(w?, θ, d̃

θ)
]

= ∇wLQ(w?, θ, d̃
θ).

So, we have that

E [ξ] =
1

2
∇wLQ(w?, θ, d̃

θ) = 0,

where the last equality is obtained as w? is the exact minimizer of the loss function LQ. Thus, (iv) is verified with that
f is 1

2LQ, ξn is ξ and θ is w in our context.

From Q-NPG-SGD update 51, we have (v) verified with step size α/2 in our context.

Finally, for (vi), from the boundedness of the feature map ‖φs,a‖ ≤ B, we takeR = B such that E
[
‖φs,a‖2 φs,aφ>s,a

]
≤

B2E
[
φs,aφ

>
s,a

]
. It remains to find σ > 0 such that

E
[
ξξ>

]
≤ σ2E

[
φs,aφ

>
s,a

]
.

We rewrite the covariance of ξ as

E
[
ξξ>

] (80)
= E

[(
Q̂s,a(θ)− w>? φs,a

)2

φs,aφ
>
s,a

]
= E(s,a)∼d̃ θ

[(
Q̂s,a(θ)− w>? φs,a

)2

φs,aφ
>
s,a | s, a

]
= E(s,a)∼d̃ θ

[
E
[(
Q̂s,a(θ)− w>? φs,a

)2

| s, a
]
φs,aφ

>
s,a

]
.
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Thus, it suffices to find σ > 0 such that

E
[(
Q̂s,a(θ)− w>? φs,a

)2

| s, a
]

= E
[(
Q̂s,a(θ)

)2

| s, a
]
− 2Qs,a(θ)w>? φs,a +

(
w>? φs,a

)2 ≤ σ2 (81)

for all (s, a) ∈ S ×A to verify (vi). Besides, we know that

E
[(
Q̂s,a(θ)

)2

| s, a
]

(79)
≤ 2

(1− γ)2
.

We also know that |Qs,a(θ)| ≤ 1
1−γ and ‖φs,a‖ ≤ B. Now we need to bound ‖w?‖. Again, since w? is the exact

minimizer, we have∇wLQ(w?, θ, d̃
θ) = 0. That is

E(s,a)∼d̃ θ
[(
w>? φs,a −Qs,a(θ)

)
φs,a

]
= 0,

which implies

w? =
(
E(s,a)∼d̃ θ

[
φs,aφ

>
s,a

])†
E(s,a)∼d̃ θ [Qs,a(θ)φs,a] .

By the boundness of the feature map ‖φs,a‖ ≤ B and the Q-function |Qs,a(θ)| ≤ 1
1−γ , and the condition (77), we have

the minimizer w? bounded by

‖w?‖
(77)
≤ B

µ(1− γ)
.

By using the upper bounds of E
[(
Q̂s,a(θ)

)2

| s, a
]

, |Qs,a(θ)|, ‖w?‖ and ‖φs,a‖, the left hand side of (81) can be

upper bounded by

E
[(
Q̂s,a(θ)− w>? φs,a

)2

| s, a
]
≤ 2

(1− γ)2
+

2B2

µ(1− γ)2
+

B4

µ2(1− γ)2

=
1

(1− γ)2

((
B2

µ
+ 1

)2

+ 1

)

≤ 2

(1− γ)2

(
B2

µ
+ 1

)2

.

Thus, we choose

σ =

√
2

1− γ

(
B2

µ
+ 1

)
.

Now all the conditions (i) - (vi) in Theorem 29 are verified. With step size α = 1
2B2 , the initialization w0 = 0 and T

steps of Q-NPG-SGD updates (51), we have

E
[
LQ(wout, θ, d̃

θ)
]
− LQ(w?, θ, d̃

θ) ≤ 4

T

(
σ
√
m+B ‖w?‖

)2
≤ 4

T

(√
2m

1− γ

(
B2

µ
+ 1

)
+

B2

µ(1− γ)

)2

Consequently, Assumption 1 is verified by

√
εstat ≤

2

(1− γ)
√
T

(
B2

µ

(√
2m+ 1

)
+
√

2m

)
.

The proof is completed by replacing the above upper bound of
√
εstat in the results of Theorem 9.
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Appendix F. Proof of Section 5

F.1 The One Step NPG Lemma

To prove Theorem 14 and 15, we start from providing the one step analysis of the NPG update.

Lemma 25 (One step NPG lemma) Fix a state distribution ρ; an initial state-action distribution ν; an arbitrary
comparator policy π∗. At the k-th iteration, denote w(k)

? ∈ argminw LA(w, θ(k), d̃ (k)) as the exact minimizer.
Consider the w(k) and π(k) NPG iterates given in (34) and (17) respectively. Note

ε
(k)
stat

def
= LA(w(k), θ(k), d̃ (k))− LA(w

(k)
? , θ(k), d̃ (k)), (82)

ε(k)
approx

def
= LA(w

(k)
? , θ(k), d̃ (k)), (83)

δk
def
= V (k)

ρ − Vρ(π∗).

If Assumptions 11, 12 and 13 hold for all k ≥ 0, then we have that

ϑρ (δk+1 − δk) + δk ≤
D∗k

(1− γ)ηk
−

D∗k+1

(1− γ)ηk
+

√
Cν (ϑρ + 1)

1− γ

(√
ε
(k)
stat +

√
ε
(k)
approx

)
. (84)

Proof From the three-point descent lemma 28 and (17), we obtain that for any p ∈ ∆(A), we have

ηk

〈
Φ̄(k)
s w(k), π(k+1)

s

〉
+D(π(k+1)

s , π(k)
s ) ≤ ηk

〈
Φ̄(k)
s w(k), p

〉
+D(p, π(k)

s )−D(p, π(k+1)
s ).

Rearranging terms and dividing both sides by ηk, we get〈
Φ̄(k)
s w(k), π(k+1)

s − p
〉

+
1

ηk
D(π(k+1)

s , π(k)
s ) ≤ 1

ηk
D(p, π(k)

s )− 1

ηk
D(p, π(k+1)

s ).

Letting p = π
(k)
s and knowing that 〈

Φ̄(k)
s w(k), π(k)

s

〉
= 0 for all k ≥ 0,

yields 〈
Φ̄(k)
s w(k), π(k+1)

s

〉
≤ − 1

ηk
D(π(k+1)

s , π(k)
s )− 1

ηk
D(π(k)

s , π(k+1)
s ) ≤ 0. (85)

Letting p = π∗s yields 〈
Φ̄(k)
s w(k), π(k+1)

s − π∗s
〉
≤ 1

ηk
D(π∗s , π

(k)
s )− 1

ηk
D(π∗s , π

(k+1)
s ).

Note that we dropped the nonnegative term 1
ηk
D(π

(k+1)
s , π

(k)
s ) on the left hand side to the inequality.

Taking expectation with respect to the distribution d∗, we have

Es∼d∗
[〈

Φ̄(k)
s w(k), π(k+1)

s

〉]
− Es∼d∗

[〈
Φ̄(k)
s w(k), π∗s

〉]
≤ 1

ηk
D∗k −

1

ηk
D∗k+1. (86)
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For the first expectation in (86), we have

Es∼d∗
[〈

Φ̄(k)
s w(k), π(k+1)

s

〉]
=

∑
s∈S

d∗s

〈
Φ̄(k)
s w(k), π(k+1)

s

〉
=

∑
s∈S

d∗s

d
(k+1)
s

d(k+1)
s

〈
Φ̄(k)
s w(k), π(k+1)

s

〉
(20)+(85)
≥ ϑk+1

∑
s∈S

d(k+1)
s

〈
Φ̄(k)
s w(k), π(k+1)

s

〉
(20)+(85)
≥ ϑρ

∑
s∈S

d(k+1)
s

〈
Φ̄(k)
s w(k), π(k+1)

s

〉
= ϑρE(s,a)∼d̄ (k+1)

[
(φ̄(k)
s,a)>w(k)

]
= ϑρE(s,a)∼d̄ (k+1)

[
A(k)
s,a

]
+ ϑρE(s,a)∼d̄ (k+1)

[
(φ̄(k)
s,a)>w(k) −A(k)

s,a

]
= ϑρ(1− γ)

(
V (k+1)
ρ − V (k)

ρ

)
+ ϑρE(s,a)∼d̄ (k+1)

[
(φ̄(k)
s,a)>w(k) −A(k)

s,a

]
, (87)

where the last line is obtained by the performance difference lemma (45), and we use the shorthand φ̄(k)
s,a as φ̄s,a(θ(k)).

The second term of (87) can be lower bounded. To do it, we first decompose it into two terms. That is,

E(s,a)∼d̄ (k+1)

[
(φ̄(k)
s,a)>w(k) −A(k)

s,a

]
= E(s,a)∼d̄ (k+1)

[
(φ̄(k)
s,a)>(w(k) − w(k)

? )
]

︸ ︷︷ ︸
1

+ E(s,a)∼d̄ (k+1)

[
(φ̄(k)
s,a)>w

(k)
? −A(k)

s,a

]
︸ ︷︷ ︸

2

. (88)

We will upper bound the absolute values of the above two terms | 1 | and | 2 | separately. More precisely, similar to the
proof of Theorem 9, we will upper bound the first term | 1 | by the statistical error assumption (35) and upper bound the
second term | 2 | by using the approximation error assumption (36).

To upper bound 1 , we first define the following covariance matrix of the centered feature map

Σ
(k)

d̃ (k)

def
= E(s,a)∼d̃ (k)

[
φ̄ (k)
s,a (φ̄ (k)

s,a )>
]
. (89)

Here we use the superscript (k) for Σ
(k)

d̃ (k)
to distinguish the covariance matrix of the feature map Σd̃ (k) defined in (63)

in the proof of Theorem 5, as the centered feature map φ̄ (k)
s,a depends on the iterates θ(k).

By Cauchy-Schwartz’s inequality, we have∣∣ 1
∣∣ ≤

∑
(s,a)∈S×A

d̄ (k+1)
s,a

∣∣∣(φ̄(k)
s,a)>(w(k) − w(k)

? )
∣∣∣

≤

√√√√√ ∑
(s,a)∈S×A

(
d̄

(k+1)
s,a

)2

d̃
(k)
s,a

∑
(s,a)∈S×A

d̃
(k)
s,a

(
(φ̄

(k)
s,a)>(w(k) − w(k)

? )
)2

(89)
=

√√√√√E(s,a)∼d̃ (k)

( d̄ (k+1)
s,a

d̃
(k)
s,a

)2
∥∥∥w(k) − w(k)

?

∥∥∥2

Σ
(k)

d̃ (k)

.
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By further using the concentrability assumption 13, we have

∣∣ 1
∣∣ (37)
≤

√
Cν

∥∥∥w(k) − w(k)
?

∥∥∥2

Σ
(k)

d̃ (k)

≤
√
Cν

(
LA(w(k), θ(k), d̃ (k))− LA(w

(k)
? , θ(k), d̃ (k))

)
(90)

(82)
=

√
Cνε

(k)
stat, (91)

where (90) uses that w(k)
? is a minimizer of LA and w(k)

? is feasible (see the same arguments of (65) in the proof of
Theorem 5).

For the second term | 2 | in (88), by Cauchy-Schwartz’s inequality, we have

| 2 | ≤
∑

(s,a)∈S×A

d̄ (k+1)
s,a

∣∣∣(φ̄(k)
s,a)>w

(k)
? −A(k)

s,a

∣∣∣
≤

√√√√√ ∑
(s,a)∈S×A

(
d̄

(k+1)
s,a

)2

d̃
(k)
s,a

∑
(s,a)∈S×A

d̃
(k)
s,a

(
(φ̄

(k)
s,a)>w

(k)
? −A(k)

s,a

)2

=

√√√√√E(s,a)∼d̃ (k)

( d̄ (k+1)
s,a

d̃
(k)
s,a

)2
LA(w

(k)
? , θ(k), d̃ (k))

(37)+(83)
≤

√
Cνε

(k)
approx. (92)

Plugging (91) and (92) into (87) yields

Es∼d∗
[〈

Φ̄(k)
s w(k), π(k+1)

s

〉]
≥ ϑρ(1− γ)

(
V (k+1)
ρ − V (k)

ρ

)
− ϑρ

√
Cν

(√
ε
(k)
stat +

√
ε
(k)
approx

)
. (93)

Now for the second expectation in (86), by using the performance difference lemma (45) in Lemma 18, we have

−Es∼d∗
[〈

Φ̄(k)
s w(k), π∗s

〉]
= −E(s,a)∼d̄π∗

[
A(k)
s,a

]
+ E(s,a)∼d̄π∗

[
A(k)
s,a − (φ̄(k)

s,a)>w(k)
]

= (1− γ)
(
V (k)
ρ − Vρ(π∗)

)
+ E(s,a)∼d̄π∗

[
A(k)
s,a − (φ̄(k)

s,a)>w(k)
]
. (94)

The second term of (94) can be lower bounded. We first decompose it into two terms. That is,

E(s,a)∼d̄π∗
[
A(k)
s,a − (φ̄(k)

s,a)>w(k)
]

= E(s,a)∼d̄π∗
[
A(k)
s,a − (φ̄(k)

s,a)>w
(k)
?

]
︸ ︷︷ ︸

a

+ E(s,a)∼d̄π∗
[
(φ̄(k)
s,a)>(w

(k)
? − w(k))

]
︸ ︷︷ ︸

b

. (95)

Now we will upper bound the absolute values of the above two terms | a | and | b | separately.
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For the first one | a |, by Cauchy-Schwartz’s inequality, we have

| a | ≤
∑

(s,a)∈S×A

d̄π
∗

s,a

∣∣∣A(k)
s,a − (φ̄(k)

s,a)>w
(k)
?

∣∣∣
≤

√√√√ ∑
(s,a)∈S×A

(
d̄π∗s,a

)2
d̃

(k)
s,a

∑
(s,a)∈S×A

d̃
(k)
s,a

(
(φ̄

(k)
s,a)>w

(k)
? −A(k)

s,a

)2

=

√√√√√E(s,a)∼d̃ (k)

( d̄π∗s,a
d̃

(k)
s,a

)2
LA(w

(k)
? , θ(k), d̃ (k))

(37)+(83)
≤

√
Cνε

(k)
approx. (96)

For the second term | b | in (95), by Cauchy-Schwartz’s inequality, we have

| b | ≤
∑

(s,a)∈S×A

d̄π
∗

s,a

∣∣∣(φ̄(k)
s,a)>(w

(k)
? − w(k))

∣∣∣
≤

√√√√ ∑
(s,a)∈S×A

(
d̄π∗s,a

)2
d̃

(k)
s,a

∑
(s,a)∈S×A

d̃
(k)
s,a

(
(φ̄

(k)
s,a)>(w(k) − w(k)

? )
)2

(89)
=

√√√√√E(s,a)∼d̃ (k)

( d̄π∗s,a
d̃

(k)
s,a

)2
∥∥∥w(k) − w(k)

?

∥∥∥2

Σ
(k)

d̃ (k)

(37)
≤

√
Cν

∥∥∥w(k) − w(k)
?

∥∥∥2

Σ
(k)

d̃ (k)

(90)
≤

√
Cν

(
LA(w(k), θ(k), d̃ (k))− LA(w

(k)
? , θ(k), d̃ (k))

)
(82)
=

√
Cνε

(k)
stat. (97)

Thus, we lower bound (95) by

−Es∼d∗
[〈

Φ̄(k)
s w(k), π∗s

〉] (96)+(97)
≥ (1− γ)

(
V (k)
ρ − Vρ(π∗)

)
−
√
Cν

(√
ε
(k)
stat +

√
ε
(k)
approx

)
. (98)

Substituting (93) and (98) into (86), dividing both side by 1− γ and rearranging terms, we get

ϑρ (δk+1 − δk) + δk ≤
D∗k

(1− γ)ηk
−

D∗k+1

(1− γ)ηk
+

√
Cν (ϑρ + 1)

1− γ

(√
ε
(k)
stat +

√
ε
(k)
approx

)
.

F.2 Proof of Theorem 14

Proof From (84) in Lemma 25, by using the same increasing step size as in Theorem 5, i.e. η0 ≥ 1−γ
γ D∗0 and

ηk+1 ≥ ηk/γ, and following the same arguments in the proof of Theorem 5 after (76), we obtain the final performance
bound with the linear convergence rate

E
[
Vρ(θ

(k))
]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)k
2

1− γ
+

√
Cν (ϑρ + 1)

1− γ
(√
εstat +

√
εapprox

)
.
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F.3 Proof of Theorem 15

Proof From (84) in Lemma 25 with the constant step size, we have

ϑρ (δk+1 − δk) + δk ≤
D∗k

(1− γ)η
−

D∗k+1

(1− γ)η
+

√
Cν (ϑρ + 1)

1− γ

(√
ε
(k)
stat +

√
ε
(k)
approx

)
.

Taking the total expectation with respect to the randomness in the sequence of the iterates w(0), · · · , w(k−1) yields

ϑρ (E [δk+1]− E [δk]) + E [δk] ≤ E [D∗k]

(1− γ)η
−

E
[
D∗k+1

]
(1− γ)η

+

√
Cν (ϑρ + 1)

1− γ

(
E
[√

ε
(k)
stat

]
+ E

[√
ε
(k)
approx

])
≤ E [D∗k]

(1− γ)η
−

E
[
D∗k+1

]
(1− γ)η

+

√
Cν (ϑρ + 1)

1− γ

(√
E
[
ε
(k)
stat

]
+

√
E
[
ε
(k)
approx

])
(35)+(36)
≤ E [D∗k]

(1− γ)η
−

E
[
D∗k+1

]
(1− γ)η

+

√
Cν (ϑρ + 1)

1− γ
(√
εstat +

√
εapprox

)
.

By summing up from 0 to k − 1, we get

ϑρE [δk] +

k−1∑
t=0

E [δt] ≤
D∗0

(1− γ)η
+ ϑρδ0 + k ·

√
Cν (ϑρ + 1)

1− γ
(√
εstat +

√
εapprox

)
.

Finally, dropping the positive term E [δk] on the left hand side as π∗ is the optimal policy and dividing both side by k
yields

1

k

k−1∑
t=0

E
[
Vρ(θ

(t))
]
− Vρ(π∗) ≤

D∗0
(1− γ)ηk

+
2ϑρ

(1− γ)k
+

√
Cν (ϑρ + 1)

1− γ
(√
εstat +

√
εapprox

)
.

With the constant step size η ≥ D∗0
2ϑρ

, we have

1

k

k−1∑
t=0

E
[
Vρ(θ

(t))
]
− Vρ(π∗) ≤

4ϑρ
(1− γ)k

+

√
Cν (ϑρ + 1)

1− γ
(√
εstat +

√
εapprox

)
.

Appendix G. Sample complexity of NPG

Combined with a regression solver, NPG-SGD in Algorithm 5, which uses a slight modification of Q-NPG-SGD for the
unbiased gradient estimates of LA, we consider a sampled-based NPG Algorithm 1 proposed in Appendix C and show
its sample complexity result in the following corollary.

Corollary 26 Consider the setting of Theorem 14. Suppose that the sample-based NPG Algorithm 1 is run for
K iterations, with T gradient steps of NPG-SGD (Algorithm 5) per iteration. Furthermore, suppose that for all
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(s, a) ∈ S ×A, we have ‖φs,a‖ ≤ B with B > 0, and we choose the step size α = 1
8B2 and the initialization w0 = 0

for NPG-SGD. If for all θ ∈ Rm, the covariance matrix of the centered feature map induced by the policy π(θ) and the
initial state-action distribution ν satisfies

E(s,a)∼d̃ θ
[
φ̄s,a(θ)(φ̄s,a(θ))>

]
≥ µIm, (99)

where Im ∈ Rm×m is the identity matrix and µ > 0, then

E
[
Vρ(θ

(K))
]
− Vρ(π∗) ≤

(
1− 1

ϑρ

)K
2

1− γ
+

(ϑρ + 1)
√
Cνεapprox

1− γ

+
4
√
Cν (ϑρ + 1)

(1− γ)2
√
T

(
2B2

µ

(√
2m+ 1

)
+
√

2m

)
. (100)

Proof Similar to the proof of Corollary 24, we suppress the subscript k. First, the centered feature map is bounded
by
∥∥φ̄s,a(θ)

∥∥ ≤ 2B. In order to apply Theorem 1 of Bach and Moulines (2013), it remains to upper bound

E
[∥∥∥Âs,a(θ)φ̄s,a(θ)

∥∥∥2
]

and ‖w?‖ with w? ∈ argminw LA(w, θ, d̃ θ), and find σ > 0 such that

E
[(
Âs,a(θ)− w>? φ̄s,a(θ)

)2

| s, a
]

= E
[(
Âs,a(θ)

)2

| s, a
]
− 2As,a(θ)w>? φ̄s,a(θ) +

(
w>? φ̄s,a(θ)

)2 ≤ σ2 (101)

holds for all (s, a) ∈ S ×A and θ ∈ Rm.

Similar to the proof of Corollary 24, the closed form solution of w? can be written as

w? =
(
E(s,a)∼d̃ θ

[
φ̄s,a(θ)φ̄s,a(θ)>

])†
E(s,a)∼d̃ θ

[
Qs,a(θ)φ̄s,a(θ)

]
.

From (99), we have

‖w?‖ ≤
2B

µ(1− γ)
.

Now we need to upper bound E
[(
Âs,a(θ)

)2

| s, a
]

from (101). Indeed, by using Âs,a(θ) = Q̂s,a(θ) − V̂s(θ), we

have

E
[(
Âs,a(θ)

)2

| s, a
]
≤ 2E

[(
Q̂s,a(θ)

)2

| s, a
]

+ 2E
[(
V̂s,a(θ)

)2

| s, a
]

(79)
≤ 8

(1− γ)2
, (102)

where the last line is obtained, as E
[(
V̂s,a(θ)

)2

| s, a
]

shares the same upper bound (79) of E
[(
Q̂s,a(θ)

)2

| s, a
]

by

using the similar argument.

From (102) and φ̄s,a(θ) ≤ 2B, we verify E
[∥∥∥Âs,a(θ)φ̄s,a(θ)

∥∥∥2
]

bounded as well.

By using the upper bounds of E
[(
Âs,a(θ)

)2

| s, a
]

, ‖w?‖, |As,a(θ)| ≤ 2
1−γ and

∥∥φ̄s,a(θ)
∥∥ ≤ 2B, the left hand side

of (101) is upper bounded by

E
[(
Âs,a(θ)− w>? φ̄s,a(θ)

)2

| s, a
]
≤ 8

(1− γ)2
+

16B2

µ(1− γ)2
+

16B4

µ2(1− γ)2

=
4

(1− γ)2

((
2B2

µ
+ 1

)2

+ 1

)

≤ 8

(1− γ)2

(
2B2

µ
+ 1

)2

.
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Thus, we choose

σ =
2
√

2

1− γ

(
2B2

µ
+ 1

)
.

Now all the conditions (i) - (vi) in Theorem 29 are verified. The reminder of the proof follows that of Corollary 24.

Appendix H. Standard Optimization Results

In this section, we present the standard optimization results from Beck (2017); Xiao (2022); Bach and Moulines (2013)
used in our proofs.

First, we present the closed form update of mirror descent with KL divergence on the simplex. We provide its proof for
the completeness.

Lemma 27 (Mirror descent on the simplex, Example 9.10 in Beck (2017)) Let g ∈ Rn which will often be a gradi-
ent and let η > 0. For p, q in the unit n-simplex ∆n, the mirror descent step with respect to the KL divergence

min
p∈∆n

η 〈g, p〉+D(p, q) (103)

is given by

p =
q � e−ηg∑n
i=1 qie

−ηgi
, (104)

where � is the element-wise product between vectors.

Proof The Lagrangian of (103) is given by

L(p, µ, λ) = η 〈g, p〉+D(p, q) + µ(1−
n∑
i=1

pi)−
n∑
i=1

λipi,

where µ ∈ R and λ ∈ Rn with non-negative coordinates are the Lagrangian multipliers. Thus the Karush–Kuhn–Tucker
conditions are given by

ηg + log(p/q) + 1n = µ1n + λ,

1>n p = 1,

λi = 0 or pi = 0, for all i = 1, · · · , n,

where the division p/q is element-wise. Isolating p in the top equation gives

p = q � e(µ−1)1n+λ−ηg = eµ−1q � eλ−ηg.

Using the second constraint 1>n p = 1 gives that

1 = eµ−1
n∑
i=1

qie
λi−ηgi =⇒ eµ−1 =

1∑n
i=1 qie

λi−ηgi
.

Consequently, by plugging the above term into p, we have that

p =
q � eλ−ηg∑n
i=1 qie

λi−ηgi
.

It remains to determine λ. If qi = 0 then pi = 0 and thus λi > 0. Conversely, if qi > 0 then pi > 0 and thus λi = 0. In
either of these cases, we have that the solution is given by (104).
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Now we present the three-point descent lemma on proximal optimization with Bregman divergences, which is another
key ingredient for our PMD analysis. Following Xiao (2022, Lemma 6), we adopt a slight variation of Lemma
3.2 in Chen and Teboulle (1993). First, we need some technical conditions. We say a function h is of Legendre
type (Rockafellar, 1970, Section 26) if it is essentially smooth and strictly convex in the relative interior of domh,
denoted as rint domh. Essential smoothness means that h is differentiable and ‖∇h(xn)‖ → ∞ for every sequence
{xn} converging to a boundary point of domh. The Bregman divergence generated by a function h of Legendre type is
a distance-like function defined as

Dh(p, p′)
def
= h(p)− h(p′)− 〈∇h(p′), p− p′〉 .

Under the above conditions, we have the following result.

Lemma 28 (Three-point decent lemma, Lemma 6 in Xiao (2022)) Suppose that C ⊂ Rm is a closed convex set,
f : C → R is a proper, closed convex function, Dh(·, ·) is the Bregman divergence generated by a function h of
Lengendre type and rint domh ∩ C 6= ∅. For any x ∈ rint domh, let

x+ = arg min
u∈C
{f(u) +Dh(u, x)}.

Then x+ ∈ rint domh ∩ C and for any u ∈ C,

f(x+) +Dh(x+, x) ≤ f(u) +Dh(u, x)−Dh(u, x+).

Finally, we use the following linear regression analysis for the proof of our sample complexity results, i.e., Corollary 24
and 26.

Theorem 29 (Theorem 1 in Bach and Moulines (2013)) Consider the following assumptions:

(i) H is a m-dimensional Euclidean space.

(ii) The observations (xn, zn) ∈ H ×H are independent and identically distributed.

(iii) E
[
‖xn‖2

]
and E

[
‖zn‖2

]
are finite. The covariance E

[
xnx

>
n

]
is assumed invertible.

(iv) The global minimum of f(θ) = 1
2E
[
〈θ, xn〉2 − 2 〈θ, zn〉

]
is attained at a certain θ∗ ∈ H. Denote ξn =

zn − 〈θ∗, xn〉xn as the residual. We have E [ξn] = 0.

(v) Consider the stochastic gradient recursion defined as

θn = θn−1 − η(〈θn−1, xn〉xn − zn),

started from θ0 ∈ H and also consider the averaged iterates θout = 1
n+1

∑n
k=0 θk.

(vi) There exists R > 0 and σ > 0 such that E
[
ξnξ
>
n

]
≤ σ2E

[
xnx

>
n

]
and E

[
‖xn‖2 xnx>n

]
≤ R2E

[
xnx

>
n

]
.

When η = 1
4R2 , we have

E [f(θout)− f(θ∗)] ≤
2

n

(
σ
√
m+R ‖θ0 − θ∗‖

)2
. (105)
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