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Abstract

Good data stewardship requires removal of data
at the request of the data’s owner. This raises the
question if and how a trained machine-learning
model, which implicitly stores information about
its training data, should be affected by such a re-
moval request. Is it possible to “remove” data
from a machine-learning model? We study this
problem by defining certified removal: a very
strong theoretical guarantee that a model from
which data is removed cannot be distinguished
from a model that never observed the data to begin
with. We develop a certified-removal mechanism
for linear classifiers and empirically study learn-
ing settings in which this mechanism is practical.

1. Introduction

Machine-learning models are often trained on third-party
data, for example, many computer-vision models are trained
on images provided by Flickr users (Thomee et al., 2016).
When a party requests that their data be removed from such
online platforms, this raises the question how such a request
should impact models that were trained prior to the removal.
A similar question arises when a model is negatively im-
pacted by a data-poisoning attack (Biggio et al., 2012). Is it
possible to “remove” data from a model without re-training
that model from scratch?

We study this question in a framework we call certified re-
moval, which theoretically guarantees that an adversary can-
not extract information about training data that was removed
from a model. Inspired by differential privacy (Dwork,
2011), certified removal bounds the max-divergence be-
tween the model trained on the dataset with some instances
removed and the model trained on the dataset that never
contained those instances. This guarantees that membership-
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inference attacks (Yeom et al., 2018; Carlini et al., 2019) are
unsuccessful on data that was removed from the model. We
emphasize that certified removal is a very strong notion of
removal; in practical applications, less constraining notions
may equally fulfill the data owner’s expectation of removal.

We develop a certified-removal mechanism for Lo-
regularized linear models that are trained using a differ-
entiable convex loss function, e.g., logistic regressors. Our
removal mechanism applies a Newton step on the model
parameters that largely removes the influence of the deleted
data point; the residual error of this mechanism decreases
quadratically with the size of the training set. To ensure
that an adversary cannot extract information from the small
residual (i.e., to certify removal), we mask the residual us-
ing an approach that randomly perturbs the training loss
(Chaudhuri et al., 2011). We empirically study in which
settings the removal mechanism is practical.

2. Certified Removal

Let D be a fixed training dataset and let A be a (randomized)
learning algorithm that trains on D and outputs a model
h € H, thatis, A : D — H. Randomness in A induces a
probability distribution over the models in the hypothesis
set H. We would like to remove a training sample, x € D,
from the output of A.

To this end, we define a data-removal mechanism M that
is applied to A(D) and aims to remove the influence of
x. If removal is successful, the output of M should be
difficult to distinguish from the output of A applied on
D\ x. Given € > 0, we say that removal mechanism M
performs e-certified removal (e-CR) for learning algorithm
AifVT CH,DC X, x€D:
_.  PM(A(D),D,x)eT)

ST puAD\xeT) = W

This definition states that the ratio between the likelihood
of (i) a model from which sample x was removed and (ii) a
model that was never trained on x to begin with is close to
one for all models in the hypothesis set, for all possible data
sets, and for all removed samples. Note that although the
definition requires that the mechanism M is universally ap-
plicable to all training data points x € D, it is also allowed
to be data-dependent, i.e., both the training set D and the
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data point to be removed x are given as inputs to M.

We also define a more relaxed notion of (e, §)-certified re-
moval for § > 0if VT CH,D C X,x € D:

P(M(A(D),D,x) € T) <e‘P(A(D\x) € T)+d, and
PA(D\ x) € T) < e“P(M(A(D), D,x) € T) +0.

Conceptually, § upper bounds the probability for the max-
divergence bound in Equation 1 to fail.

A trivial certified-removal mechanism M with e =0 com-
pletely ignores A(D) and evaluates A(D\x) directly, that is,
it sets M (A(D), D,x)=A(D \ x). Such a removal mech-
anism is impractical for many models, as it may require
re-training the model from scratch every time a training
sample is removed. We seek mechanisms M with removal
cost O(n) or less, with small constants, where n = |D| is
the training set size.

Insufficiency of parametric indistinguishability. One
alternative relaxation of exact removal is by asserting
that the output of M (A(D), D, x) is sufficiently close to
that of A(D \ x). It is easy to see that a model satsi-
fying such a definition still retains information about x.
Consider a linear regressor trained on the dataset D =
{(e1,1),(e2,2),...,(eq,d)} where e;’s are the standard
basis vectors for R, A regressor that is initialized with
zeros, or that has a weight decay penalty, will place a non-
zero weight on w; if (e;,4) is included in D, and a zero
weight on w; if not. In this case, an approximate removal
algorithm that leaves w; small but non-zero still reveals that
(e;, 1) appeared during training.

Relationship to differential privacy. Our formulation of
certified removal is related to that of differential privacy
(Dwork, 2011) but there are important differences. Differ-
ential privacy states that:

).~ PAMD)€T)
VT CH,D,D :e < PADY € T)

SN )
where D and D’ differ in only one sample. Since D and
D \ x only differ in one sample, it is straightforward to
see that differential privacy of A is a sufficient condition
for certified removal, viz., by setting removal mechanism
M to the identity function. Indeed, if algorithm A never
memorizes the training data in the first place, we need not
worry about removing that data.

Even though differential privacy is a sufficient condition,
it is not a necessary condition for certified removal. For
example, a nearest-neighbor classifier is not differentially
private but it is trivial to certifiably remove a training sample
in O(1) time with e = 0. We note that differential privacy
is a very strong condition, and most differentially private

models suffer a significant loss in accuracy even for large €
(Chaudhuri et al., 2011; Abadi et al., 2016). We therefore
view the study of certified removal as analyzing the trade-
off between utility and removal efficiency, with re-training
from scratch and differential privacy at the two ends of the
spectrum, and removal in the middle.

3. Removal Mechanisms

We focus on certified removal from parametric models, as
removal from non-parametric models (e.g., nearest-neighbor
classifiers) is trivial. We first study linear models with
strongly convex regularization before proceeding to removal
from deep networks.

3.1. Linear Classifiers

Denote by D = {(X1,%1),-- -, (Xn,yn)} the training set
of n samples, Vi : x; € R?, with corresponding targets
y;- We assume learning algorithm A tries to minimize the
regularized empirical risk of a linear model:

An
L(w;D) = ZE(WTmei) + 7”“’”3’

=1

where /(w "x, %) is a convex loss that is differentiable ev-
erywhere. We denote w* = A(D) =argmin,, L(w; D) as it
is uniquely determined.

Our approach to certified removal is as follows. We first
define a removal mechanism that, given a training data point
(x,y) to remove, produces a model w™ that is approxi-
mately equal to the unique minimizer of L(w; D \ (x,y)).
The model produced by such a mechanism may still con-
tain information about (x,y). In particular, if the gradi-
ent VL(w—; D\ (x,y)) is non-zero, it reveals information
about the removed data point. To hide this information, we
apply a sufficiently large random perturbation to the model
parameters at training time. This allows us to guarantee
certified removal; the values of ¢ and § depend on the ap-
proximation quality of the removal mechanism and on the
distribution from which the model perturbation is sampled.

Removal mechanism. We assume without loss of gen-
erality that we aim to remove the last training sample,
(Xn,yn)- Specifically, we define an efficient removal
mechanism that approximately minimizes L(w;D’) with
D' =D\ (xn, yn). First, denote the loss gradient at sample
(X, Yn) by A = Aw* +VU((w*) Tx,,, y,,) and the Hessian
of L(+;D') at w* by Hy» = V2L(w*; D). We consider
the Newton update removal mechanism M :

W =MW", D, (Xn,yn)) i=W* + Hyi A, (3)

which is a one-step Newton update applied to the gradient
influence of the removed point (x,,, ¥, ). The update H} A
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is also known as the influence function of the training point
(X1, Yn ) on the parameter vector w* (Cook and Weisberg,
1982; Koh and Liang, 2017).

The computational cost of this Newton update is dominated
by the cost of forming and inverting the Hessian matrix. The
Hessian matrix for D can be formed offline with O(d?n)
cost. The subsequent Hessian inversion makes the removal
mechanism O(d?) at removal time; the inversion can lever-
age efficient linear algebra libraries and GPUs.

To bound the approximation error of this removal mecha-
nism, we observe that the quantity VL(w—; D), which we
refer to hereafter as the gradient residual, is zero only when
w is the unique minimizer of L(-; D). We also observe
that the gradient residual norm, |VL(w—;D’)||2, reflects
the error in the approximation w~ of the minimizer of
L(-; D). We derive an upper bound on the gradient residual
norm for the removal mechanism (cf. Equation 3).

Theorem 1. Suppose that ¥(x;,vy;) € D,w € R?
|Ve(w %, 9:)|l2 < C. Suppose also that £ is y-Lipschitz
and ||x;||2 < 1 for all (x;,y;) € D. Then:

IVL(W™D')ll2 = [|(Hw, — Ho)Hy: All2 )

_ 4yC?
<7(n—1)[[HyrAll5 < Nn—1)

where Hy,, denotes the Hessian of L(-; D") at the parameter
vector w,, = wW* +nHy ! A for some n € [0, 1].

Loss perturbation. Obtaining a small gradient norm
I[VL(w~;D")||2 via Theorem 1 does not guarantee cer-
tified removal. In particular, the direction of the gradient
residual may leak information about the training sample that
was “removed.” To hide this information, we use the loss
perturbation technique of Chaudhuri et al. (2011) at training
time. It perturbs the empirical risk by a random linear term:

~ An
Lu(w;D) = > £(w'xi,y;) + 7||w||§ +b'w,
=1

with b € R? drawn randomly from some distribution. We
analyze how loss perturbation masks the information in the
gradient residual V Ly, (w—; D’) through randomness in b.

Let A(D’) be an exact minimizer' for Ly (-;D’) and let
A(D’) be an approximate minimizer of Ly, (-; D’), for exam-
ple, our removal mechanism applied on the trained model.

Specifically, let w be an approximate solution produced by

'Our result can be modified to work with approximate loss
minimizers by incurring a small additional error term.

A. This implies the gradient residual is:

n—1

ui=VLy(W; D) =Y VUW x;,4:) + A(n—1)W%+b.

i=1
) 5)
We assume that A can produce a gradient residual u with
|[ul]2 < € for some pre-specified bound € that is indepen-
dent of the perturbation vector b.

Let fa(-) and f4(-) be the density functions over the model
parameters produced by A and A, respectively. We bound
the max-divergence between f4 and f ; for any solution w
produced by approximate minimizer A.

Theorem 2. Suppose that b is drawn from a distribution
with density function p(-) such that for any by, by € RY

satisfying |[by — bal|z < ¢, we have that: e~ < 2L <

! p(b2) —
€. Thene ° < Eg; < €€ for any w produced by A.

fa
fa

Achieving certified removal. We can use Theorem 2 to
prove certified removal by combining it with the gradient
residual norm bound € from Theorem 1. The security
parameters € and § depend on the distribution from which
b is sampled. We state the guarantee of (e, d)-certified
removal below for two suitable distributions p(b).

Theorem 3. Let A be the learning algorithm that returns
the unique optimum of the loss Lyn(w; D) and let M be
the Newton update removal mechanism (cf., Equation 3).
Suppose that |VL(w—;D')|2 < € for some computable
bound € > 0. We have the following guarantees for M :

(i) If b is drawn from a distribution with density p(b)
e~ Pl then M is e-CR for A;

(i) Ifb ~ N(0,ce' /e)? with ¢ > 0, then M is (e,5)-CR
for Awithd =1.5- e=c’/2,

The distribution in (i) is equivalent to sampling a direction
uniformly over the unit sphere and sampling a norm from
the I'(d, <) distribution (Chaudhuri et al., 2011).

3.2. Practical Considerations

Least-squares and logistic regression. The certified re-
moval mechanism described above can be used with least-
squares and logistic regression, which are ubiquitous in
real-world applications of machine learning.

Least-squares regression assumes Vi : 4; € R and uses the
loss function {(w 'x;,y;) = (wW'x; — yi)z. The Hessian
of this loss function is V2/(w "x;,y;) = x;x, , which is
independent of w. In particular, the gradient residual from
Equation 4 is exactly zero, which makes the Newton update
in Equation 3 an e-certified removal mechanism with e = 0
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(loss perturbation is not needed). This is not surprising since
the Newton update assumes a local quadratic approximation
of the loss, which is exact for least-squares regression.

Logistic regression assumes Vi : y; € {—1,+1} and uses
the loss function £(w " x;,y;) = —logo (y;w ' x;), where
o(+) denotes the sigmoid function, o(z) = 1 The
loss gradient and Hessian are given by:

Ttexp(—=)°

VE(WTmei) = (U(inTXi) - 1) YiXi

V2w %, y:) = o(yiw ' x;) (1 - O‘(inTXi)) XX, .

Under the assumption that ||x;|l2 < 1 for all 4, it is
straightforward to show that ||[V/(w"x;,9;)|]l2 < 1 and
that £ (w Tx;, ;) is y-Lipschitz with v = 1/4. This allows
us to apply Theorem 1 to logistic regression.

Data-dependent bound on gradient norm. The bound
in Theorem 1 contains a constant factor of 1/A? and may
be too loose for practical applications on smaller datasets.
Fortunately, we can derive a data-dependent bound on the
gradient residual that can be efficiently computed and that is
much tighter in practice. Recall that the Hessian of L(-; D’)
has the form:

Hy = (X)) Dy X~ 4+ An — 1)1y,

where X~ € R(™~1)*d 5 the data matrix corresponding
to D', I, is the identity matrix of size d x d, and Dy is a
diagonal matrix containing values:

(Dw)ii = 0" (W x5, 95) -
By Equation 4 we have that:

IVL(w™5D)l2 = [[(Hw, — Ho+)Hgr All2

= |‘(X7)T(Dw,, - Dw*)XiHv;}AHQ
<X [l2[ Dy, — D [l2| X~ Hyt A2
The term || Dy, — Dy~ ||2 corresponds to the maximum

singular value of a diagonal matrix, which in turn is the
maximum value among its diagonal entries. Given the Lip-
schitz constant v of the second derivative ¢, we can thus
bound it as:

| Dw,, — Dw=lla < vllwy — w2 < Y Hyr All2-
The following corollary summarizes this derivation.
Corollary 1. The Newton update w~ = w* + H_ ' A sat-
isfies:
IVL(w™3 D)2 < Y| X (|2 Hor All2)| X~ HG ALz,
where 7y is the Lipschitz constant of {".

The bound in Corollary 1 can be easily computed from the
Newton update H_,* A and the spectral norm of X —, the
latter admitting efficient algorithms such as power iterations.

Multiple removals. The worst-case gradient residual
norm after 7' removals can be shown to scale linearly in
T. We can prove this using induction on 7. The base
case, T'= 1, is proven above. Suppose that the gradient
residual after T > 1 removals is ur with |jur|ls < T¢/,
where € is the gradient residual norm bound for a sin-
gle removal. Let D(") be the training dataset with T'
data points removed. Consider the modified loss function
L (w; DD) = Lyy(w; D) — uf-w and let wr be the
approximate solution after 7" removals. Then w is an ex-
act solution of Lg) (w; D(T)), hence, the argument above

can be applied to LgT) (w; D)) to show that the Newton
update approximation w1 has gradient residual u’ with
norm at most €. Then:

W = Vo L (w; D)) = Vo Ly (w; D)) — up
= 0= VyLlp(w) —ur —u'

Thus the gradient residual for Ly, (w; D)) after T + 1
removals is ury1 := ur + u’ and its norm is at most
(T + 1)€ by the triangle inequality.

Batch removal. In certain scenarios, data removal may
not need to occur immediately after the data’s owner re-
quests removal. This potentially allows for batch removals
in which multiple training samples are removed at once for
improved efficiency. The Newton update removal mecha-
nism naturally supports this extension. Assume without loss
of generality that the batch of training data to be removed is

Dm = {(Xn—m-‘rl; yn—nz+1); ) (Xny yn)} Define:

A =mawt+ ST ve(w) x5, y5)

j=n—m-+1

HI = V2L(w*; D\ Dpy).

The batch removal update is:

w™ = w* 4 [H‘EVT)} NS (6)

We derive bounds on the gradient residual norm for batch
removal that are similar Theorem 1 and Corollary 1.

Theorem 4. Under the same regularity conditions of Theo-
rem 1, we have that:

. 2
VL DA D) < 5t =) | [H42] " A

2
4ym?2C?
~ X2 (n—m)
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Algorithm 1 Training of a certified removal-enabled model.

1: Input: Dataset D, loss ¢, parameters o, A > 0.
2: Sample b ~ NV(0,0)%.
3: Return: argmin, cpa 37, £(w ' x;,5:)+An/|w[3+b " w.

Algorithm 2 Repeated certified removal of data batches.

1: Imput: Dataset D, loss ¢, parameters €, d, o, A > 0.
Lipschitz constant ~y of ¢,
Solution w computed by Algorithm 1.
Sequence of batches of training sample
indices to be removed: B1, Bo, . ..

Gradient residual bound 5 <« 0.

¢+ +/2log(1.5/9).

K+« Y xx].

X [xy|xa| - [xa] T

R A A T

10: for j =1,2,...do

1 A [BjAw + 3 ,cp. V(W T, 95).

122 H <345 B, B, V20w X, yi)-

13: X  remove_rows(X, Bj).

14: K<+ K- Ziij XX, .

150 B B+yV/IKl2 [HAlle - [XHTIA.
16:  if > o€/c then

17: Re-train from scratch using Algorithm 1.
18:  else

19: w— w+ H A,

20:  endif

21: end for

Corollary 2. The Newton update w(~™ = w* +

-1
[H‘Evnf)] A satisfies:
|‘L(W(7m)§ D\ Dp)ll2 <

| X ™) ||2H [H‘Evm)] _IA(m) X (=m) [H\(Nm)] _1A(m)

2 2

where X (=™ is the data matrix for D\ D, and ~ is the
Lipschitz constant of .

Interestingly, the gradient residual bound in Theorem 4
scales quadratically with the number of removals, as op-
posed to linearly when removing examples one-by-one. This
increase in error is due to a more crude approximation of
the Hessian, that is, we compute the Hessian only once at
the current solution w* rather than once per removed data.

Reducing online computation. The Newton update re-
quires forming and inverting the Hessian. Although the
O(d?) cost of inversion is relatively limited for small d and
inversion can be done efficiently on GPUs, the cost of form-
ing the Hessian is O(d?n), which may be problematic for
large datasets. However, the Hessian can be formed at train-

b

ing time, i.e., before the data to be removed is presented,
and only the inverse needs to be computed at removal time.

When computing the data-dependent bound, a similar tech-
nique can be used for calculating the term || X~ H' A2
— which involves the product of the (n — 1) x d data ma-
trix X~ with a d-dimensional vector. We can reduce the
online component of this computation to O(d?) by form-
ing the SVD of X offline and applying online down-dates
(Gu and Eisenstat, 1995) to form the SVD of X~ by solv-
ing an eigen-decomposition problem on a d x d matrix. It
can be shown that this technique reduces the computation
of | X~ H,+All2 to involve only d x d matrices and d-
dimensional vectors, which enables the online computation
cost to be independent of n.

Pseudo-code. We present pseudo-code for training
removal-enabled models and for the (¢, §)-CR Newton up-
date mechanism. During training (Algorithm 1), we add
a random linear term to the training loss by sampling a
Gaussian noise vector b. The choice of o determines a
“removal budget” according to Theorem 3: the maximum
gradient residual norm that can be incurred is o¢/c. When
optimizing the training loss, any optimizer with convergence
guarantee for strongly convex loss functions can be used to
find the minimizer in Algorithm 1. We use L-BFGS (Liu
and Nocedal, 1989) in our experiments as it was the most
efficient of the optimizers we tried.

During removal (line 19 in Algorithm 2), we apply the
batch Newton update (Equation 6) and compute the gradient
residual norm bound using Corollary 2 (line 15 in Algorithm
2). The variable 8 accumulates the gradient residual norm
over all removals. If the pre-determined budget of oe/c
is exceeded, we train a new removal-enabled model from
scratch using Algorithm 1 on the remaining data points.

3.3. Non-Linear Models

Deep learning models often apply a linear model to features
extracted by a network pre-trained on a public dataset like
ImageNet (Ren et al., 2015; He et al., 2017; Zhao et al.,
2017; Carreira and Zisserman, 2017) for vision tasks, or
from language model trained on public text corpora (Devlin
et al., 2019; Dai et al., 2019; Yang et al., 2019; Liu et al.,
2019) for natural language tasks. In such setups, we only
need to worry about data removal from the linear model that
is applied to the output of the feature extractor.

When feature extractors are trained on private data as well,
we can use our certified-removal mechanism on linear mod-
els that are applied to the output of a differentially-private
feature extraction network (Abadi et al., 2016).

Theorem 5. Suppose ® is a randomized learning algo-
rithm that is (epp, Opp)-differentially private, and the out-
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Dataset ‘ MNIST (§4.1) LSUN (§4.2) SST (84.2) SVHN (§4.3)
Removal setting CR Linear Public Extractor + CR Linear  Public Extractor + CR Linear =~ DP Extractor + CR Linear
Removal time 0.04s 0.48s 0.07s 0.27s

Training time ‘ 15.6s 124s 61.5s 1.5h

Table 1. Summary of removal and training times observed in our experiments. For LSUN and SST, the public extractor is trained on
a public dataset and hence removal is only applied to the linear model. For SVHN, removal is applied to a linear model that operates
on top of a differentially private feature extractor. In all cases, using the Newton update to (certifiably) remove data is several orders of

magnitude faster than re-training the model from scratch.
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Figure 1. Linear logistic regression on MNIST. Left: Effect of Lo-regularization parameter, A, and standard deviation of the objective
perturbation, o, on test accuracy. Middle: Effect of € on test accuracy when supporting 100 removals. Right: Trade-off between accuracy
and supported number of removals at € = 1. At a given ¢, higher A and ¢ values reduce test accuracy but allow for many more removals.

puts of © are used in a linear model by minimizing Ly,
and using a removal mechanism that guarantees (€cr, OcR)-
certified removal. Then the entire procedure guarantees
(epp+ecr, dpp+Icr)-certified removal.

The advantage of this approach over training the entire net-
work in a differentially private manner (Abadi et al., 2016)
is that the (removal-enabled) linear model can be trained
using a much smaller perturbation, which may greatly boost
the accuracy of the final model (see Section 4.3).

4. Experiments

We test our certified removal mechanism in three set-
tings: (1) removal from a standard linear logistic
regressor, (2) removal from a linear logistic regres-
sor that uses a feature extractor pre-trained on pub-
lic data, and (3) removal from a non-linear logistic re-
gressor by using a differentially private feature extrac-
tor. Code reproducing the results of our experiments
is publicly available from https://github.com/
facebookresearch/certified-removal. Table
1 summarizes the training and removal times measured in
our experiments.

4.1. Linear Logistic Regression

We first experiment on the MNIST digit classification
dataset. For simplicity, we restrict to the binary classifi-
cation problem of distinguishing between digits 3 and 8,
and train a regularized logistic regressor using Algorithm 1.

Removal is performed using Algorithm 2 with 6 = 1e-4.

Effects of A\ and 0. Training a removal-enabled model us-
ing Algorithm 1 requires selecting two hyperparameters: the
Ls-regularization parameter, \, and the standard deviation,
o, of the sampled perturbation vector b. Figure 1 shows the
effect of A and o on test accuracy and the expected num-
ber of removals supported before re-training. When fixing
the supported number of removals at 100 (middle plot), the
value of o is inversely related to € (cf. line 16 of Algorithm
2), hence higher € results in smaller o and improved accu-
racy. Increasing A enables more removals before re-training
(left and right plots) because it reduces the gradient resid-
ual norm, but very high values of A negatively affect test
accuracy because the regularization term dominates the loss.

Tightness of the gradient residual norm bounds. In Al-
gorithm 2 , we use the data-dependent bound from Corol-
laries 1 and 2 to compute a per-data or per-batch estimate
of the removal error, as opposed to the worst-case bound
in Theorems 1 and 4. Figure 2 shows the value of differ-
ent bounds as a function of the number of removed points.
We consider two removal scenarios: single point removal
and batch removal with batch size m = 10. We observe
three phenomena: (1) The worst-case bounds (light blue and
light green) are several orders of magnitude higher than the
data-dependent bounds (dark blue and dark green), which
means that the number of supported removals is several
orders of magnitude higher when using the data-dependent
bounds. (2) The cumulative sum of the gradient residual
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Figure 2. Linear logistic regression on MNIST. Gradient resid-
ual norm (on log scale) as a function of the number of removals.

norm bounds is approximately linear for both the single and
batch removal data-dependent bounds. (3) There remains
a large gap between the data-dependent norm bounds and
the true value of the gradient residual norm (dashed line),
which suggests that the utility of our removal mechanism
may be further improved via tighter analysis.

Gradient residual norm and removal difficulty. The
data-dependent bound is governed by the norm of the up-
date H ‘;EA, which measures the influence of the removed
point on the parameters and varies greatly depending on the
training sample being removed. Figure 3 shows the training
samples corresponding to the 10 largest and smallest values
of ||Hy+Al|2. There are large visual differences between
these samples: large values correspond to oddly-shaped 3s
and 8s, while small values correspond to “prototypical” dig-
its. This suggests that removing outliers is harder, because
the model tends to memorize their details and their impact
on the model is easy to distinguish from other samples.

4.2. Non-Linear Logistic Regression using
Public, Pre-Trained Feature Extractors

We consider the common scenario in which a feature extrac-
tor is trained on public data (i.e., does not require removal),
and a linear classifier is trained on these features using non-
public data. We study two tasks: (1) scene classification
on the LSUN dataset and (2) sentiment classification on the
Stanford Sentiment Treebank (SST) dataset. We subsample
the LSUN dataset to 100K images per class (i.e., n = 1M).

For LSUN, we extract features using a ResNeXt-101 model
(Xie et al., 2017) trained on 1B Instagram images (Mahajan
et al., 2018) and fine-tuned on ImageNet (Deng et al., 2009).

For SST, we extract features using a pre-trained RoOBERTa
(Liu et al., 2019) language model. At removal time, we use
Algorithm 2 with ¢ = 1 and 6 = 1e-4 in both experiments.

Result on LSUN. We reduce the 10-way LSUN classifica-
tion task to 10 one-versus-all tasks and randomly subsample
the negative examples to ensure the positive and negative
classes are balanced in all binary classification problems.
Subsampling benefits removal since a training sample does
not always need to be removed from all 10 classifiers.

Figure 4 (left) shows the relationship between test accuracy
and the expected number of removals on LSUN. The value
of (A, o) is shown next to each point, with the left-most
point corresponding to training a regular model that supports
no removal. At the cost of a small drop in accuracy (from
88.6% to 83.3%), the model supports over 10, 000 removals
before re-training is needed. As shown in Table 1, the
computational cost for removal is more than 250X smaller
than re-training the model on the remaining data points.

Result on SST. SST is a sentiment classification dataset
commonly used for benchmarking language models (Wang
et al., 2019). We use SST in the binary classification task
of predicting whether or not a movie review is positive.
Figure 4 (right) shows the trade-off between accuracy and
supported number of removals. The regular model (left-
most point) attains a test accuracy of 89.0%, which matches
the performance of competitive prior work (Tai et al., 2015;
Wieting et al., 2016; Looks et al., 2017). As before, a large
number of removals is supported at a small loss in test
accuracy; the computational costs for removal are 870x
lower than for re-training the model.

4.3. Non-linear Logistic Regression using
Differentially Private Feature Extractors

When public data is not available for training a feature ex-
tractor, we can train a differentially private feature extractor
on private data (Abadi et al., 2016) and apply Theorem 5 to
remove data from the final (removal-enabled) linear layer.
This approach has a major advantage over training the entire
model using the approach of (Abadi et al., 2016) because
the final linear layer can partly correct for the noisy features
produced by the private feature extractor.

We evaluate this approach on the Street View House Num-
bers (SVHN) digit classification dataset. We compare it to
a differentially private CNN? trained using the technique
of Abadi et al. (2016). Since the CNN is differentially pri-
vate, certified removal is achieved trivially without applying
any removal. For a fair comparison, we fix § = 1e-4 and
train (epp/10, &)-private CNNs for a range of values of epp.

2We use a simple CNN with two convolutional layers with 64
filters of size 3 x 3 and 2 X 2 max-pooling.
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Figure 3. MNIST training digits sorted by norm of the removal update ||} A ||2. The samples with the highest norm (top) appear
to be atypical, making it harder to undo their effect on the model. The samples with the lowest norm (bottom) are prototypical 3s and 8s,

and hence are much easier to remove.
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Figure 4. Linear models trained on public feature extractors. Trade-off between
test accuracy and the expected number of supported removals (at e=1) on LSUN (left)
and SST (right). The setting of (), o) is shown next to each point. The number of
supported removals rapidly increases when accuracy is slightly sacrificed.

By the union bound for group privacy (Dwork, 2011), the
resulting models support up to then (epp, §)-CR removals.

To measure the effectiveness of Theorem 5 for certified data
removal, we also train an (epp/10, 0/10)-differentially pri-
vate CNN and extract features from its penultimate linear.
We use these features in Algorithm 1 to train 10 one-versus-
all classifiers with total failure probability of at most 1%5 .
Akin to the experiments on LSUN, we subsample the nega-
tive examples in each of the binary classifiers to speed up
removal. The expected contribution to e from the updates
is set to eck =~ epp/10, hence achieving (e, §)-CR with
€ = epp + €cr & epp + epp/10 after 10 removals.

Figure 5 shows the relationship between test accuracy and
€ for both the fully private and the Newton update removal
methods. For reference, the dashed line shows the accu-
racy obtained by a non-private CNN that does not support
removal. For smaller values or e, training a private feature
extractor (blue) and training the linear layer using Algo-
rithm 1 attains much higher test accuracy than training a
fully differentially private model (orange). In particular, at
€ = 0.1, the fully differentially private baseline’s accuracy
is only 22.7%, whereas our approach attains a test accuracy
of 71.2%. Removal from the linear model trained on top
of the private extractor only takes 0.27s, compared to more
than 1.5 hour when re-training the CNN from scratch.

Expected # of Supported Removals

€ =€Epp + Ecr
Figure 5. Using e-DP features. Trade-off be-
tween € and test accuracy on SVHN of models
that support 10 removals. Dashed line shows
non-private model accuracy.

5. Related Work

Removal of specific training samples from models has been
studied in prior work on decremental learning (Cauwen-
berghs and Poggio, 2000; Karasuyama and Takeuchi, 2009;
Tsai et al., 2014) and machine unlearning (Cao and Yang,
2015). Ginart et al. (2019) studied the problem of removing
data from k-means clusterings. These studies aim at exact
removal of one or more training samples from a trained
model: their success measure is closeness to the optimal pa-
rameter or objective value. This suffices for purposes such
as quickly evaluating the leave-one-out error or correcting
mislabeled data, but it does not provide a formal guarantee
of statistical indistinguishability. Our work leverages differ-
ential privacy to develop a more rigorous definition of data
removal. Concurrent work (Bourtoule et al., 2019) presents
an approach that allows certified removal with € = 0.

Our definition of certified removal uses the same notion of
indistinguishability as that of differential privacy. Many
classical machine learning algorithms have been shown
to support differentially private versions, including PCA
(Chaudhuri et al., 2012), matrix factorization (Liu et al.,
2015), linear models (Chaudhuri et al., 2011), and neural
networks (Abadi et al., 2016). Our removal mechanism
can be viewed on a spectrum of noise addition techniques
for preserving data privacy, balancing between computa-
tion time for the removal mechanism and model utility. We
hope to further explore the connections between differen-
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tial privacy and certified removal in follow-up work to de-
sign certified-removal algorithms with better guarantees and
computational efficiency.

6. Conclusion

We have studied a mechanism that quickly “removes” data
from a machine-learning model up to a differentially pri-
vate guarantee: the model after removal is indistinguishable
from a model that never saw the removed data to begin with.
While we demonstrate that this mechanism is practical in
some settings, at least four challenges for future work re-
main. (1) The Newton update removal mechanism requires
inverting the Hessian matrix, which may be problematic.
Methods that approximate the Hessian with near-diagonal
matrices may address this problem. (2) Removal from mod-
els with non-convex losses is unsupported; it may require
local analysis of the loss surface to show that data points
do not move the model out of a local optimum. (3) There
remains a large gap between our data-dependent bound and
the true gradient residual norm, necessitating a tighter anal-
ysis. (4) Some applications may require the development of
alternative, less constraining notions of data removal.
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A. Appendix
We present proofs for theorems stated in the main paper.

Theorem 1. Suppose that ¥(x;,vy;) € D,w € R : |Vl(w ' x;,y:)|l2 < C. Suppose also that ¢" is y-Lipschitz and
Ixill2 < 1forall (x;,y:) € D. Then:

VLW D)2 = [[(Hw, — Hus)Hoz A2

_ 4yC?
<y(n—1)[[Hy Al < Nn—1)

where Hy,, denotes the Hessian of L(-; D') at the parameter vector w, = w* + nHGt A for some n € [0, 1].

Proof. Let G(w) = VL(w;D’) denote the gradient at w of the empirical risk on the reduced dataset D’. Note that
G : R? — R% s a vector-valued function. By Taylor’s Theorem, there exists some 7 € [0, 1] such that:
G(w™)=G(W* + HytA)
= G(W") + VG(W* +nH,t A)H A,
Since G is the gradient of L(-; D’), the quantity VG(w* + nH, ! A) is exactly the Hessian of L(-; D’) evaluated at the
point w, = w* + nHtA. Thus:
G(w™) =G(W*) + Hy Hyt A

= (G(W*) + A) + Hy, Hyt A — A

=0+ Hy, Hy! A — Hy» Hgt A

= (Hyw, — Ho+)Hgt A

This gives:

|Gl = (e, — He ) H Al
< |, — Howe o[ Hg A
Using the Lipschitz-ness of £”, we have for every i:
1260w, 1. 0) — V2L %1, l2 = 112 (w2 5) — () 52, )] [
<107 (W iy ys) = (W) T, y)] - Il I3
< llwy —w*l2 since [[xifl2 < 1

= 7|InHgt All2
< [|Hgt Alls.

As a result, we can conclude that:

n—1
|, = Huells < D || V20w x5, 0) = 926((w*) Tx1,92)
i=1

2

<(n =D Her Al

Combining these results leads us to conclude that |G(w™)||2 < y(n — 1)|| Hgt Al|2.

We can simplify this bound by analyzing || H 1 A||o. Since L(; D’) is A(n—1)-strongly convex, we get || Hy-[l2 > A(n—1),

hence || Hyt ||z < ﬁ Recall that

A=W + V(W) %, ) -
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Since w* is the global optimal solution of the loss L(+; D), we obtain the condition:

0=VL(w*;D) = Z A\ ((w*)Txi,yi) + Anw®.

i=1
Using the norm bound ||V/(w "x,y)||2 < C and re-arranging the terms, we obtain:

IS V) Tl _ C
n -\

w2

Using this and the same norm bound, we observe:
1Al < Mw™[l2 + V(W) "%, )12 < 2€,

from which we obtain:

_ _ 2C
1HA Al < 1H 214 < 5

(n—1)°

which leads to the desired bound. O

Theorem 2. Suppose that b is drawn from a distribution with density function p(-) such that for any by, by € R? satisfying

b1 — ba|l2 < €, we have that: e~ ¢ < géES < ef. Then:

~

1
=
~—
o)

e ¢ <

I
=B

for any solution W produced by A

Proof. Let p be the density function of b and let g ; be the density functions of the gradient residual under optimizer A.
Consider the density functions g4 and ¢ ; of z = b — u under optimizers A and A. We obtain:

g1(z) = / 91(V)p(z +v)dv

= / 9i (v)p(z 4 v)dv since gz has no support elsewhere
vi[[vilz<e’

< / gi(v)e‘p(z)dv  since |[v2 < €
vi||v]2<e

= e“p(z)
= e‘qa(z)

where the last step follows since the gradient residual u under A is 0. To complete the proof, note that the value of W is
completely determined by z=b—u. Indeed, any w satisfying Equation 5 is an exact solution of the strongly convex loss
Ly(w) — u ' w and, hence, must be unique. This gives:

149 = [ F2(¥la)as ()i
:/fA(VNV‘Z)qA(Z)dZ since W is governed by z
S/fA(vV\z)equ(z)dz

= e fa(w).

In the above, note that while f; and f4 are not the same in general, their difference is governed entirely by z: given a fixed
z, the conditional density of w is the same under both density functions.

Using a similar approach as above, we can also show that f ;(W) > e~ fa(W). O
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Theorem 3. Let A be the learning algorithm that returns the unique optimum of the loss Ly, (w; D) and let M be the
Newton update removal mechanism (cf., Equation 3). Suppose that |VL(w~;D')|2 < € for some computable bound
€ > 0. We have the following guarantees for M :

(i) Ifb is drawn from a distribution with density p(b) o e~ I°llz then M is e-CR for A;
(ii) Ifb ~ N(0, c€ /e)? with ¢ > 0, then M is (€, 5)-CR for A with§ = 1.5-¢= /2,

Proof. The proof involves bounding the density ratio of by and by when ||b; — bsl|2 < ¢’ and then invoking Theorem 2.

(1) % = e~ (Ibballz=lIbb2llz) < o7 (Ibb1=bb2]l2) < e¢ The reverse direction can be obtained similarly.

(ii) The proof of Theorem 3.22 in (Dwork, 2011) applies using Ao (f) = €/, giving that with probability at least 1 — 0, we

have that e™¢ < 5 EE;; < e°. Applying Theorem 2 gives the desired (e, §)-CR guarantee.
O

Theorem 4. Under the same regularity conditions of Theorem 1, we have that:

1 2 4 202
(—m). < _ (m) m)|| < =M
VLW ™™D\ D)2 < v(n m)H{Hw } A , S N —m)

Proof. The proof is almost identical to that of Theorem 1, except that there are n. — m terms in the Hessian and A(™) now
scales linearly with m. [

Theorem 5. Suppose @ is a randomized learning algorithm that is (epp, dpp)-differentially private, and the outputs of @
are used in a linear model by minimizing Ly, and using a removal mechanism that guarantees (ecr, dcr)-certified removal.
Then the entire procedure guarantees (épp+€cg, Opp~+Icr)-certified removal.

Proof. Let @ be the randomized algorithm that learns a feature extractor from the data D and let u(S) = P(®(D) € S) be
the induced probability measure over the space, €2, of all possible feature extractors. Let D’ = D \ x be the dataset with x
removed and let 11/() be the corresponding probability measure for ®(D’).

Since @ is (epp, dpp)-DP, for any S C €2, we have that:
() = P(®(D) € §) < e P(2(D') € §) = e/ (S),

with probability 1 — dpp. In particular, this shows that y is absolutely continuous w.r.t. i’ and therefore admits a Radon-
Nikodym derivative g. Furthermore, g is (almost everywhere w.r.t. 1') bounded by e®*. Indeed, suppose that there exists a
set S C Q with p/(S) > 0 such that g > e“* + « on S for some « > 0, then:

u() = [ 0(8) du' = (€ + ) () = () + ' (5).
which is a contradiction unless o = 0.

Finally, for any ¢ € Q such that (D) = ¢, let A(D, ¢) be the learning algorithm that trains a model on D using the feature
extractor ¢. Suppose that M is an (ecg, dcr)-CR mechanism, then by Fubini’s Theorem:

P(M(A(D, ®(D)),D,x) € T) = /Q P(M(A(D, $),D.x) € T) dy

< / e“xP(AD',6) € T) dy
Q
= /QeECRP(A(D’?@ eT) g du
< / eeDP+€CRP(A(D/7¢) e 7—) dMI
Q

= et PA(D, B(D) € T),

with probability at least 1 — dpp — dcr. The lower bound can be shown in a similar fashion. O



