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Abstract. A Vision Transformer (ViT) is a simple neural architecture
amenable to serve several computer vision tasks. It has limited built-in
architectural priors, in contrast to more recent architectures that incor-
porate priors either about the input data or of specific tasks. Recent
works show that ViTs benefit from self-supervised pre-training, in par-
ticular BerT-like pre-training like BeiT.

In this paper, we revisit the supervised training of ViTs. Our procedure
builds upon and simplifies a recipe introduced for training ResNet-50. It
includes a new simple data-augmentation procedure with only 3 augmen-
tations, closer to the practice in self-supervised learning. Our evaluations
on Image classification (ImageNet-1k with and without pre-training on
ImageNet-21k), transfer learning and semantic segmentation show that
our procedure outperforms by a large margin previous fully supervised
training recipes for ViT. It also reveals that the performance of our ViT
trained with supervision is comparable to that of more recent architec-
tures. Our results could serve as better baselines for recent self-supervised
approaches demonstrated on ViT.
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Fig. 1: Comparison of training recipes. Left: vanilla vision transformers trained on
ImageNet-1k and evaluated at resolution 224×224. Right: pre-trained on ImageNet-
21k at 224×224 and finetuned on ImageNet-1k at resolution 224×224 or 384×384.
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1 Introduction

After their vast success in NLP, transformers models [54] and their derivatives
are increasingly popular in computer vision. They are now used in image clas-
sification [12], detection & segmentation [2], video analysis, etc. In particular,
the vision transformers (ViT) of Dosovistky et al. [12] are a reasonable alter-
native to convolutional architectures. This supports the adoption of transform-
ers as a general architecture able to learn convolutions as well as longer range
operations through the attention process [4,7]. In contrast, convolutional net-
works [20,27,29,40] implicitly offer built-in translation invariance. As a result
their training does not have to learn this prior. It is therefore not surprising that
hybrid architectures that include convolution converge faster than ViTs [17].

Because they incorporate as priors only the co-localisation of pixels in patches,
transformers have to learn about the structure of images while optimizing the
model such that it processes the input with the objective of solving a given task.
This can be either reproducing labels in the supervised case, or other proxy
tasks in the case of self-supervised approaches. Nevertheless, despite their huge
success, there has been only few works in computer vision studying how to ef-
ficiently train vision transformers, and in particular on a midsize dataset like
ImageNet-1k. Since the work of Dosovistky et al. [12], the training procedures
are mostly variants from the proposal of Touvron et al. [47] and Steiner et al. [41].
In contrast, multiple works have proposed alternative architectures by introduc-
ing pooling, more efficient attention, or hybrid architectures re-incorporating
convolutions and a pyramid structure. These new designs, while being particu-
larly effective for some tasks, are less general. One difficult question is whether
the improved performance is due to a specific architectural design, or because it
facilitates the optimization.

Recently, self-supervised approaches inspired by the popular BerT pre-training
have raised hopes for a BerT moment in computer vision. There are some analo-
gies between the fields of NLP and computer vision, starting with the trans-
former architecture itself. However, these fields are not identical in every way:
The modalities processed are of different nature (continuous versus discrete).
Computer vision offer large annotated databases like ImageNet [39], and fully
supervised pre-training on ImageNet is effective for handling different down-
stream tasks such as transfer learning [36] or semantic segmentation.

Without further work on fully supervised approaches on ImageNet it is diffi-
cult to conclude if the intriguing performance of self-supervised approaches like
BeiT [1] is due to the training, e.g. data augmentation, regularization, optimiza-
tion, or to an underlying mechanism that is capable of learning more general
implicit representations. In this paper, we do not pretend to answer this difficult
question, but we want to feed this debate by renewing the training procedure
for vanilla ViT architectures. We hope to contribute to a better understanding
on how to fully exploit the potential of transformers and of the importance
of BerT-like pre-training. Our work builds upon the recent state of the art
on fully supervised and self-supervised approaches, with new insights regard-
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ing data-augmentation. We propose new training recipes for vision transformers
on ImageNet-1k and ImageNet-21k. The main ingredients are as follows:

– We build upon the work of Wightman et al. [56] introduced for ResNet50. In
particular we adopt a binary cross entropy loss for Imagenet1k only training.
We adapt this method by including ingredients that significantly improve the
training of large ViT [50], namely stochastic depth [24] and LayerScale [50].

– 3-Augment: is a simple data augmentation inspired by that employed for
self-supervised learning. Surprisingly, with ViT we observe that it works
better than the usual automatic/learned data-augmentation employed to
train vision transformers like RandAugment [5].

– Simple Random Cropping is more effective than Random Resize Crop-
ping when pre-training on a larger set like ImageNet-21k.

– A lower resolution at training time. This choice reduces the train-test
discrepancy [52] but has not been much exploited with ViT. We observe
that it also has a regularizing effect for the largest models by preventing
overfitting. For instance, for a target resolution of 224 × 224, a ViT-H pre-
trained at resolution 126×126 (81 tokens) achieves a better performance on
ImageNet-1k than when pre-training at resolution 224 × 224 (256 tokens).
This is also less demanding at pre-training time, as there are 70% fewer
tokens. From this perspective it offers similar scaling properties as mask-
autoencoders [19].

Our “new” training strategies do not saturate with the largest models, mak-
ing another step beyond the Data-Efficient Image Transformer (DeiT) by Tou-
vron et al. [47]. As a result, we obtain a competitive performance in image
classification and segmentation, even when compared to recent popular archi-
tectures such as SwinTransformers [31] or modern convnet architectures like
ConvNext [32]. Below we point out a few interesting outcomes.

– We leverage models with more capacity even on midsize datasets. For in-
stance, we reach 85.2% top-1 accuracy when training a ViT-H on ImageNet1k
only, which is an improvement of +5.1% over the best ViT-H with supervised
training procedure reported in the literature at resolution 224×224.

– Our training procedure for ImageNet-1k allow us to train a billion-parameter
ViT-H (52 layers) without any hyper-parameter adaptation, just using the
same stochastic depth drop-rate as for the ViT-H. It attains 84.9% at 224×224,
i.e., +0.2% higher than the corresponding ViT-H trained in the same setting.

– Without sacrificing performance, we divide by more than 2 the number of
GPUs required and the training time for ViT-H, making it effectively possible
to train such models with a reduced amount of resources. This is thanks to
our pre-training at lower resolution, which reduces the peak memory.

– For ViT-B and Vit-L models, our supervised training approach is on par
with BerT-like self-supervised approaches [1,19] with their default setting
and when using the same level of annotations and less epochs, both for the
tasks of image classification and of semantic segmentation.
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– With this improved training procedure, a vanilla ViT closes the gap with re-
cent state-of-the art architectures, often offering better compute/performance
trade-offs. Our models are also comparatively better on the additional test
set ImageNet-V2 [38], which indicates that our trained models generalize
better to another validation set than most prior works.

– An ablation on the effect of the crop ratio employed in transfer learning
classification tasks. We observe that it has a noticeable impact on the per-
formance but that the best value depends a lot on the target dataset/task.

2 Related work

Vision Transformers were introduced by Dosovitskiy et al. [12]. This archi-
tecture, which derives from the transformer by Vaswani et al. [54], is now used
as an alternative to convnets in many tasks: image classification [12,47], detec-
tion [2,31], semantic segmentation [1,31] video analysis [16,34], to name only a
few. This greater flexibility typically comes with the downside that they need
larger datasets, or the training must be adapted when the data is scarcer [13,47].
Many variants have been introduced to reduce the cost of attention by introduc-
ing for example more efficient attention [15,16,31] or pooling layers [21,31,55].
Some papers re-introduce spatial biases specific to convolutions within hybrid
architectures [17,57,59]. These models are less general than vanilla transformers
but generally perform well in certain computer vision tasks, because their ar-
chitectural priors reduce the need to learn from scratch the task biases. This is
especially important for smaller models, where specialized models do not have
to devote some capacity to reproduce known priors such as translation invari-
ance. The models are formally less flexible but they do not require sophisticated
training procedures.

Training procedures: The first procedure proposed in the ViT paper [12] was
mostly effective for larger models trained on large datasets. In particular the
ViT were not competitive with convnets when trained from scratch on Ima-
geNet. Touvron et al. [47] showed that by adapting the training procedure, it is
possible to achieve a performance comparable to that of convnets with Imagenet
training only. After this Data Efficient Image Transformer procedure (DeiT),
only few adaptations have been proposed to improve the training vision trans-
formers. Steiner et al. [41] published a complete study on how to train vision
transformers on different datasets by doing a complete ablation of the different
training components. Their results on ImageNet [39] are slightly inferior to those
of DeiT but they report improvements on ImageNet-21k compared to Dosovit-
skiy et al. [12]. The self-supervised approach referred to as masked auto-encoder
(MAE) [19] proposes an improved supervised baseline for the larger ViT models.

BerT pre-training: In the absence of a strong fully supervised training pro-
cedure, BerT [9]-like approaches that train ViT with a self-supervised proxy
objective, followed by full finetuning on the target dataset, seem to be the best
paradigm to fully exploit the potential of vision transformers. Indeed, BeiT [1] or
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MAE [19] significantly outperform the fully-supervised approach, especially for
the largest models. Nevertheless, to date these approaches have mostly shown
their interest in the context of mid-size datasets. For example MAE [19] report
its most impressive results when pre-training on ImageNet-1k with a full fine-
tuning on ImageNet-1k. When pre-training on ImageNet-21k and finetuning on
ImageNet-1k, BeiT [1] requires a full 90-epochs finetuning on ImageNet-21k fol-
lowed by another full finetuning on ImageNet-1k to reach its best performance,
suggesting that a large labeled dataset is needed so that BeiT realizes its best
potential. A recent work suggests that such auto-encoders are mostly interesting
in a data starving context [14], but this questions their advantage in the case
where more labelled data is actually available.

Data-augmentation: For supervised training, the community commonly em-
ploys data-augmentations offered by automatic design procedures such as Ran-
dAugment [5] or Auto-Augment [6]. These data-augmentations seem to be essen-
tial for training vision transformers [47]. Nevertheless, papers like TrivialAug-
ment [33] and Uniform Augment [30] have shown that it is possible to reach
interesting performance levels when simplifying the approaches. However, these
approaches were initially optimized for convnets. In our work, we propose to go
further in this direction and drastically limit and simplify data-augmentation:
we introduce a data-augmentation policy that employs only 3 different transfor-
mations randomly drawn with uniform probability. That’s it!

3 Revisit training & pre-training for Vision Transformers

In this section, we present our training procedure for vision transformers and
compare it with existing approaches. The detail the ingredients and hyper-
parameters ingredients in Table 8 in Appendix A.1. Building upon Wightman
et al. [56] and Touvron et al. [47], we introduce several changes that have a
significant impact on the final model accuracy.

3.1 Regularization & loss

Stochastic depth is a regularization that is especially useful for training deep
networks. We use a uniform drop rate across all layers and adapt it according
to the model size [50]. Table 9 (Appendix A) gives the drop-rate per model.

LayerScale. We use LayerScale [50]. This method was introduced to facilitate
the convergence of deep transformers. With our training procedure, we do not
have convergence problems, however we observe that LayerScale allows our mod-
els to attain a higher accuracy for the largest models. In the original paper [50],
the initialization of LayerScale is adapted according to the depth. In order to
simplify the method we use the same initialization (10−4) for all our models.

Binary Cross entropy. Wigthman et al. [56] adopt a binary cross-entropy
(BCE) loss instead of the more common cross-entropy (CE) to train ResNet-50.
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Table 1: Ablation of our data-augmentation strategy with ViT-B on ImageNet-1k.

Data-Augmentation ImageNet-1k
ColorJitter Grayscale Gaussian Blur Solarization Val Real V2

0.3 ✗ ✗ ✗ 81.4 86.1 70.3
0.3 ✓ ✗ ✗ 81.0 86.0 69.7
0.3 ✓ ✓ ✗ 82.7 87.6 72.7
0.3 ✓ ✓ ✓ 83.1 87.7 72.6
0.0 ✓ ✓ ✓ 83.1 87.7 72.0

They conclude that the gains are limited compared to the CE loss but that this
choice is more convenient when employed with Mixup [61] and CutMix [60].
For larger ViTs and with our training procedure on ImageNet-1k, the BCE
loss provides us a significant improvement in performance, see an ablation in
Table 3. We did not achieve compelling results during our exploration phase on
ImageNet21k, and therefore keep CE when pre-training with this dataset as well
as for the subsequent fine-tuning.

3.2 Data-augmentation

Since the advent of AlexNet, there has been significant modifications to the
data-augmentation procedures employed to train neural networks. Interestingly,
the same data augmentation, like RandAugment [5], is widely employed for ViT
while their policy was initially learned for convnets. Given that the architectural
priors and biases are quite different in these architectures, the augmentation
policy may not be adapted, and possibly overfitted considering the large amount
of choices involved in their selection. We therefore revisit this prior choice.

3-Augment: We propose a simple data augmentation inspired by what is used
in self-supervised learning (SSL). We consider the following transformations:

– Grayscale: This favors color invariance and give more focus on shapes.
– Solarization: This adds strong noise on the colour to be more robust to the

variation of colour intensity and so focus more on shape.
– Gaussian Blur: In order to slightly alter details in the image.

For each image, we select only one of this data-augmentation with a uniform
probability over 3 different ones. In addition to these 3 aumgnentations choices,
we include the common color-jitter and horizontal flip. Figure 2 illustrates the
different augmentations used in our 3-Augment approach. In Table 1 we provide
an ablation on our different data-augmentation components.

3.3 Cropping

Random Resized Crop (RRC) was introduced in the GoogleNet [42] paper.
It serves as a regularisation to limit model overfitting, while favoring that the
decision done by the model is invariant to a certain class of transformations. This
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data augmentation was deemed important on Imagenet1k to prevent overfitting,
which happens to occur rapidly with modern large models.

This cropping strategy however introduces some discrepancy between train
and test images in terms of the aspect ratio and the apparent size of objects [52].
Since ImageNet-21k includes significantly more images, it is less prone to overfit-
ting. Therefore we question whether the benefit of the strong RRC regularization
compensates for its drawback when training on larger sets.

Simple Random Crop (SRC) is a much simpler way to extract crops. It
is similar to the original cropping choice proposed in AlexNet [27]: We resize
the image such that the smallest side matches the training resolution. Then we
apply a reflect padding of 4 pixels on all sides, and finally we apply a square
Crop of training size randomly selected along the x-axis of the image.

Figure 7 vizualizes cropping boxes sampled for RRC and SRC. RRC provides
a lot of diversity and very different sizes for crops. In contrast SRC covers a
much larger fraction of the image overall and preserve the aspect ratio, but
offers less diversity: The crops overlaps significantly. As a result, when training
on ImageNet-1k the performance is better with the commonly used RRC. For
instance a ViT-S reduces its top-1 accuracy by −0.9% if we do not use RRC.

However, in the case of ImageNet-21k (×10 bigger than ImageNet-1k), there
is less risk of overfitting and increasing the regularisation and diversity offered
by RRC is less important. In this context, SRC offers the advantage of reducing
the discrepancy in apparent size and aspect ratio. More importantly, it gives
a higher chance that the actual label of the image matches that of the crop:
RRC is relatively aggressive in terms of cropping and in many cases the labelled
object is not even present in the crop, as shown in Figure 3 where some of the
crops do not contain the labelled object. For instance, with RRC there is a crop
no zebra in the left example, or no train in three of the crops from the middle
example. This is more unlikely to happen with SRC, which covers a much larger
fraction of the image pixels. In the supplemental material, in Table 16 we provide
an ablation of random resized crop on ImageNet-21k, where we see that these
observations translate as a significant gain in performance.

Original Gauss. Blurr Grayscale Solarization

Fig. 2: Illustration of the 3 type of data-augmentations used in 3-Augment.
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SRC RRC SRC RRC SRC RRC

Fig. 3: Illustration of Random Resized Crop (RRC) and Simple Random Crop (SRC).
The usual RRC is a more aggressive data-augmentation than SRC: It has a more
important regularizing effect and avoids overfitting by giving more variability to the
images. At the same time it introduces a discrepancy of scale and aspect-ratio. It also
leads to labeling errors, for instance when the object is not in the cropped region (e.g.,
train or boat). On ImageNet-1k this regularization is overall regarded as beneficial.
However our experiments show that it is detrimental on ImageNet-21k, which is less
prone to overfitting.
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4 Experiments

This section includes multiple experiments in image classification, with a special
emphasis on ImageNet-1k [8,38,39]. We also report results for downstream tasks
in fine-grained classification and segmentation. We include a large number of ab-
lations to better analyze different effects, such as the importance of the training
resolution and longer training. We provide additional results in the appendices.

4.1 Training recipes ablation and comparison

Impact of training duration. In Figure 4 we provide an ablation on the
number of epochs, which shows that ViT models do not saturate as rapidly as
the DeiT training procedure [47] when we increase the number of epochs beyond
the 400 epochs adopted for our baseline. For ImageNet-21k pre-training, we use
90 epochs for pre-training as in a few works [31,48]. We finetune during 50 epochs
on ImageNet-1k [48] and marginally adapt the stochastic depth parameter. We
point out that this choice is mostly for the sake of consistency across models: we
observe that training 30 epochs also provides similar results.

Data-Augmentation. In Table 2 we compare our handcrafted data-augmentation
3-Augment with existing augmentation methods. With the ViT architecture,
our data-augmentation is the most effective while being simpler than the other
approaches. Since previous augmentations were introduced on convnets, we also
provide results for a ResNet-50. In this case, previous augmentation policies have
similar (RandAugment, Trivial-Augment) or better results (Auto-Augment) on
the validation set. This is no longer the case when evaluating on the independent
set V2, for which the Auto-Augment better accuracy is not significant.
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Table 2: Comparison of our simple 3-
Augment with existing data-augmentation
used with self-supervised learning.

Method
L
ea
rn
ed

#DA
Model

ImageNet-1k
Val Real V2

✓ 14
ResNet50 79.7 85.6 67.9

Auto-Augment ViT-B 82.8 87.5 71.9
(AutoAug [6]) ViT-L 84.0 88.6 74.0

✓ 14
ResNet50 79.5 85.5 67.6

RandAugment ViT-B 82.7 87.4 72.2
(RandAug [5]) ViT-L 84.0 88.3 73.8

✗ 14
ResNet50 79.5 85.4 67.6

Trivial-Augment ViT-B 82.3 87.0 71.2
[33] ViT-L 83.6 88.1 73.7

ResNet50 79.4 85.5 67.8
3-Augment ViT-B 83.1 87.7 72.6
(3aug: ours)

✗ 3
ViT-L 84.2 88.6 74.3

Table 3: Ablation of training components
with training at resolution 224× 224 on
ImageNet-1k, evaluated on different sets.

Model Loss LS Augm. Epochs
ImageNet-1k
val real v2

V
iT

-S

CE ✗ RandAug 300 79.8 85.3 68.1
BCE ✗ RandAug 300 79.8 85.9 68.2
BCE ✓ RandAug 300 80.1 86.1 69.1
BCE ✓ RandAug 400 80.7 86.0 69.3
BCE ✓ 3-Augment 400 80.4 86.1 69.7

V
iT

-B

CE ✗ RandAug 300 80.9 85.5 68.5
BCE ✗ RandAug 300 82.2 87.2 71.4
BCE ✓ RandAug 300 82.5 87.5 71.4
BCE ✓ RandAug 400 82.7 87.4 72.2
BCE ✓ 3-Augment 400 83.1 87.7 72.6

V
iT

-L

BCE ✗ RandAug 300 83.0 87.9 72.4
BCE ✗ RandAug 400 83.3 87.7 72.5
BCE ✓ RandAug 400 84.0 88.3 73.8
BCE ✓ 3-Augment 400 84.2 88.6 74.3

Comparison with previous training recipes for ViT. In Figure 1, we
compare training procedures used to pre-train the ViT architecture either on
ImageNet-1k and ImageNet-21k. Our procedure outperforms existing recipes
with a large margin. For instance, with ImageNet-21k pre-training we have an
improvement of +3.0% with ViT-L in comparison to the best approach. Similarly,
when training from scratch on ImageNet-1k we improve the accuracy by +2.1%
for ViT-H compared to the previous best approach, and by +4.3% with the best
approach that does not use EMA. See also detailed results in appendices.

4.2 Image Classification

ImageNet-1k. In Table 4 we compare ViT architectures trained with our train-
ing recipes on ImageNet-1k with other architectures. We include a comparison
with the recent SwinTransformers [31] and ConvNeXts [32].

Overfitting evaluation. The comparison between ImageNet-val and -v2 is a
way to quantify overfitting [53], or at least the better capability to generalize
in a nearby setting without any fine-tuning3. In Figure 6 we plot ImageNet-
val top-1 accuracy vs ImageNet-v2 top-1 accuracy in order to evaluate how the
models performed when evaluated on a test set never seen at validation time.
Our models overfit significantly less than all other models considered, especially
on ImageNet-21k. This is a good behaviour that validates the fact that our
restricted choice of hyper-parameters and variants in our recipe does not lead to
(too much) overfitting.

3 Note, the measures are less robust with -V2 as the number of test images is 10000
instead of 50000 for Imagenet-val, leading to a standard deviation around 0.2%.
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Fig. 6: Generalization experiment: top-1 accuracy on ImageNet1k-val vs ImageNet-v2
for models in Table 13 and Table 14. We display a linear interpolation of all points in
order to compare the level of overfitting for the different models.

ImageNet-21k. In Table 4 (right columns), we compare ViT pre-trained on
ImageNet-21k with our training recipe then finetuned on ImageNet-1k. We can
observe that the findings are similar to what we obtained on ImageNet-1k only.

Comparison with BerT-like pre-training. In Table 5 we compare ViT mod-
els trained with our training recipes with ViT trained with different BerT-like
approaches. We observe that for an equivalent number of epochs our approach
gives comparable performance on ImageNet-1k and better on ImageNet-v2 as
well as in segmentation on Ade. For BerT like pre-training we compare our
method with MAE [19] and BeiT [1] because they remain relatively simple ap-
proaches with very good performance. As our approach does not use distillation
or multi-crops we have not made a comparison with approaches such as PeCo [11]
which use an auxiliary model as a psycho-visual loss and iBoT [63], which uses
multi-crop and an exponential moving average of the model.

Transfer Learning. In order to evaluate the quality of the ViT models learned
through our training procedure we evaluated them with transfer learning tasks.
We focus on the performance of ViT models pre-trained on ImageNet-1k only
at resolution 224× 224 during 400 epochs on the 6 datasets shown in Table 10.
Our results are presented in Table 6. In Figure 5 we measure the impact of
the crop ratio at inference time on transfer learning results. We observe that
on iNaturalist this parameter has a significant impact on the performance. As
recommended in the paper Three Things [49] we finetune only the attention
layers for transfer learning experiments on Flowers.

Semantic segmentation We evaluate our ViT baselines models (400 epochs
schedules for ImageNet-1k models and 90 epochs for ImageNet-21k models) with
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Table 4: Classification on ImageNet-1k. We compare architectures with compa-
rable FLOPs and number of parameters. All models are evaluated with pre-training
on ImageNet-1k (INet-1k) or on ImageNet-21k (INet-21k) without distillation nor self-
supervised pre-training. We report Top-1 accuracy on the validation set of ImageNet-1k
and ImageNet-V2 with different measure of complexity: throughput, FLOPs, number
of parameters and peak memory usage. The throughput and peak memory are mea-
sured on a single V100-32GB GPU with batch size fixed to 256 and mixed precision.
For Swin-L we decrease the batch size to 128 in order to avoid out of memory error
and re-estimate the memory consumption. ↑R indicates that the model is fine-tuned
at the target resolution R. See Tables 13 and 14 in appendix for more comparisons.

Architecture nb params throughput FLOPs Peak Mem INet-1k pretr. INet-21k pretr.
(×106) (im/s) (×109) (MB) Top-1 V2 Top-1 V2

“Traditional” ConvNets

EfficientNetV2-S↑384 [44] 21.5 874 8.5 4515 83.9 74.0 84.9 74.5
EfficientNetV2-M↑480 [44] 54.1 312 25.0 7127 85.1 75.5 86.2 75.9
EfficientNetV2-L↑480 [44] 118.5 179 53.0 9540 85.7 76.3 86.8 76.9
EfficientNetV2-XL↑512 [44] 208.1 94.0 87.3 77.0

Patch-based ConvNets

ConvNeXt-B [32] 88.6 563 15.4 3029 83.8 73.4 85.8 75.6
ConvNeXt-B↑384 [32] 88.6 190 45.1 7851 85.1 74.7 86.8 76.6
ConvNeXt-L [32] 197.8 344 34.4 4865 84.3 74.0 86.6 76.6
ConvNeXt-L↑384 [32] 197.8 115 101 11938 85.5 75.3 87.5 77.7
ConvNeXt-XL [32] 350.2 241 60.9 6951 87.0 77.0
ConvNeXt-XL↑384 [32] 350.2 80 179.0 16260 87.8 77.7

Vision Transformers derivative

Swin-B [31] 87.8 532 15.4 4695 83.5 85.2 74.6
Swin-B↑384 [31] 87.9 160 47.0 19385 84.5 86.4 76.3
Swin-L [31] 196.5 337 34.5 7350 86.3 76.3
Swin-L↑384 [31] 196.7 100 103.9 33456 87.3 77.0

Vanilla Vision Transformers

ViT-B/16 [41] 86.6 831 17.6 2078 79.8 84.0
ViT-B/16↑384 [41] 86.7 190 55.5 8956 81.6 85.5
ViT-L/16 [41] 304.4 277 61.6 3789 75.7 84.0
ViT-L/16↑384 [41] 304.8 67 191.1 12866 77.2 85.5

Our Vanilla Vision Transformers

ViT-S 22.0 1891 4.6 987 81.4 70.5 83.1 73.8
ViT-B 86.6 831 17.6 2078 83.8 73.6 85.7 76.5
ViT-B↑384 86.9 190 55.5 8956 85.0 74.8 86.7 77.9
ViT-L 304.4 277 61.6 3789 84.9 75.1 87.0 78.6
ViT-L↑384 304.8 67 191.2 12866 85.8 76.7 87.7 79.1
ViT-H 632.1 112 167.4 6984 85.2 75.9 87.2 79.2
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Table 5: Comparison of self-supervised pre-training with our approach. As our approach
is fully supervised, this table is given as an indication. All models are evaluated at
resolution 224× 224. We report Image classification results on ImageNet val, real and
v2 in order to evaluate overfitting. (21k) indicate a finetuning with labels on ImageNet-
21k and (1k) indicate a finetuning with labels on ImageNet-1k. ⋆ design the improved
setting of MAE using pixel (w/ norm) loss.

Pretrained
Model Method

# pre-training # finetuning ImageNet
data epochs epochs val Real V2

INET-1k

ViT-B

BeiT
300 100(1k) 82.9

800 100(1k) 83.2

MAE⋆ 1600 100(1k) 83.6 88.1 73.2

400(1k) 20(1k) 83.5 88.0 72.8
Ours

800(1k) 20(1k) 83.8 88.2 73.6

ViT-L

BeiT 800 30(1k) 85.2

MAE
400 50(1k) 84.3

800 50(1k) 84.9

1600 50(1k) 85.1

MAE⋆ 1600 50(1k) 85.9 89.4 76.5

400(1k) 20(1k) 84.5 88.8 75.1
Ours

800(1k) 20(1k) 84.9 88.7 75.1

INET-21k

ViT-B
BeiT

150 50(1k) 83.7 88.2 73.1

150 + 90(21k) 50(1k) 85.2 89.4 75.4

90(21k) 50(1k) 85.2 89.4 76.1
Ours

240(21k) 50(1k) 85.7 89.5 76.5

ViT-L
BeiT

150 50(1k) 86.0 89.6 76.7

150 + 90(21k) 50(1k) 87.5 90.1 78.8

90(21k) 50(1k) 86.8 89.9 78.3
Ours

240(21k) 50(1k) 87.0 90.0 78.6

Table 6: We compare Transformers based models on different transfer learning
tasks with ImageNet-1k pre-training. We report results with our default training on
ImageNet-1k (400 epochs at resolution 224× 224). We also report results with convnets
for reference. For consistency we keep our crop ratio equal to 1.0 on all datasets. Other
works use 0.875, which is better for iNat-19 and iNat-18, see Fig. 5.

Model CIFAR-10 CIFAR-100 Flowers Cars iNat-18 iNat-19

Grafit ResNet-50 [51] 98.2 92.5 69.8 75.9
ResNet-152 [3] 69.1

ViT-B/16 [12] 98.1 87.1 89.5
ViT-L/16 [12] 97.9 86.4 89.7

ViT-B/16 [41] 87.8 96.0
ViT-L/16 [41] 86.2 91.4

DeiT-B 99.1 90.8 98.4 92.1 73.2 77.7

Ours ViT-S 98.9 90.6 96.4 89.9 67.1 72.7
Ours ViT-B 99.3 92.5 98.6 93.4 73.6 78.0
Ours ViT-L 99.3 93.4 98.9 94.5 75.6 79.3
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Table 7: ADE20k semantic segmentation performance using UperNet [58] (in com-
parable settings [10,15,31]). All models are pre-trained on ImageNet-1k except models
with † symbol that are pre-trained on ImageNet-21k. We report the pre-training reso-
lution used on ImageNet-1k and ImageNet-21k.

Backbone
Pre-training UperNet

resolution
#params FLOPs Single scale Multi-scale
(×106) (×109) mIoU mIoU

ResNet50 224× 224 66.5 42.0
DeiT-S 224× 224 52.0 1099 44.0
XciT-T12/16 224× 224 34.2 874 41.5
XciT-T12/8 224× 224 33.9 942 43.5
Swin-T 224× 224 59.9 945 44.5 46.1
Our ViT-T 224× 224 10.9 148 40.1 41.8
Our ViT-S 224× 224 41.7 588 45.6 46.8

XciT-M24/16 224× 224 112.2 1213 47.6
XciT-M24/8 224× 224 110.0 2161 48.4
PatchConvNet-B60 224× 224 140.6 1258 48.1 48.6
PatchConvNet-B120 224× 224 229.8 1550 49.4 50.3
MAE ViT-B 224× 224 127.7 1283 48.1
Swin-B 384× 384 121.0 1188 48.1 49.7
Our ViT-B 224× 224 127.7 1283 49.3 50.2
Our ViT-L 224× 224 353.6 2231 51.5 52.0

PatchConvNet–B60† 224× 224 140.6 1258 50.5 51.1

PatchConvNet-L120† 224× 224 383.7 2086 52.2 52.9

Swin-B† (640× 640) 224× 224 121.0 1841 50.0 51.6

Swin-L† (640× 640) 224× 224 234.0 3230 53.5

Our ViT-B† 224× 224 127.7 1283 51.8 52.8

Our ViT-B† 384× 384 127.7 1283 53.4 54.1

Our ViT-L† 224× 224 353.6 2231 53.8 54.7

Our ViT-L† 320× 320 353.6 2231 54.6 55.6

semantic segmentation experiments on ADE20k dataset [62]. For the training,
we adopt the same schedule as in Swin: 160k iterations with UperNet [58]. At
test time we evaluate with a single scale and multi-scale. See Appendix B for
more details. Our results are reported in Table 7. We observe that vanilla ViTs
trained with our training recipes have a better FLOPs-accuracy trade-off than
recent architectures like XCiT or Swin.

5 Conclusion

This paper makes a simple contribution: it proposes improved baselines for vision
transformers trained in a supervised fashion that can serve (1) as a comparison
basis for new architectures; (2) for other training approaches such as those based
on self-supervised learning. We hope that this strong baseline will serve the
community effort in making progress on learning foundation models that could
serve many tasks. Our experiments have also gathered a few insights on how to
train ViT for larger models with reduced resources without hurting accuracy,
allowing us to train a one-billion parameter model with 4 nodes of 8 GPUs.
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Appendices

A Experimental details

A.1 Detailed ingredients and hyper-parameters

Table 8: Summary of our training procedures with ImageNet-1k and ImageNet-21k. We
also provide DeiT [47], Wightman et al [56] and Steiner et al. [41] baselines for reference.
Adapt. means the hparams is adapted to the size of the model. For finetuning to higher
resolution with model pre-trained on ImageNet-1k only we use the finetuning procedure
from DeiT see section A.2 for more details.

Previous approaches Ours

Procedure → ViT Steiner DeiT Wightman ImNet-1k ImNet-21k
Reference [12] et al. [41] [47] et al. [56] Pretrain. Finetune.

Batch size 4096 4096 1024 2048 2048 2048 2048
Optimizer AdamW AdamW AdamW LAMB LAMB LAMB LAMB
LR 3.10−3 3.10−3 1.10−3 5.10−3 3.10−3 3.10−3 3.10−4

LR decay cosine cosine cosine cosine cosine cosine cosine
Weight decay 0.1 0.3 0.05 0.02 0.02 0.02 0.02
Warmup epochs 3.4 3.4 5 5 5 5 5

Label smoothing ε 0.1 0.1 0.1 ✗ ✗ 0.1 0.1
Dropout ✓ ✓ ✗ ✗ ✗ ✗ ✗

Stoch. Depth ✗ ✓ ✓ ✓ ✓ ✓ ✓

Repeated Aug ✗ ✗ ✓ ✓ ✓ ✗ ✗

Gradient Clip. 1.0 1.0 ✗ 1.0 1.0 1.0 1.0

H. flip ✓ ✓ ✓ ✓ ✓ ✓ ✓

RRC ✓ ✓ ✓ ✓ ✓ ✗ ✗

Rand Augment ✗ Adapt. 9/0.5 7/0.5 ✗ ✗ ✗

3 Augment (ours) ✗ ✗ ✗ ✗ ✓ ✓ ✓

LayerScale ✗ ✗ ✗ ✗ ✓ ✓ ✓

Mixup alpha ✗ Adapt. 0.8 0.2 0.8 ✗ ✗

Cutmix alpha ✗ ✗ 1.0 1.0 1.0 1.0 1.0
Erasing prob. ✗ ✗ 0.25 ✗ ✗ ✗ ✗

ColorJitter ✗ ✗ ✗ ✗ 0.3 0.3 0.3

Test crop ratio 0.875 0.875 0.875 0.95 1.0 1.0 1.0

Loss CE CE CE BCE BCE CE CE

A.2 Baselines and default settings

The main task that we consider in this paper for the evaluation of our training
procedure is image classification. We train on Imagenet1k-train and evaluate
on Imagenet1k-val, with results on ImageNet-V2 to control overfitting. We also
consider the case where we can pretrain on ImageNet-21k, Finally, we report
transfer learning results on 6 different datasets/benchmarks.
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Default setting. When training on ImageNet-1k only, by default we train during
400 epochs with a batch size 2048, following prior works [50,59]. Unless specified
otherwise, both the training and evaluation are carried out at resolution 224 ×
224 (even though we recommend to train at a lower resolution when targeting
224× 224 at inference time).

When pre-training on ImageNet-21k, we pre-train by default during 90 epochs
at resolution 224 × 224, followed by a finetuning of 50 epochs on ImageNet-1k.
In this context, we consider two fine-tuning resolutions: 224×224 and 384×384.

Fine-tuning at higher resolution. When pre-training on ImageNet-1k at
resolution 224 × 224 we fix the train-test resolution discrepancy by finetuning
at a higher resolution [52]. Our finetuning procedure is inspired by DeiT, except
that we adapt the stochastic depth rate according to the model size [50]. We fix
the learning reate to lr = 1 × 10−5 with batch-size=512 during 20 epochs with
a weight decay of 0.1 without repeated augmentation. Other hyper-parameters
are similar to those employed in DeiT fine-tuning.

Stochastic depth. We adapt the stochastic depth drop rate according to the
model size. We report stochastic depth drop rate values in Table 9.

Table 9: Stochastic depth drop-rate according to the model size. For 400 epochs training
on ImageNet-1k and 90 epochs training on ImageNet-21k. See section B for further
adaption with longer training.

Model
# Params FLOPs Stochastic depth drop-rate

(×106) (×109) ImageNet-1k ImageNet-21k

ViT-T 5.7 1.3 0.0 0.0
ViT-S 22.0 4.6 0.0 0.0
ViT-B 86.6 17.5 0.1 0.1
ViT-L 304.4 61.6 0.4 0.3
ViT-H 632.1 167.4 0.5 0.5

For transfer learning experiments we evaluate our models pre-trained at
resolution 224 × 224 on ImageNet-1k only on 6 transfer learning datasets. We
give the details of these datasets in Table 10 below.

B Additional details and Ablations

Number of training epochs In Table 11 we provide an ablation on the num-
ber of training epochs on ImageNet-1k. We do not observe a saturation when
the increase of the number of training epochs, as observed with BerT like ap-
proaches [1,19]. For longer training we increase the weight decay from 0.02 to
0.05 and we increase the stochastic depth drop-rate by 0.05 every 200 epochs to
prevent overfitting.
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Table 10: Datasets used for our different transfer-learning tasks.

Dataset Train size Test size #classes

iNaturalist 2018 [23] 437,513 24,426 8,142
iNaturalist 2019 [22] 265,240 3,003 1,010
Flowers-102 [35] 2,040 6,149 102
Stanford Cars [26] 8,144 8,041 196
CIFAR-100 [28] 50,000 10,000 100
CIFAR-10 [28] 50,000 10,000 10

RRC SRC

Fig. 7: Example of crops selected by Random Resized Crop and Simple Random Crop.

Impact of training resolution In Table 12 we report the evolution of the
performance according to the training resolution. We observe that we benefit
from the FixRes [52] effect. By training at resolution 192×192 (or 160×160) we
get a better performance at 224 after a slight fine-tuning than when training
from scratch at 224×224.

We observe that the resolution has a regularization effect. While it is known
that it is best to use a smaller resolution at training time [52], we also observe in
the training curves that this show reduces the overfitting of the larger models.
This is also illustrated by our results Table 12 with ViT-H and ViT-L. This
is especially important with longer training, where models overfit without a
stronger regularisation. This smaller resolution implies that there are less patches
to be processed, and therefore it reduces the training cost and increases the
performance. In that respect it effect is comparable to that of MAE [19]. We also
report results with ViT-H 52 layers and ViT-H 26 layers parallel [49] models with
1B parameters. With lower resolution training it is easier to train these models.

Detailed Tables for Image classification In Table 13 we compare ViT ar-
chitectures trained with our training recipes on ImageNet-1k with other archi-
tectures. In Table 14 we compare ViT architecture pre-trained on ImageNet-21k
with our training recipe then finetuned on ImageNet-1k.
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Model epochs
ImageNet top1 acc.
val real v2

ViT-S

300 79.9 86.1 68.8
400 80.4 86.1 69.7
600 80.8 86.7 69.9
800 81.4 87.0 70.5

ViT-B

300 82.8 87.6 72.1
400 83.1 87.7 72.6
600 83.2 87.8 73.3
800 83.7 88.1 73.1

ViT-L

300 84.1 88.5 74.1
400 84.2 88.6 74.3
600 84.4 88.6 74.6
800 84.5 88.8 75.0

ViT-H
300 84.6 89.0 74.9
400 84.8 89.1 75.3

Table 11: Impact on the performance of the number of training epochs on ImageNet-1k.

Training with others architectures In Table 15 we measure the top-1 accu-
racy on ImageNet-val, ImageNet-real and ImageNet-v2 with different architec-
ture train with our training procedure at resolution 224 × 224 on ImageNet-1k
only. We can observe that for some architectures like PiT or CaiT our training
method will improve the performance. For some others like TNT our approach
is neutral and for architectures like Swin it decreases the performance. This is
consistent with the findings of Wightman et al. [56] and illustrates the need to
improve the training procedure in conjunction to the architecture to obtain ro-
bust conclusions. Indeed, adjusting these architectures while keeping the training
procedure fixed can probably have the same effect as keeping the architecture
fixed and adjusting the training procedure. That means that with a fixed training
procedure we can have an overfitting of an architecture for a given training pro-
cedure. In order to take overfitting into account we perform our measurements
on the ImageNet val and ImageNet-v2 to quantify the amount of overfitting.

Semantic segmentation details The ADE20k dataset [62] consists of 20k
training and 5k validation images with labels over 150 categories. For the train-
ing, we adopt the same schedule as in Swin: 160k iterations with UperNet [58].
Our UperNet implementation is based on the XCiT [15] repository. By default
the UperNet head uses an embedding dimension of 512. In order to save com-
pute, for small and tiny models we set it to the size of their working dimension,
i.e. 384 for small and 192 for tiny. We keep the 512 by default as it is done in
XCiT for other models.
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Model
epochs Resolution ImageNet top-1 acc

Train. FT Train. FT val real v2

ViT-B

400
20

128× 128

224× 224

83.2 88.1 73.2
160× 160 83.3 88.0 73.4
192× 192 83.5 88.0 72.8
224× 224 83.1 87.7 72.6

800
20

128× 128

224× 224

83.5 88.3 73.4
160× 160 83.6 88.2 73.5
192× 192 83.8 88.2 73.6
224× 224 83.7 88.1 73.1

ViT-L

400
20

128× 128

224× 224

83.9 88.8 74.3
160× 160 84.4 88.8 74.3
192× 192 84.5 88.8 75.1
224× 224 84.2 88.6 74.3

800
20

128× 128

224× 224

84.5 88.9 74.7
160× 160 84.7 88.9 75.2
192× 192 84.9 88.7 75.1
224× 224 84.5 88.8 75.0

ViT-H

400
20

126× 126

224× 224

84.7 89.2 75.2
154× 154 85.1 89.3 75.3
182× 182 85.1 89.2 75.4
224× 224 84.8 89.1 75.3

800
20

126× 126

224× 224

85.1 89.2 75.6
154× 154 85.2 89.2 75.9
182× 182 85.1 88.9 75.9
224× 224 84.9 89.1 75.6

ViT-H-52 400 20 126× 126 224× 224 84.9 89.2 75.6

ViT-H-26×2 400 20 126× 126 224× 224 84.9 89.1 75.3

Table 12: We compare ViT architectures pre-trained on ImageNet-1k only with different
training resolution followed by a fine-tuning at resolution 224 × 224. We benefit from
the FixRes effect [52] and get better performance with a lower training resolution (e.g
resolution 160× 160 with patch size 16 represent 100 tokens vs 196 for 224× 224. This
represents a reduction of 50% of the number of tokens).
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Table 13: Classification with ImageNet-1k training. We compare architectures
with comparable FLOPs and number of parameters. All models are trained on
ImageNet-1k only without distillation nor self-supervised pre-training. We report Top-1
accuracy on the validation set of ImageNet1k and ImageNet-V2 with different measure
of complexity: throughput, FLOPs, number of parameters and peak memory usage.
The throughput and peak memory are measured on a single V100-32GB GPU with
batch size fixed to 256 and mixed precision. For ResNet [20] and RegNet [37] we report
the improved results from Wightman et al. [56]. Note that different models may have
received a different optimization effort. ↑R indicates that the model is fine-tuned at
the resolution R and -R indicates that the model is trained at resolution R.

Architecture nb params throughput FLOPs Peak Mem Top-1 V2
(×106) (im/s) (×109) (MB) Acc. Acc.

“Traditional” ConvNets

ResNet-50 [20,56] 25.6 2587 4.1 2182 80.4 68.7
ResNet-101 [20,56] 44.5 1586 7.9 2269 81.5 70.3
ResNet-152 [20,56] 60.2 1122 11.6 2359 82.0 70.6

RegNetY-4GF [37,56] 20.6 1779 4.0 3041 81.5 70.7
RegNetY-8GF [37,56] 39.2 1158 8.0 3939 82.2 71.1
RegNetY-16GF [37,47] 83.6 714 16.0 5204 82.9 72.4

EfficientNet-B4 [43] 19.0 573 4.2 10006 82.9 72.3
EfficientNet-B5 [43] 30.0 268 9.9 11046 83.6 73.6

EfficientNetV2-S [44] 21.5 874 8.5 4515 83.9 74.0
EfficientNetV2-M [44] 54.1 312 25.0 7127 85.1 75.5
EfficientNetV2-L [44] 118.5 179 53.0 9540 85.7 76.3

Vision Transformers derivative

PiT-S-224 [21] 23.5 1809 2.9 3293 80.9
PiT-B-224 [21] 73.8 615 12.5 7564 82.0
Swin-T-224 [31] 28.3 1109 4.5 3345 81.3 69.5
Swin-S-224 [31] 49.6 718 8.7 3470 83.0 71.8
Swin-B-224 [31] 87.8 532 15.4 4695 83.5
Swin-B-384 [31] 87.9 160 47.2 19385 84.5

Vision MLP & Patch-based ConvNets

Mixer-B/16 [45] 59.9 993 12.6 1448 76.4 63.2
ResMLP-B24 [46] 116.0 1120 23.0 930 81.0 69.0
PatchConvNet-S60-224 [48] 25.2 1125 4.0 1321 82.1 71.0
PatchConvNet-B60-224 [48] 99.4 541 15.8 2790 83.5 72.6
PatchConvNet-B120-224 [48] 188.6 280 29.9 3314 84.1 73.9
ConvNeXt-B-224 [32] 88.6 563 15.4 3029 83.8 73.4
ConvNeXt-B-384 [32] 88.6 190 45.0 7851 85.1 74.7
ConvNeXt-L-224 [32] 197.8 344 34.4 4865 84.3 74.0
ConvNeXt-L-384 [32] 197.8 115 101.0 11938 85.5 75.3

Our Vanilla Vision Transformers

ViT-S 22.0 1891 4.6 987 81.4 70.5
ViT-S↑384 22.0 424 15.5 4569 83.4 73.1
ViT-B 86.6 831 17.5 2078 83.8 73.6
ViT-B↑384 86.9 190 55.5 8956 85.0 74.8
ViT-L 304.4 277 61.6 3789 84.9 75.1
ViT-L↑384 304.8 67 191.2 12866 85.8 76.7
ViT-H 632.1 112 167.4 6984 85.2 75.9
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Table 14: Classification with Imagenet-21k training. We compare architec-
tures with comparable FLOPs and number of parameters. All models are trained on
ImageNet-21k without distillation nor self-supervised pre-training. We report Top-1 ac-
curacy on the validation set of ImageNet-1k and ImageNet-V2 with different measure
of complexity: throughput, FLOPs, number of parameters and peak memory usage.
The throughput and peak memory are measured on a single V100-32GB GPU with
batch size fixed to 256 and mixed precision. For Swin-L we decrease the batch size to
128 in order to avoid out of memory error and re-estimate the memory consumption.
↑R indicates that the model is fine-tuned at the resolution R.

Architecture nb params throughput FLOPs Peak Mem Top-1 V2
(×106) (im/s) (×109) (MB) Acc. Acc.

“Traditional” ConvNets

R-101x3↑384 [25] 388 204.6 84.4
R-152x4↑480 [25] 937 840.5 85.4

EfficientNetV2-S↑384 [44] 21.5 874 8.5 4515 84.9 74.5
EfficientNetV2-M↑480 [44] 54.1 312 25.0 7127 86.2 75.9
EfficientNetV2-L↑480 [44] 118.5 179 53.0 9540 86.8 76.9
EfficientNetV2-XL↑512 [44] 208.1 94.0 87.3 77.0

Patch-based ConvNets

ConvNeXt-B [32] 88.6 563 15.4 3029 85.8 75.6
ConvNeXt-B↑384 [32] 88.6 190 45.1 7851 86.8 76.6
ConvNeXt-L [32] 197.8 344 34.4 4865 86.6 76.6
ConvNeXt-L↑384 [32] 197.8 115 101 11938 87.5 77.7
ConvNeXt-XL [32] 350.2 241 60.9 6951 87.0 77.0
ConvNeXt-XL↑384 [32] 350.2 80 179.0 16260 87.8 77.7

Vision Transformers derivative

Swin-B [31] 87.8 532 15.4 4695 85.2 74.6
Swin-B↑384 [31] 87.9 160 47.0 19385 86.4 76.3
Swin-L [31] 196.5 337 34.5 7350 86.3 76.3
Swin-L↑384 [31] 196.7 100 103.9 33456 87.3 77.0

Vanilla Vision Transformers

ViT-B/16 [41] 86.6 831 17.6 2078 84.0
ViT-B/16↑384 [41] 86.7 190 55.5 8956 85.5
ViT-L/16 [41] 304.4 277 61.6 3789 84.0
ViT-L/16↑384 [41] 304.8 67 191.1 12866 85.5

Our Vanilla Vision Transformers

ViT-S 22.0 1891 4.6 987 83.1 73.8
ViT-B 86.6 831 17.6 2078 85.7 76.5
ViT-B↑384 86.9 190 55.5 8956 86.7 77.9
ViT-L 304.4 277 61.6 3789 87.0 78.6
ViT-L↑384 304.8 67 191.2 12866 87.7 79.1
ViT-H 632.1 112 167.4 6984 87.2 79.2
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Model
Params Flops ImageNet-1k
(×106) (×109) orig. val real v2

ViT-S [47] 22.0 4.6 79.8 80.4 86.1 69.7
ViT-B [12,47] 86.6 17.6 81.8 83.1 87.7 72.6

PiT-S [21] 23.5 2.9 80.9 80.4 86.1 69.2
PiT-B [21] 73.8 12.5 82.0 82.4 86.8 72.0

TNT-S [18] 23.8 5.2 81.5 81.4 87.2 70.6
TNT-B [18] 65.6 14.1 82.9 82.9 87.6 72.2

ConViT-S [7] 27.8 5.8 81.3 81.3 87.0 70.3
ConViT-B [7] 86.5 17.5 82.4 82.0 86.7 71.3

Swin-S [31] 49.6 8.7 83.0 82.1 86.9 70.7
Swin-B [31] 87.8 15.4 83.5 82.2 86.7 70.7

CaiT-B12 [50] 100.0 18.2 83.3 87.7 73.3

Table 15: We report the performance reached with our training recipe with 400 epochs
at resolution 224×224 for other transformers architectures. We have not performed an
extensive grid search to adapt the hyper-parameters to each architecture. Our results
are overall similar to the ones achieved in the papers where these architectures were
originally published (reported in column ’orig.’), except for Swin Transformers, for
which we observe a drop on ImageNet-val.

Crop. LS Mixup
Aug. #Imnet21k finetuning Imagenet-1k val top-1 Imagenet-1k v2 top-1
policy epochs resolution ViT-S ViT-B ViT-L ViT-S ViT-B ViT-L

RRC ✗ 0.8 RA 90 2242 81.6 84.6 86.0 70.7 74.7 76.4
SRC ✗ 0.8 RA 90 2242 82.1 84.8 86.3 71.8 75.0 76.7
SRC ✓ 0.8 RA 90 2242 82.4 85.0 86.4 72.4 75.7 77.4
SRC ✓ ✗ RA 90 2242 82.3 85.1 86.5 72.4 75.6 77.2
SRC ✓ ✗ 3A 90 2242 82.6 85.2 86.8 72.6 76.1 78.3
SRC ✓ ✗ 3A 240 2242 83.1 85.7 87.0 73.8 76.5 78.6

SRC ✓ ✗ 3A 240 3842 84.8 86.7 87.7 75.1 77.9 79.1

Table 16: Ablation path: augmentation and regularization with ImageNet-21k pre-
training (at resolution 224×224) and ImageNet-1k fine-tuning. We measure the impact
of changing Random Resize Crop (RRC) to Simple Random Crop (SRC), adding Lay-
erScale (LS), removing Mixup, replacing RandAugment (RA) by 3-Augment (3A),
and finally employing a longer number of epochs during the pre-training phase on
ImageNet-21k. All experiments are done with Seed 0 with fixed hparams except the
drop-path rate of stochastic depth, which depends on the model and is increased by
0.05 for the longer pre-training. We report 2 digits top-1 accuracy but note that the
standard standard deviation is around 0.1 on our ViT-B baseline. Note that all these
changes are neutral w.r.t. complexity except in the last row, where the fine-tuning at
resolution 384×384 significantly increases the complexity.


	DeiT III: Revenge of the ViT

