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Fig. 1. We present a system for estimating temporally coherent and geometrically consistent depth from a casually captured video. Conventional multi-view
stereo methods such as COLMAP [Schonberger and Frahm 2016] often produce incomplete depth on moving objects or poorly textured areas. Learning-based
methods (e.g., [Li et al. 2019]) predict dense depth for each frame but the video reconstruction is flickering and geometrically inconsistent. Our video depth
estimation is fully dense, globally scale-consistent, and capable of handling dynamically moving objects. We evaluate our method on a wide variety of
challenging videos and show that our results enable new video special effects.

We present an algorithm for reconstructing dense, geometrically consis-
tent depth for all pixels in a monocular video. We leverage a conventional
structure-from-motion reconstruction to establish geometric constraints on
pixels in the video. Unlike the ad-hoc priors in classical reconstruction, we
use a learning-based prior, i.e., a convolutional neural network trained for
single-image depth estimation. At test time, we fine-tune this network to
satisfy the geometric constraints of a particular input video, while retaining
its ability to synthesize plausible depth details in parts of the video that are
less constrained. We show through quantitative validation that our method
achieves higher accuracy and a higher degree of geometric consistency than
previous monocular reconstruction methods. Visually, our results appear
more stable. Our algorithm is able to handle challenging hand-held captured
input videos with a moderate degree of dynamic motion. The improved
quality of the reconstruction enables several applications, such as scene
reconstruction and advanced video-based visual effects.

CCS Concepts: • Computing methodologies → Reconstruction; Com-
putational photography.

Additional Key Words and Phrases: video, depth estimation
∗This work was done while Xuan was an intern at Facebook.

Authors’ addresses: Xuan Luo, University of Washington; Jia-Bin Huang, Virginia Tech;
Richard Szeliski, Facebook; Kevin Matzen, Facebook; Johannes Kopf, Facebook.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/7-ART71 $15.00
https://doi.org/10.1145/3386569.3392377

ACM Reference Format:
Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes
Kopf. 2020. Consistent Video Depth Estimation. ACM Trans. Graph. 39, 4,
Article 71 (July 2020), 13 pages. https://doi.org/10.1145/3386569.3392377

1 INTRODUCTION
3D scene reconstruction from image sequences has been studied
in our community for decades. Until a few years ago, the structure
from motion systems for solving this problem were not very robust,
and practically only worked “in the lab”, with highly calibrated and
predictable setups. They also, often, produced only sparse recon-
structions, i.e., resolving depth at only a few isolated tracked point
features. But in the last decade or so, we have seen good progress
towards enabling more casual capture and producing denser re-
constructions, driven by high-quality open-source reconstruction
systems and recent advances in learning-based techniques, as dis-
cussed in the next section.

Arguably the easiest way to capture for 3D reconstruction is using
hand-held cell phone video, since these cameras are so readily and
widely available, and enable truly spontaneous, impromptu capture,
as well as quickly covering large spaces. If we could achieve fully
dense and accurate reconstruction from such input it would be
immensely useful—however, this turns out to be quite difficult.

Besides the typical problems that any reconstruction system has
to deal with, such as poorly textured areas, repetitive patterns, and
occlusions, there are several additional challenges with video: higher
noise level, shake and motion blur, rolling shutter deformations,
small baseline between adjacent frames, and, often, the presence of
dynamic objects, such as people. For these reasons, existing methods
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often suffer from a variety of problems, such as missing regions in
the depth maps (Figure 1b) and inconsistent geometry and flickering
depth (Figure 1c).

Traditional reconstructionmethods [Szeliski 2010] combine sparse
structure-from-motion with dense multi-view stereo—essentially
matching patches along epipolar lines. When the matches are cor-
rect, this results in geometrically accurate reconstructions. However,
due to the before-mentioned complications, the matches are often
noisy, and typically need to be regularized with heuristic smooth-
ness priors. This often induces incorrect geometry in the affected
regions, so that many methods drop pixels with low confidence
altogether, leaving “holes” in the reconstruction (Figure 1b).
There has recently been immense progress on learning-based

methods that operate on single images. These methods do not re-
quire heuristic regularization, but instead learn scene priors from
data, which results in better ability to synthesize plausible depth
in parts of the scene that would be weakly or even incorrectly con-
strained in traditional reconstruction approaches. They excel, in
particular, at the reconstruction of dynamic scenes, since static and
dynamic objects appear the same when we consider a single frame
at a time. However, the estimated depth often flickers erratically
due to the independent per-frame processing (Figure 1c), and it is
not metric (i.e., not related to true depth by a single scale factor).
This causes a video reconstruction to be geometrically inconsistent:
objects appear to be attached to the camera and “swimming” in
world-space.

Several video-based depth estimation methods have also been
developed. These methods address the geometrical consistency of
the reconstruction over time either implicitly via recurrent neural
networks [Patil et al. 2020; Wang et al. 2019b] or explicitly using
multi-view reconstruction [Liu et al. 2019; Teed and Deng 2020].
State-of-the-art video-based depth estimation methods [Liu et al.
2019; Teed and Deng 2020], however, handle only static scenes.

In this work, we present a new video-based reconstruction system
that combines the strengths of traditional and learning-based tech-
niques. It uses traditionally-obtained geometric constraints where
they are available to achieve accurate and consistent depth, and
leverages learning-based priors to fill in the weakly constrained
parts of the scene more plausibly than prior heuristics. Technically,
this is implemented by fine-tuning the weights of a single-image
depth estimation network at test time, so that it learns to satisfy
the geometry of a particular scene while retaining its ability to syn-
thesize plausible new depth details where necessary. Our test-time
training strategy allows us to use both short-term and long-term con-
straints and prevent drifting over time. The resulting depth videos
are fully dense and detailed, with sharp object boundaries. The re-
construction is flicker-free and geometrically consistent throughout
the video. For example, static objects appear rock-steady when pro-
jected into world space. The method even supports a gentle amount
of dynamic scene motion, such as hand-waving (Figure 9), although
it still breaks down for extreme object motion.

The improved quality and consistency of our depth videos enable
interesting new applications, such as fully-automatic video special
effects that interact with the dense scene content (Figure 9). We

extensively evaluate our method quantitatively and show numer-
ous qualitative results. The source code of our method is publicly
available.1

2 RELATED WORK
Supervised monocular depth estimation. Early learning-based ap-

proaches regress local image features to depth [Saxena et al. 2008] or
discrete geometric structures [Hoiem et al. 2005], followed by some
post-processing steps (e.g., a MRF). Deep learning basedmodels have
been successfully applied to single image depth estimation [Eigen
and Fergus 2015; Eigen et al. 2014; Fu et al. 2018; Laina et al. 2016; Liu
et al. 2015]. However, training these models requires ground truth
depth maps that are difficult to acquire. Several efforts have been
made to address this issue, e.g., training on synthetic dataset [Mayer
et al. 2016a] followed by domain adaptation [Atapour-Abarghouei
and Breckon 2018], collecting relative depth annotations [Chen et al.
2016], using conventional structure-from-motion and multi-view
stereo algorithms to obtain pseudo ground truth depth maps from
Internet images [Chen et al. 2019a; Li et al. 2019; Li and Snavely
2018], or 3D movies [Ranftl et al. 2019; Wang et al. 2019a]. Our
method builds upon recent advances in single image depth estima-
tion and further improves the geometric consistency of the depth
estimation on videos.

Self-supervised monocular depth estimation. Due to challenges of
scaling up training data collection, self-supervised learning meth-
ods have received considerable attention for their ability to learn a
monocular depth estimation model directly from raw stereo pairs
[Godard et al. 2017] or monocular video [Zhou et al. 2017]. The core
idea is to apply differentiable warp and minimize photometric re-
projection error. Recent methods improve the performance through
incorporating coupled training with optical flow [Ranjan et al. 2019;
Yin and Shi 2018; Zou et al. 2018], object motion [Dai et al. 2019;
Vijayanarasimhan et al. 2017], surface normal [Qi et al. 2018], edge
[Yang et al. 2018], and visual odometry [Andraghetti et al. 2019;
Shi et al. 2019; Wang et al. 2018b]. Other notable efforts include
using stereo information [Guo et al. 2018; Watson et al. 2019], better
network architecture and training loss design [Gordon et al. 2019;
Guizilini et al. 2019], scale-consistent ego-motion network [Bian
et al. 2019], incorporating 3D geometric constraints [Mahjourian
et al. 2018], and learning from unknown camera intrinsics [Chen
et al. 2019b; Gordon et al. 2019].
Many of these self-supervised methods use a photometric loss.

However, these losses can be satisfied even if the geometry is not
consistent (in particular, in poorly textured areas). In addition, they
do not work well for temporally distant frames because of larger
appearance changes. In our ablation study, however, we show that
long-range temporal constraints are important for achieving good
results.

Multi-view reconstruction. Multi-view stereo algorithms estimate
scene depth using multiple images captured from arbitrary view-
points [Furukawa et al. 2015; Schonberger and Frahm 2016; Seitz
et al. 2006]. Recent learning-based methods [Huang et al. 2018; Im
et al. 2019; Kusupati et al. 2019; Ummenhofer et al. 2017; Yao et al.

1https://roxanneluo.github.io/Consistent-Video-Depth-Estimation/
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2018] leverage well-established principles in traditional geometry-
based approaches (e.g., cost aggregation and plane-sweep volume)
and show state-of-the-art performance in multi-view reconstruction.
However, these multi-view stereo techniques assume a static scene.
For dynamic objects, these methods either produce erroneous esti-
mates or drop pixels with low confidence. In contrast, our method
produces dense depth even in the presence of moderate dynamic
scene motion.

Depth from video. Recovering dense depth from monocular video
is a challenging problem. To handle moving objects, existing tech-
niques rely on motion segmentation and explicit motion modeling
for the moving objects in the scene [Casser et al. 2019; Karsch et al.
2014; Ranftl et al. 2016]. Several methods estimate depth by inte-
grating motion estimation and multi-view reconstruction using two
frames [Ummenhofer et al. 2017; Wang et al. 2019a] or a varying
number of frames [Bloesch et al. 2018; Valentin et al. 2018; Zhou et al.
2018]. The state-of-the-art video-to-depth methods [Liu et al. 2019;
Teed and Deng 2020] regress depth (or predict a distribution over
depth) based on the cost volume constructed by warping nearby
frames to a reference viewpoint. Such model designs thus do not
account for dynamically moving objects. In contrast, while we also
leverage constraints derived frommulti-view geometry, our depth is
estimated from (fine-tuned) single-image depth estimation models,
and thereby handle dynamic object naturally and without the need
for explicit motion segmentation.

Temporal consistency. Applying single-image based methods inde-
pendently to each frame in a video often produce flickering results.
In light of this, various approaches for enforcing temporal consis-
tency have been developed in the context of style transfer [Chen
et al. 2017; Huang et al. 2017; Ruder et al. 2016], image-based graph-
ics applications [Lang et al. 2012], video-to-video synthesis [Wang
et al. 2018a], or application-agnostic post-processing algorithms
[Bonneel et al. 2015; Lai et al. 2018]. The core idea behind these
methods is to introduce a “temporal consistency loss" (either at
training or testing time) that encourages similar values along the
temporal correspondences estimated from the input video. In the
context of depth estimation from video, several efforts have been
made to make the estimated depth more temporally consistent by
explicitly applying optical flow-based consistency loss [Karsch et al.
2014] or implicitly encouraging temporal consistency using recur-
rent neural networks [Patil et al. 2020; Wang et al. 2019b; Zhang et al.
2019b]. Our work differs in that we aim to produce depth estimates
from a video that are geometrically consistent. This is particularly
important for casually captured videos because the actual depth
may not be temporally consistent due to camera motion over time.

Depth-aware visual effects. Dense depth estimation facilitates a
wide variety of visual effects such as synthetic depth-of-field [Wad-
hwa et al. 2018], novel view synthesis [Hedman et al. 2017; Hedman
and Kopf 2018; Hedman et al. 2018; Shih et al. 2020], and occlusion-
aware augmented reality [Holynski and Kopf 2018]. Our work on
consistent depth estimation from causally captured videos enables
several new video special effects.

Test-time training. Learning on testing data has been used in
several different problem contexts: online update in visual tracking

[Kalal et al. 2011; Ross et al. 2008], adapting object detectors from
images to videos [Jain and Learned-Miller 2011; Tang et al. 2012], and
learning video-specific features for person re-identification [Cinbis
et al. 2011; Zhang et al. 2019a]. The work most closely related to
ours is that of [Casser et al. 2019; Chen et al. 2019b] where they
improve monocular depth estimation results by fine-tuning a pre-
trained model using the testing video sequence. Note that any self-
supervised method can be trained at test time (as in [Casser et al.
2019; Chen et al. 2019b]). However, the focus of previous methods
is largely on achieving per-frame accuracy, while our focus is on
achieving an accurate prediction with global geometric consistency.
Our method achieves accurate and detailed reconstructions with a
higher level of temporal smoothness than previous methods, which
is important for many video-based applications.

Aside from these goals, there are important technical differences
between our method and prior ones. The method in [Casser et al.
2019] performs a binary object-level segmentation and estimates
rigid per-object transformations. This is appropriate for rigid ob-
jects such as cars in a street scene, but less so for highly deformable
subjects such as people. The method in [Chen et al. 2019b] uses a
geometric loss, similar to ours. However, they only train on con-
secutive frame pairs and relative poses. We use absolute poses and
long-term temporal connections, which our ablation shows is criti-
cal for achieving good results (Figure 6).

3 OVERVIEW
Our method takes a monocular video as input and estimates a cam-
era pose as well as a dense, geometrically consistent depth map (up
to scale ambiguity) for each video frame. The term geometric con-
sistency not only implies that the depth maps do not flicker over
time but also, that all the depth maps are in mutual agreement.
That is, we may project pixels via their depth and camera pose ac-
curately amongst frames. For example, all observations of a static
point should be mapped to a single common 3D point in the world
coordinate system without drifting.

Casually captured input videos exhibit many characteristics that
are challenging for depth reconstruction. Because they are often
captured with a handheld, uncalibrated camera, the videos suffer
from motion blur and rolling shutter deformations. The poor light-
ing conditions may cause increased noise level and additional blur.
Finally, these videos usually contain dynamically moving objects,
such as people and animals, thereby breaking the core assumption
of many reconstruction systems designed for static scenes.
As we explained in the previous sections, in problematic parts

of a scene, traditional reconstruction methods typically produce
“holes” (or, if forced to return a result, estimate very noisy depth.) In
areas where these methods are confident enough to return a result,
however, it is typically fairly accurate and consistent, because they
rely strongly on geometric constraints.

Recent learning-based methods [Liu et al. 2019; Ranftl et al. 2019]
have complementary characteristics. These methods handle the
challenges described above just fine because they leverage a strong
data-driven prior to predict plausible depth maps from any input
image. However, applying these methods independently for each
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Fig. 2. Method overview. With a monocular video as input, we sample a pair of (potentially distant) frames and estimate the depth using a pre-trained,
single-image depth estimation model to obtain initial depth maps. From the pair of images, we establish correspondences using optical flow with forward-
backward consistency check. We then use these correspondences and the camera poses to extract geometric constraints in 3D. We decompose the 3D
geometric constraints into two losses: 1) spatial loss and 2) disparity loss and use them to fine-tune the weight of the depth estimation network via standard
backpropagation. This test-time training enforces the network to minimize the geometric inconsistency error across multiple frames for this particular video.
After the fine-tuning stage, our final depth estimation results from the video is computed from the fine-tuned model.

frame results in geometrically inconsistent and temporally flickering
results over time.

Our idea is to combine the strengths of both types of methods. We
leverage existing single-image depth estimation networks [Godard
et al. 2019; Li et al. 2019; Ranftl et al. 2019] that have been trained
to synthesize plausible (but not consistent) depth for general color
images, and we fine-tune the network using the extracted geometric
constraints from a video using traditional reconstruction methods.
The network thus learns to produce geometrically consistent depth
on a particular video.
Our method proceeds in two stages:
Pre-processing (Section 4): As a foundation for extracting geo-

metric constraints among video frames, we first perform a tradi-
tional Structure-from-Motion (SfM) reconstruction pipeline using
an off-the-shelf open-source software COLMAP [Schonberger and
Frahm 2016]. To improve pose estimation for videos with dynamic
motion, we apply Mask R-CNN [He et al. 2017] to obtain people
segmentation and remove these regions for more reliable keypoint
extraction and matching, since people account for the majority of
dynamic motion in our videos. This step provides us with accurate
intrinsic and extrinsic camera parameters as well as a sparse point
cloud reconstruction. We also estimate dense correspondence be-
tween pairs of frames using optical flow. The camera calibration
and dense correspondence, together, enable us to formulate our
geometric losses, as described below.
The second role of the SfM reconstruction is to provide us with

the scale of the scene. Because our method works with monocular
input, the reconstruction is ambiguous up to scale. The output of
the learning-based depth estimation network is scale-invariant as
well. Consequently, to limit the amount the network has to change,

we adjust the scale of the SfM reconstruction so that it matches the
learning-based method in a robust average sense.

Test-time Training (Section 5): In this stage, which comprises
our primary contribution, we fine-tune a pre-trained depth esti-
mation network so that it produces more geometrically consistent
depth for a particular input video. In each iteration, we sample a
pair of frames and estimate depth maps using the current network
parameters (Figure 2). By comparing the dense correspondence with
reprojections obtained using the current depth estimates, we can
validate whether the depth maps are geometrically consistent. To
this end, we evaluate two geometric losses, 1) spatial loss and 2)
disparity loss and back-propagate the errors to update the network
weights (which are shared across for all frames). Over time, itera-
tively sampling many frame pairs, the losses are driven down, and
the network learns to estimate depth that is geometrically consis-
tent for this video while retaining its ability to provide plausible
regularization in less constrained parts.
The improvement is often dramatic, our final depth maps are

geometrically consistent, temporally coherent across the entire
video while accurately delineate clear occluding boundaries even
for dynamically moving objects. With depth computed, we can have
proper depth edge for occlusion effect and make the geometry of the
real scene interact with the virtual objects. We show various com-
pelling visual effects made possible by our video depth estimation
in Section 6.5.

4 PRE-PROCESSING
Camera registration. We use the structure-from-motion andmulti-

view stereo reconstruction software COLMAP [Schonberger and
Frahm 2016] to estimate for each frame 𝑖 of the 𝑁 video frames the
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intrinsic camera parameters 𝐾𝑖 , the extrinsic camera parameters
(𝑅𝑖 , 𝑡𝑖 ), as well as a semi-dense depth map 𝐷MVS

𝑖
. We set the values

to zeros for pixels where the depth is not defined.
Because dynamic objects often cause errors in the reconstruction,

we apply Mask R-CNN [He et al. 2017] to segment out people (the
most common “dynamic objects” in our videos) in every frame inde-
pendently, and suppress feature extraction in these areas (COLMAP
provides this option). Since smartphone cameras are typically not
distorted2, we use the SIMPLE_PINHOLE camera model and solve
for the shared camera intrinsics for all the frames, as this provides
a faster and more robust reconstruction. We use the exhaustive
matcher and enable guided matching.

Scale calibration. The scale of the SfM and the learning-based
reconstructions typically do not match, because both methods are
scale-invariant. This manifests in different value ranges of depth
maps produced by both methods. To make the scales compatible
with the geometric losses, we adjust the SfM scale, because we can
simply do so by multiplying all camera translations by a factor.
Specifically, let 𝐷NN

𝑖
be the initial depth map produced by the

learning-based depth estimation method. We first compute the rela-
tive scale for image 𝑖 as:

𝑠𝑖 = median
𝑥

{
𝐷NN
𝑖 (𝑥) / 𝐷MVS

𝑖 (𝑥)
��� 𝐷MVS

𝑖 (𝑥) ≠ 0
}
, (1)

where 𝐷 (𝑥) is the depth at pixel 𝑥 .
We can then compute the global scale adjustment factor 𝑠 as

𝑠 = mean
𝑖

{𝑠𝑖 } , (2)

and update all the camera translations

𝑡𝑖 = 𝑠 · 𝑡𝑖 . (3)

Frame sampling. In the next step, we compute a dense optical
flow for certain pairs of frames. This step would be prohibitively
computationally expensive to perform for all𝑂 (𝑁 2) pairs of frames
in the video. We, therefore, use a simple hierarchical scheme to
prune the set of frame pairs down to 𝑂 (𝑁 ).
The first level of the hierarchy contains all consecutive frame

pairs,
𝑆0 =

{
(𝑖, 𝑗)

�� |𝑖 − 𝑗 | = 1
}
. (4)

Higher levels contain a progressively sparser sampling of frames,

𝑆𝑙 =
{
(𝑖, 𝑗)

�� |𝑖 − 𝑗 | = 2𝑙 , 𝑖 mod 2𝑙−1 = 0
}
. (5)

The final set of sampled frames is the union of the pairs from all
levels,

𝑆 =
⋃

0≤𝑙≤⌊log2 (𝑁−1) ⌋
𝑆𝑙 . (6)

Optical flow estimation. For all frame pairs (𝑖, 𝑗) in 𝑆 we need to
compute a dense optical flow field 𝐹𝑖→𝑗 . Because flow estimation
works best when the frame pairs align as much as possible, we
first align the (potentially distant) frames using a homography-
warp (computed with a RANSAC-based fitting method [Szeliski
2010]) to eliminate dominant motion between the two frames (e.g.,
due to camera rotation). We then use FlowNet2 [Ilg et al. 2017] to
2Our test sequences (Section 6.1) are captured with a fisheye camera, and we remove
the distortion through rectification.

compute the optical flow between the aligned frames. To account of
moving objects and occlusion/dis-occlusion (as they do not satisfy
the geometric contraints or are unreliable), we apply a forward-
backward consistency check and remove pixels that have forward-
backward errors larger than 1 pixel, producing a binary map𝑀𝑖→𝑗 .
Furthermore, we observe that the flow estimation results are not
reliable for frame pairs with little overlap. We thus exclude any
frame pairs where |𝑀𝑖→𝑗 | is less than 20% of the image area from
consideration.

5 TEST-TIME TRAINING ON INPUT VIDEO
Now we are ready to describe our test-time training procedure, i.e.,
how we coerce the depth network through fine-tuning it with a
geometric consistency loss to producing more consistent depth for
a particular input video. We first describe our geometric loss, and
then the overall optimization procedure.

Geometric loss. For a given frame pair (𝑖, 𝑗) ∈ 𝑆 , the optical flow
field 𝐹𝑖→𝑗 describes which pixel pairs show the same scene point.
We can use the flow to test the geometric consistency of our current
depth estimates: if the flow is correct and a flow-displaced point
𝑓𝑖→𝑗 (𝑥) is identical to the depth-reprojected point 𝑝𝑖→𝑗 (𝑥) (both
terms defined below), then the depth must be consistent.

The idea of our method is that we can turn this into a geometric
loss L𝑖→𝑗 and back-propagate any consistency errors through the
network, so as to coerce it into to producing depth that is more
consistent than before. L𝑖→𝑗 comprises two terms, an image-space
loss Lspatial

𝑖→𝑗
, and a disparity loss Ldisparity

𝑖→𝑗
. To define them, we first

discuss some notation.
Let 𝑥 be a 2D pixel coordinate in frame 𝑖 . The flow-displaced point

is simply
𝑓𝑖→𝑗 (𝑥) = 𝑥 + 𝐹𝑖→𝑗 (𝑥) . (7)

To compute the depth-reprojected point 𝑝𝑖→𝑗 (𝑥), we first lift the
2D coordinate to a 3D point 𝑐𝑖 (𝑥) in frame 𝑖’s camera coordinate
system, using the camera intrinsics 𝐾𝑖 as well as the current depth
estimate 𝐷𝑖 ,

𝑐𝑖 (𝑥) = 𝐷𝑖 (𝑥) 𝐾−1
𝑖 𝑥, (8)

where 𝑥 is the homogeneous augmentation of 𝑥 . We then further
project the point to the other frame 𝑗 ’s camera coordinate system,

𝑐𝑖→𝑗 (𝑥) = 𝑅T𝑗
(
𝑅𝑖 𝑐𝑖 (𝑥) + 𝑡𝑖 − 𝑡 𝑗

)
, (9)

and finally convert it back to a pixel position in frame 𝑗 ,

𝑝𝑖→𝑗 (𝑥) = 𝜋
(
𝐾𝑗 𝑐𝑖→𝑗 (𝑥)

)
, (10)

where 𝜋
(
[𝑥,𝑦, 𝑧]T

)
= [ 𝑥𝑧 ,

𝑦
𝑧 ]

T.
With this notation, the image-space loss for a pixel can be easily

defined:
Lspatial
𝑖→𝑗

(𝑥) =
𝑝𝑖→𝑗 (𝑥) − 𝑓𝑖→𝑗 (𝑥)


2 , (11)

which penalizes the image-space distance between the flow-displaced
and the depth-reprojected point.
The disparity loss, similarly, penalizes the disparity distance in

camera coordinate system:

Ldisparity
𝑖→𝑗

(𝑥) = 𝑢𝑖
��� 𝑧−1𝑖→𝑗 (𝑥) − 𝑧

−1
𝑗

(
𝑓𝑖→𝑗 (𝑥)

) ��� , (12)
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where 𝑢𝑖 is frame 𝑖’s focal length, and 𝑧𝑖 and 𝑧𝑖→𝑗 are the scalar
z-component from 𝑐𝑖 and 𝑐𝑖→𝑗 , respectively.

The overall loss for the pair is then simply a combination of both
losses for all pixels where the flow is valid,

L𝑖→𝑗 =
1��𝑀𝑖→𝑗

�� ∑
𝑥 ∈𝑀𝑖→𝑗

Lspatial
𝑖→𝑗

(𝑥) + _Ldisparity
𝑖→𝑗

(𝑥), (13)

where _ = 0.1 is a balancing coefficient.

Discussion. While the second term in Equation 11 (flow mapping)
can handle dynamic motion, the first term (depth reprojection) as-
sumes a static scene. How can this still result in an accurate depth
estimation? There are two cases: (1) Consistent motion (e.g., a mov-
ing car) can sometimes be aligned with the epipolar geometry and
cause our method, like most others, to estimate the wrong depth. (2)
Consistent motion that is not epipolar-aligned or inconsistent mo-
tion (e.g., a waving hand) causes conflicting constraints; empirically,
our test-time training is tolerant to these conflicting constraints
and produces accurate results (as seen in many examples in this
submission and accompanying materials.)

Optimization. Using the geometric loss between 𝑖-th and 𝑗-th
frames L𝑖→𝑗 , we fine-tune the network weights using standard
backpropagation. Initializing the network parameters using a pre-
trained depth estimation model allows us to transfer the knowledge
for producing plausible depth maps on images that are challenging
for traditional geometry-based reconstructon systems. We fine-tune
the network using a fixed number of epochs (20 epochs for all our
experiments). In practice, we find that with this simple fine-tuning
step the network training does not overfit the data in the sense that
it does not lose its ability to synthesize plausible depth in uncon-
strained or weakly constrained parts of the scene3. We also observe
that the training handles a certain amount of erroneous supervision
(e.g., when the correspondences are incorrectly established).

Implementation details. Wehave experimentedwith several monoc-
ular depth estimation architectures and pre-trained weights [Godard
et al. 2019; Li et al. 2019; Ranftl et al. 2019]. If not otherwise noted,
results in the paper and accompanying materials use Li et al.’s net-
work [2019] (single-image model). We use the other networks in
evaluations as noted there. Given an input video, an epoch is de-
fined by one pass over all frame pairs in S. In all of our experiments,
we fine-tune the network for 20 epochs with a batch size of 4 and
a learning rate of 0.0004 using ADAM optimizer [Kingma and Ba
2015]. The time for test-time training varies for videos of different
lengths. For a video of 244 frames, training on 4 NVIDIA Tesla M40
GPUs takes 40 min.

6 RESULTS AND EVALUATION
In this section, we first describe the experimental setup (Section 6.1).
We then present quantitative comparison with the state-of-the-art
depth estimation methods (Section 6.2). We conduct an extensive
ablation study to validate the importance of our design choices and
their contributions to the results (Section 6.3). Finally, we show

3We note that there are more advanced regularization techniques for transfer learning
[Kirkpatrick et al. 2017; Li et al. 2018]. These can be applied to further improve the
performance of our method.

Static Dynamic

Fig. 3. Example frames from our test set that includes four static sequences
and three dynamic ones. The dynamic videos contain gentle amount of
seated motion like playing ukulele and body motion while playing chess,
flipping the notes while singing, etc. These videos resemble casual video
capture scenario where the hand-held camera is shaky and frames contain
motion blur.

qualitative results of our depth estimation and their applications to
new advanced video-based visual effects (Section 6.5).

6.1 Experimental Setup
Dataset. Many datasets have been constructed for evaluating

depth reconstruction. However, these existing datasets are either for
synthetic [Butler et al. 2012; Mayer et al. 2016a] , specific domains
(e.g., driving scenes) [Geiger et al. 2013], single images [Chen et al.
2016; Li et al. 2019; Li and Snavely 2018], or videos (or multiple
images) of static scenes [Schops et al. 2017; Silberman et al. 2012;
Sturm et al. 2012a]. Consequently, we capture custom stereo video
datasets for evaluation. Our test set consists of both static and dy-
namic scenes with a gentle amount of object motion (see Fig. 3 for
samples. We capture the videos with stereo fisheye QooCam cam-
eras.4 The handheld camera rig provides a handy way to capture
stereo videos, but it is highly distorted in the periphery due to the
fisheye lenses. We, therefore, rectify and crop the center region us-
ing the Qoocam Studio5 and obtain videos of resolution 1920× 1440
pixels. The lengths of the captured video range from 119 to 359
frames. Our new video dataset is available on the accompanying
website for evaluating future video-based depth estimation.

For completeness, we also provide quantitative comparisons with
the state-of-the-art depth estimation models on three publicly avail-
able datasets: (1) the TUM dataset [Sturm et al. 2012b] (using the 3D
Object Reconstruction category), (2) the ScanNet dataset [Dai et al.
2017] (using the testing split provided by [Teed and Deng 2020]),
and (3) the KITTI 2015 dataset [Geiger et al. 2012] (using the Eigen
split [Eigen et al. 2014]).

Evaluation metrics. To evaluate and compare the quality of the
estimated depth from a monocular video on our custom stereo video
dataset, we use the following three different metrics.

Photometric error 𝐸𝑝 : We use photometric error to quantify
the accuracy of the recovered depth. All the methods estimate the
depth from the left video stream. Using the estimated depth, we
then reproject the pixels from the left video stream to the right one
and compute the photometric error as mean squared error of the
RGB differences. As the depth map can only be estimated up to a
4https://www.kandaovr.com/qoocam/
5https://www.kandaovr.com/download/
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Photometric Instability Drift

Photometric Instability
Fig. 4. Quantitative comparison with the state-of-the-art. We plot the error of all reconstructed pixels, sorted by error. Note, that COLMAP drops some pixels
from the reconstruction. Hence, its curve in the left column stops short of 100%; the second and third column evaluate on tracks, which tend to be in textured
areas where COLMAP has a higher level of completeness. Top: static sequences; bottom: Dynamic sequences.

Table 1. Quantitative comparisons with the state-of-the-art depth estima-
tion algorithms.

Static Dynamic

𝐸𝑠 (%) ↓ 𝐸𝑑 (%) ↓ 𝐸𝑝 ↓ 𝐸𝑠 (%) ↓ 𝐸𝑝 ↓
WSVD [2019a] 4.13 19.12 11.90 4.10 17.46
NeuralRGBD [2019] 1.86 15.25 11.33 1.30 18.62
Mannequin [2019] 3.88 13.22 12.05 2.38 18.16
MiDaS-v2 [2019] 3.14 10.14 11.74 2.83 15.76
COLMAP [2016] 1.02 6.19 - 1.47 -
Ours 0.44 2.12 10.09 0.40 14.44

scale ambiguity, we need to align the estimated depth maps to the
stereo disparity. Specifically, we compute the stereo disparity by
taking the horizontal components from the estimated flow on the
stereo pair (using Flownet2 [Ilg et al. 2017]). For each video frame,
we then compute the scale and shift alignment to the computed
stereo disparity using RANSAC-based linear regression. We can
obtain the global (video-level) scale and shift parameters by taking
the mean of the scales/shifts for all the frames.
Instability 𝐸𝑠 : We measure instability of the estimated depth

maps over time in a video as follows. We first extract a sparse set
of reliable tracks from the input monocular video using a standard
KLT tracker. We then convert the 2D tracks to 3D tracks, using the
camera poses and calibrated depths to unproject 2D tracks to 3D. For
a perfectly stable reconstruction, each 3D track should collapse to a
single 3D point. We thus can quantify the instability by computing
the Euclidean distances of the 3D points for each pair of consecutive
frames.

Drift 𝐸𝑑 : In many cases, while 3Dtracks described above may
appear somewhat stable for consecutive frames, the errors could be
accumulated and cause drift over time. To measure the amount of
drift for a particular 3D track, we compute the maximum eigenvalue
of the covariance matrix formed by the 3D track. Intuitively, this
measures how spread the 3D points is across time.
For static sequences, we evaluate the estimated depth using all

three metrics. For dynamic sequences, we evaluate only on photo-
metric error and instability, as the drift metric does not account for
dynamically moving objects in the scene.

6.2 Comparative Evaluation
Compared methods. We compare our results with state-of-the-art

depth estimation algorithms from three main categories.

• Traditional multi-view stereo system: COLMAP [Schon-
berger and Frahm 2016].

• Single-image depth estimation: Mannequin Challenge [Li
et al. 2019] and MiDaS-v2 [Ranftl et al. 2019].

• Video-based depth estimation: WSVD [Wang et al. 2019a]
(two frames) and NeuralRGBD [Liu et al. 2019] (multiple
frames).

Quantitative comparison. Fig. 4 shows the plot of the photometric
error, instability, and drift metrics against completeness. In all three
metrics, our method compares favorably against previously pub-
lished algorithms. Our results particularly shine when evaluated on
the instability and the drift metrics, highlighting the consistency of
our results. Table 1 further reports the summary of the results for
different methods.

ACM Trans. Graph., Vol. 39, No. 4, Article 71. Publication date: July 2020.
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(a) Input (b) COLMAP (c)Mannequin (d) MiDaS-v2 (e) NeuralRGBD (f) Ours

Fig. 5. Visual comparisons with the state-of-the-arts. Our method produces depth, geometrically consistent, and flicker-free depth estimation from casually
captured videos by a hand-held cellphone camera. The first image in each pair is a sample frame, while the second is a scanline slice through the spatio-temporal
volume (either color video or video depth).

Visual comparison. Wepresent in Fig. 5 the qualitative comparison
of different depth estimation methods. The traditional multi-view
stereo method produces accurate depths at highly textured regions,
where reliablematches can be established. These depthmaps contain
large holes (black pixels), as shown in Fig. 5b. The learning-based
single-image depth estimation approaches [Li et al. 2019; Ranftl et al.
2019] produce dense, plausible depth maps for each individual video
frame. However, flickering depths over time cause geometrically
inconsistent depth reconstructions. Video-based methods such as
NeuralRGBD alleviate the temporal flicker, yet suffer from drift due
to the limited temporal window used for depth estimation. We refer
the readers to the video results in the supplementary material.

Table 2. Ablation study. The quantitative evaluation highlights the impor-
tance of our method design choices.

𝐸𝑠 (%) ↓ 𝐸𝑑 (%) ↓ 𝐸𝑝 ↓
Ours w/o scale calibration 0.93 3.37 9.99
Ours w/o disparity loss 0.76 3.30 9.99
Ours w/o overlap test 0.51 2.49 13.20
Ours 0.44 2.12 10.08

6.3 Ablation Study
We conduct an ablation study to validate the effectiveness of several
design choices in our approaches. We first study the effect of losses

ACM Trans. Graph., Vol. 39, No. 4, Article 71. Publication date: July 2020.
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w/o spatial loss w/o disparity loss w/o scale calibration w/o overlap test
Fig. 6. Contribution of our design choices to the results. (Top): Sample frame from input videos. (Middle): corresponding ablation results. Bottom: result with
full pipeline. Without spatial loss, there is no constraint for what the depth should be. We end up losing all the structure and it fails. Without disparity loss,
depth can get sharper but also more flicker. Without scale calibration, we often observe degraded depth with blurrier depth discontinuities. Without overlap
test, erroneous flow causes wrong depth.
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Consecutive Long-term

Fig. 7. Analysis of the effects of using long-term temporal constraints and
the disparity loss. Please see the supplementary for video comparisons.

and the importance of different steps in the pipeline, including scale
calibration and overlap test. We summarize these results in Table 2.
Fig. 6 visualizes the contributions of various components.
We observe that using long-term constraints help improve the

stability of the estimated depth over time. As the disparity loss also
helps reduce temporal flickering, we further investigate the effects
of both design choices in Fig. 7. Our results show that including
constraints from long-term frame pairs leads to sharper and tem-
porally more stable results. In contrast, while adding disparity loss

reduces temporal flickers, it produces blurry results when using
only consecutive frame pairs.

6.4 Quantitative Comparisons on Public Benchmarks
We provide quantitative results on three publicly available bench-
mark datasets for evaluating the performance of our depth estima-
tion. In all of the evaluation settings, we resize the input images so
that the longest image dimension to 384. We finetune the monocular
depth estimation network for 20 epochs (the same evaluation setting
used in the stereo video dataset).

TUM-RGBD dataset. We evaluate our method on the 11 scenes in
the “3D Object Reconstruction" category in the TUM-RGBD dataset
[Sturm et al. 2012b]. For evaluation, we subsample the videos every
5 frames and obtain sequences ranging from 195 to 593 frames. Here,
we use the ground truth camera pose provided by the dataset. We
then fine-tune the single-image model from Li et al. [2019] on the
subsampled frames. To compute the error metrics, we align the
predicted depth map to the ground truth using per-image median
scaling. We report the errors in the disparity (inverse depth) space
as it does not require clipping any depth ranges.
Table 4 reports the quantitative comparisons with single-frame

methods [Li et al. 2019; Ranftl et al. 2019] and multi-frame methods
[Liu et al. 2019; Wang et al. 2019a]. Our approach performs favorably
against prior methods with a large margin in all evaluation metrics.
In particular, our proposed test-time training significantly improves
the performance over the baseline model from Li et al. [2019].

ScanNet dataset. Following the evaluation protocol of Teed and
Deng [2020], we evaluate our method on the 2,000 sampled frames
from the 90 test scenes in the ScanNet dataset [Dai et al. 2017]. We
finetune the MiDaS-v2 model [Ranftl et al. 2019] on each testing
sequence with a learning rate of 10−5 and _ = 10−5. Following Teed

ACM Trans. Graph., Vol. 39, No. 4, Article 71. Publication date: July 2020.
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Fig. 8. Quantitative comparison before and after fine-tuning Monodepth2
on KITTI. We plot the each metric over all the test frames sorted by their
values. After fine-tuning, we have more outliers due to extreme dynamic
motion or failure in camera pose estimation, but achieve improved results
for more than 80% of the frames.

and Deng [2020], we apply per-image median scaling to align the
predicted depth to the ground truth depth map (using the range of
[0.5, 8] meters). We then evaluate all the metrics in the depth space
over the regions where the ground truth depth is within the range
of 0.1 to 10 meters.
Table 3 shows the quantitative comparisons with several other

multi-frame based depth estimation methods [Tang and Tan 2019;
Teed and Deng 2020; Ummenhofer et al. 2017] and the baseline
single-image model [Ranftl et al. 2019]. Our method achieves com-
petitive performance with the state-of-the-art algorithms, perform-
ing slightly inferior to the DeepV2D method that is trained on the
ScanNet training set.

KITTI dataset. Weevaluate ourmethod on the KITTI dataset [Geiger
et al. 2012] using the Eigen test split [Eigen et al. 2014] for com-
parison with prior monocular depth estimation methods. We es-
timate the camera poses for each test sequence using COLMAP
[Schonberger and Frahm 2016].We observe that the FlowNet2model
(pre-trained on the Flying Chairs [Dosovitskiy et al. 2015] and Fly-
ing Things 3D [Mayer et al. 2016b] datasets) performs poorly in
the KITTI dataset [Geiger et al. 2012]. Consequently, we use the
FlowNet2model finetuned on a combination of the KITTI2012 [Geiger
et al. 2012] and KITTI2015 [Menze et al. 2015] training sets, FlowNet2-
ft-kitti, for extracting dense correspondence across frames. Due to
the challenging large forward motion in the driving videos, the flow
estimations between temporally distant frames are not accurate. We
thus only sample pairs with more than 50% consistent flow matches.
We use the Monodepth2 [Godard et al. 2019] as the base single-
image depth estimation network. We apply our fine-tuning method
at the resolution of 384 × 112 over each sequence with a learning
rate of 4× 10−5 and _ = 1. Following the standard protocol [Godard
et al. 2017], we cap the depth to 80m and report the results using
the per-image median ground truth scaling alignment.
Table 5 presents the quantitative comparisons with the state-of-

the-art monocular depth estimation methods. Under this evaluation
setting, the results appear to show that our method does not pro-
vide an overall improvement over the baseline model Monodepth2
[Godard et al. 2019]. To investigate this issue, we show in Figure 8
the sorted error (Abs Rel) and accuracy (𝜎 < 1.1) metrics for all the
testing frames. The results show that our method indeed improves
the performance in more than 80% of the testing frames (even when

Table 3. Quantitative comparison on the ScanNet dataset [Dai et al. 2017]
using the test split provided by Tang and Tan [2019].

Error metric ↓
Abs Rel Sq Rel RMSE RMSE log Sc Inv

DeMoN [2017] 0.231 0.520 0.761 0.289 0.284
BA-Net [2019] 0.161 0.092 0.346 0.214 0.184
DeepV2D (NYU) [2020] 0.080 0.018 0.223 0.109 0.105
DeepV2D (ScanNet) [2020] 0.057 0.010 0.168 0.080 0.077
MiDaS-v2 [2019] 0.208 0.318 0.742 0.246 0.239
Ours 0.073 0.037 0.217 0.105 0.103

compared with the model with a high-resolution outputs). How-
ever, as COLMAP produce erroneous pose estimates in sequences
with large dynamic objects in the scene, our fine-tuning method
inevitably results in depth estimation with very large errors. Our
method also has difficulty in handling significant dynamic scene
motion. As a result, our method does not achieve clear improvement
when the results are averaged over all the testing frames. Please see
the supplementary material for video result comparison.

6.5 Video-based Visual Effects
Consistent video depth estimation enables interesting video-based
special effects. Fig. 9 showcases samples of these effects. Full video
results can be found in the supplementary material.

6.6 Limitations
There are several limitations and drawbacks of the proposed video
depth estimation method.

Poses Our method currently relies on COLMAP [Schonberger and
Frahm 2016] to estimate the camera pose from a monocular
video. In challenging scenarios, e.g., limited camera transla-
tion and motion blur, however, COLMAP may not be able
produce reliable sparse reconstruction and camera pose es-
timation. Large pose errors have a strong degrading effect
on our results. This limits the applicability of our method on
such videos. Integrating learning-based pose estimation (e.g.,
as in [Liu et al. 2019; Teed and Deng 2020]) with our approach
is an interesting future direction.

Dynamic motion Our method supports videos containing moder-
ate object motion. It breaks for extreme object motion.

Flow We rely on FlowNet2 [Ilg et al. 2017] to establish geomet-
ric constraints. Unreliable flow is filtered through forward-
backward consistency checks, but it might be by chance erro-
neous in a consistent way. In this case our method will fail to
produce correct depth. We tried using sparse flow (subsam-
pling dense flow on a regular grid), but it did not perform
well.

Speed As we extract geometric constraints using all the frames in
a video, we do not support online processing. For example,
our test-time training step takes about 40 minutes for a video
of 244 frames and 708 sampled flow pairs. Developing online
and fast variants in the future will be important for practical
applications.
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Table 4. Quantitative comparison on the TUM-RGBD dataset (3D Object Reconstruction category) [Sturm et al. 2012b] in the disparity space. We report the
averaged results over 11 video sequences.

Error metric ↓ Accuracy metric ↑
Abs Rel Sq Rel RMSE RMSE log 𝜎 < 1.25 𝜎 < 1.252 𝜎 < 1.253

Single-frame Mannequin [2019] 0.306 0.101 0.244 0.385 0.569 0.772 0.885
MiDaS-v2 [2019] 0.220 0.061 0.187 0.292 0.665 0.861 0.945

Multi-frame
WSVD [2019a] 0.281 0.083 0.228 0.365 0.551 0.794 0.905
NeuralRGBD [2019] 0.615 0.365 0.392 0.661 0.361 0.571 0.710
Ours 0.144 0.036 0.144 0.211 0.785 0.934 0.979

Table 5. Quantitative comparisons with existing methods on the KITTI benchmark dataset using the Eigne split. (Top): methods that produce full resolution
(1024 × 320) depth maps. (Bottom): methods that produce low-resolution (384 × 112) depth maps. Note that for fair comparison, we align the depth results
from all the compared methods with per-image median ground truth scaling. Therefore, our reported numbers for Monodepth2 (1024 × 320) [2019] differ
slightly from those in their paper where they use a constant scale for alignment.

Error metric ↓ Accuracy metric ↑
Abs Rel Sq Rel RMSE RMSE log 𝜎 < 1.25 𝜎 < 1.252 𝜎 < 1.253

Zhou [2017] 0.183 1.595 6.709 0.270 0.734 0.902 0.959
GeoNet [2018] 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DF-Net [2018] 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Struct2depth [2019] 0.109 0.825 4.750 0.187 0.874 0.958 0.983
GLNet [2019b] 0.099 0.796 4.743 0.186 0.884 0.955 0.979
Monodepth2 (1024 × 320) [2019] 0.108 0.806 4.606 0.187 0.887 0.962 0.981

Monodepth2 (384 × 112) [2019] 0.128 1.040 5.216 0.207 0.849 0.951 0.978
Ours (384 × 112) 0.130 2.086 4.876 0.205 0.878 0.946 0.970

Input video Bouncing balls Disco Snow Water
Fig. 9. Our consistent depth estimation enables a wide range of fully-automated video-based visual effects. We refer the readers to the supplementary video.

7 CONCLUSIONS
We have presented a simple yet effective method for estimating
consistent depth from a monocular video. Our idea is to leverage
geometric constraints extracted using conventional multi-view re-
construction methods and use them to fine-tune a pre-trained single-
image depth estimation network. Using our test-time fine-tuning
strategy, our network learns to produce geometrically consistent

depth estimates across entire video. We conduct extensive quantita-
tive and qualitative evaluation. Our results show that our method
compares favorably against several state-of-the-art depth estima-
tion algorithms. Our consistent video depth estimation enables com-
pelling video-based visual effects.
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