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Abstract 
 
One of the challenges in machine learning research is to ensure that presented and published 
results are sound and reliable. Reproducibility, that is obtaining similar results as presented in a 
paper or talk, using the same code and data (when available), is a necessary step to verify the 
reliability of research findings. Reproducibility is also an important step to promote open and 
accessible research, thereby allowing the scientific community to quickly integrate new findings 
and convert ideas to practice. Reproducibility also promotes the use of robust experimental 
workflows, which potentially reduce unintentional errors. In 2019, the Neural Information 
Processing Systems conference, the premier international conference for research in machine 
learning, introduced a reproducibility program, designed to improve the standards across the 
community for how we conduct, communicate, and evaluate machine learning research. The 
program contained three components: a code submission policy, a community-wide 
reproducibility challenge, and the inclusion of the Machine Learning Reproducibility checklist as 
part of the paper submission process. In this paper, we describe each of these components, how it 
was deployed, as well as what we were able to learn from this initiative.  
 

1. Introduction 
 
At the very foundation of scientific inquiry is the process of specifying a hypothesis, running an 
experiment, analyzing the results, and drawing conclusions. Time and again, over the last several 
centuries, scientists have used this process to build our collective understanding of the natural 
world and the laws that govern it. However, for the findings to be valid and reliable, it is 
important that the experimental process be repeatable, and yield consistent results and 
conclusions. This is of course well-known, and to a large extent, the very foundation of the 
scientific process. Yet a 2016 survey in the journal Nature revealed that more than 70% of 



researchers failed in their attempt to reproduce another researcher’s experiments, and over 50% 
failed to reproduce one of their own experiments (Baker, 2016). 
 
In the area of computer science, while many of the findings from early years were derived from 
mathematics and theoretical analysis, in recent years, new knowledge is increasingly derived 
from practical experiments. Compared to other fields like biology, physics or sociology where 
experiments are made in the natural or social world, the reliability and reproducibility of 
experiments in computer science, where the experimental apparatus for the most part consists of 
a computer designed and built by humans, should be much easier to achieve. Yet in a 
surprisingly large number of instances, researchers have had difficulty reproducing the work of 
others (Henderson et al., 2019). 
 
Focusing more narrowly on machine learning research, where most often the experiment consists 
of training a model to learn to make predictions from observed data, the reasons for this gap are 
numerous and include: 

- Lack of access to the same training data / differences in data distribution; 
- Misspecification or under-specification of the model or training procedure; 
- Lack of availability of the code necessary to run the experiments, or errors in the code; 
- Under-specification of the metrics used to report results; 
- Improper use of statistics to analyze results, such as claiming significance without 

proper statistical testing or using the wrong statistic test; 
- Over-claiming of the results, by drawing conclusions that go beyond the evidence 

presented (e.g. insufficient number of experiments, mismatch between hypothesis & 
claim). 

 
We spend significant time and energy (both of machines and humans), trying to overcome this 
gap. This is made worse by the bias in the field towards publishing positive results (rather than 
negative ones). Indeed, the evidence threshold for publishing a new positive finding is much 
lower than that for invalidating a previous finding. In the latter case, it may require several teams 
showing beyond the shadow of a doubt that a result is false for the research community to revise 
its opinion. Perhaps the most infamous instance of this is that of the false causal link between 
vaccines and autism. In short, we would argue that it is always more efficient to properly conduct 
the experiment and analysis in the first place. 
 
In 2019, the Neural Information Processing Systems conference, the premier international 
conference for research in machine learning, introduced a reproducibility program, designed to 
improve the standards across the community for how we conduct, communicate, and evaluate 
machine learning research. The program contained three components: a code submission policy, 
a community-wide reproducibility challenge, and the inclusion of the Machine Learning 
Reproducibility checklist as part of the paper submission process. 
 
In this paper, we describe each of these components, how it was deployed, as well as what we 
were able to learn from this exercise. The goal is to better understand how such an approach is 
implemented, how it is perceived by the community (including authors and reviewers), and how 
it impacts the quality of the scientific work and the reliability of the findings presented in the 
conference’s technical program. We hope that this work will inform and inspire renewed 



commitment towards better scientific methodology, not only in the machine learning research 
community, but in several other research fields. 
 

2. Background 
 

There are challenges regarding reproducibility that appear to be unique (or at least more 
pronounced) in the field of ML compared to other disciplines. The first is an insufficient 
exploration of the variables that might affect the conclusions of a study. In machine learning, a 
common goal for a model is to beat the top benchmarks scores. However, it is hard to assert if 
the aspect of a model claimed to have improved its performance is indeed the factor leading to 
the higher score. This limitation has been highlighted in a few studies reporting that new 
proposed methods are often not better than previous implementations when a more thorough 
search of hyper-parameters is performed (Lucic et al., 2018; Melis et al., 2017) , or even when 
using different random parameter initializations (Bouthillier et al., 2019; Henderson et al., 2019). 

The second challenge refers to the proper documentation and reporting of the information 
necessary to reproduce the reported results (Gundersen & Kjensmo, 2017). A recent report 
indicated that 63.5% of the results in 255 manuscripts were successfully replicated. Strikingly, 
this study found that when the original authors provided assistance to the reproducers, 85% of 
results were successfully reproduced, compared to 4% when the authors didn’t respond. 
Although a selection bias could be at play (authors that knew their results would reproduce might 
have been more likely to provide assistance for the reproduction), this contrasts with large-scale 
replication studies in other disciplines who failed to observe similar improvement when the 
original authors of the study were involved (Klein et al., 2019). It therefore remains to be 
established if the field is having a reproduction problem similar to the other fields, or if it would 
be better described as a reporting problem. 

Thirdly, as opposed to most scientific disciplines where uncertainty of the observed effects are 
routinely quantified, it appears like statistical analysis is seldom conducted in ML research 
(Forde & Paganini, 2019; Henderson et al., 2019). 
 
 

2.1 Defining Reproducibility 
 
Before going any further, it is worth defining a few terms that have been used (sometimes 
interchangeably) to describe reproducibility & related concepts. We adopt the terminology from 
Figure 1, where Reproducible work consists of re-doing an experiment using the same data and 
same analytical tools, whereas Replicable work considers different data (presumably sampled 
from similar distribution or method), and Robust work assumes the same data but different 
analysis (such as reimplementation of the code, perhaps different computer architecture), and 
Generalisable work leads to the same conclusions despite considering different data and different 
analytical tools. For the purposes of our work, we focus primarily on the notion of 
Reproducibility as defined here, and assume that any modification in analytical tools (e.g. re-
running experiments on a different computer) was small enough as to be negligible. A recent 
report by the National Academies of Sciences Engineering and Medicine provides more in-depth 



discussion of these concepts, as well as several recommendations for improving reproducibility 
broadly across scientific fields (Reproducibility and Replicability in Science, 2019). 
 

 
Figure 1. Reproduced (without permission) from: https://github.com/WhitakerLab/ReproducibleResearch 
 

2.2 The Open Science movement 
 
“Open Science is transparent and accessible knowledge that is shared and developed through 
collaborative networks” (Vicente-Saez & Martinez-Fuentes, 2018). In other words, Open science 
is a movement to conduct science in a more transparent way. This includes making code, data 
and scientific communications publicly available, increasing the transparency of the research 
process and improving the reporting quality in scientific manuscripts. The implementation of 
Open science practices has been identified as a core factor that could improve the 
reproducibility of science (Munafò et al., 2017). As such, the NeurIPS reproducibility program 
was designed to incorporate elements designed to encourage researchers to share the artefacts 
of their research (code, data), in addition to their manuscripts. 
 

2.3 Code submission policies 
 
It has become increasingly common in recent years to require the sharing of data and code, along 
with a paper, when computer experiments were used in the analysis. It is now standard 
expectation in the Nature research journals for authors to provide access to code and data to 
readers (Nature research). Similarly, the policy at the journal Science specifies that authors are 
expected to satisfy all reasonable requests for data, code or materials (Science | AAAS, 2018). 
Within machine learning and AI conferences, the ability to include supplementary material has 
now been standard for several years, and many authors have used this to provide the data and/or 
code used to produce the paper. More recently, ICML 2019, the second largest international 
conference in machine learning has also rolled-out an explicit code submission policy (ICML, 
2019).  
 

2.4 Reproducibility challenges 
 
The 2018 ICLR reproducibility challenge paved the way for the NeurIPS 2019 edition. The goal 
of this first iteration was to investigate reproducibility of empirical results submitted to the 2018 
International Conference on Learning Representations (ICLR, 2018). The organizers chose ICLR 
for this challenge because the timing was right for course-based participants: most participants 
were drawn from graduate machine learning courses, where the challenge served as the final 
course project. The choice of ICLR was motivated by the fact that papers submitted to the 



conference were automatically made available publicly on OpenReview, including during the 
review period. This means anyone in the world could access the paper prior to selection, and 
could interact with the authors via the message board on OpenReview. This first challenge was 
followed a year later by the 2019 ICLR reproducibility challenge.  
 
Several less formal activities, including hackathons, course projects, online blogs, open-source 
code packages, have participated in the effort to carry out re-implementation and replication of 
previous work and should be considered in the same spirit as the effort described here.  
 

2.5 Checklists 
 
The Checklist Manifesto presents a highly compelling case for the use of checklists in safety-
critical systems (Gawande, 2010). It documents how pre-flight checklists were introduced at 
Boeing Corporation as early as 1935 following the unfortunate crash of an airplane prototype. 
Checklists are similarly used in surgery rooms across the world to prevent oversights. Similarly, 
the WHO Surgical Safety Checklist, which is employed in surgery rooms across the world, has 
been shown to significantly reduce morbidity and mortality (Clay-Williams & Colligan, 2015). 
 
In the case of scientific manuscripts, reporting checklists are meant to provide the minimal 
information that must be included in a manuscript, and are not necessarily exhaustive.  
The use of checklists in scientific research has been explored in a few instances. 
Reporting guidelines in the form of checklists have been introduced for a wide range of study 
design in health research (The EQUATOR Network), and the Transparency and Openness 
Promotion (TOP) guidelines have been adopted by multiple journals across disciplines (Nosek et 
al., 2015). There are now more than 400 checklists registered in the EQUATOR Network. 
CONSORT, one of the most popular guidelines used for randomized controlled trials was found 
to be effective and to improve the completeness of reporting for 22 checklist items (Turner et al., 
2012). The ML checklist described below was significantly influenced by Nature’s Reporting 
Checklist for Life Sciences Articles (Nature Checklist). Other guidelines are under development 
outside of the ML community, namely for the application of AI tools in clinical trials (Liu et al., 
2019) and health-care (Collins & Moons, 2019). 
 

2.6 Other considerations 
 
Beyond reproducibility, there are several other factors that affect how scientific research is 
conducted, communicated and evaluated. One of the best practices used in many venues, 
including NeurIPS, is that of double-blind reviewing. It is worth remembering that in 2014, the 
then program chairs Neil Lawrence and Corinna Cortes ran an interesting experiment, by 
assigning 10% of submitted papers to be reviewed independently by two groups of reviewers 
(each lead by a different area chair). The results were surprising: overall the reviewers disagreed 
on 25.9% of papers, but when tasked with reaching a 22.5% acceptance rate, they disagreed on 
57% of the list of accepted papers. We raise this point for two reasons. First, to emphasize that 
the NeurIPS community has for many years already demonstrated an openness towards trying 
new approaches, as well as looking introspectively on the effectiveness of its processes. Second, 
to emphasize that there are several steps that come into play when a paper is written, and selected 
for publication at a high-profile international venue, and that a reproducibility program is only 



one aspect to consider when designing community standards to improve the quality of scientific 
practices. 
 

3. The NeurIPS 2019 code submission policy 
 
The NeurIPS 2019 code submission policy, as defined for all authors (see Appendix, Figure 
A.1), was drafted by the program chairs and officially approved by the NeurIPS board in winter 
2019 (before the May 2019 paper submission deadline.) 
 
The most frequent objections we heard to having a code submission policy (at all) include: 

• Dataset confidentiality: There are cases where the dataset cannot be released for 
legitimate privacy reasons. This arises often when looking at applications of ML, for 
example in healthcare or finance. One strategy to mitigate this limitation is to provide 
complementary empirical results on an open-source benchmark dataset, in addition to the 
results on the confidential data. 

• Proprietary software: The software used to derive the result contains intellectual 
property, or is built on top of proprietary libraries. This is of particular concern to some 
researchers working in industry. Nonetheless, as shown in Figure 2a, we see that many 
authors from industry were indeed able to submit code, and furthermore despite the 
policy, the acceptance rate for papers from authors in industry remained high (higher than 
authors from academia (Figure 2b)). By the camera-ready deadline, most submissions 
from the industry reported having submitted code (Figure 2a,b).  

• Computation infrastructure: Even if data and code are provided, the experiments may 
require so much computation (time & number of machines) that it is impractical for any 
reviewer, or in fact most researchers, to attempt reproducing the work. This is the case for 
work on training very large neural models, for example the AlphaGo game playing agent 
(Silver et al., 2016) or the BERT language model (Devlin et al., 2019). Nonetheless it is 
worth noting that both these systems have been reproduced within months (if not weeks) 
of their release. 

• Replication of mistakes: Having a copy of the code used to produce the experimental 
results is not a guarantee that this code is correct, and there is significant value in 
reimplementing an algorithm directly from its description in a paper. This speaks more to 
the notion of Robustness defined above. It is indeed common that there are mistakes in 
code (as there may be in proofs for more theoretical papers). Nonetheless, the availability 
of the code (or proof) can be tremendously helpful to verify or re-implement the method. 
It is indeed much easier to verify a result (with the initial code or proof), then it is to 
produce from nothing (this is perhaps most poignantly illustrated by the longevity of the 
lack of proof for Fermat’s last theorem (“Fermat’s Last Theorem,” 2020).) 
 

 



 

 
Figure 2. (a) Link to code provided at initial submission and camera-ready, as a function of 
affiliation of the first and last authors. (b) Acceptance rate of submissions as a function of 
affiliation of the first and last authors. The red dashed line shows the acceptance rate for all 
submissions. (c) Diagram representing the transition of the code availability from initial 
submission to camera-ready only for submissions with an author from the industry (first or last). 
All results presented here for code availability are based on the author’s self-response in the 
checklist. (d) Percentage of submissions reporting that they provided code on the checklist 
subsequently confirmed by the reviewers.  
 
It is worth noting that the NeurIPS 2019 code submission policy leaves significant time & 
flexibility, in particular it says that it: “expects code only for accepted papers, and only by the 
camera-ready deadline”. So code submission is not mandatory, and the code is not expected to 
be used during the review process to decide on the soundness of the work. Reviewers were asked 
as a part of their assessment to report if code was provided along the manuscript at the initial 
submission stage. About 40% of authors reported that they had provided code at this stage which 
was confirmed by the reviewers for 71.5% of those submissions (Figure 2d). Note that authors 
are still able to provide code (or a link to code) as part of their initial submission. In Table 1, we 
provide a summary of code submission frequency for ICML 2019, as well as NeurIPS 2018 and 
2019. We observe a growing trend towards more papers adding a link to code, even with only 
soft encouragement and no coercive measures. 



 
 

Conference # papers 
submitted 

% papers 
accepted 

% papers w/code 
at submission 

% papers w/ code 
at camera-ready 

Code submission policy 

NeurIPS 2018 4856 20.8  <50% (at final 
camera-ready) 

“Authors may submit up to 100MB of 
supplementary material, such as 
proofs, derivations, data, or source 
code.” 

ICML 2019 3424 22.6 67%  
(at submission) 

 “To foster reproducibility, we highly 
encourage authors to submit code. 
Reproducibility of results and easy 
availability of code will be taken into 
account in the decision-making 
process.” 

NeurIPS 2019 6743 21.1 40% 74.4% “We expect (but not require) 
accompanying code to be submitted 
with accepted papers that contribute 
and present experiments with a new 
algorithm.” See Appendix, Fig. A.1.  

 
Table 1. Code submission frequency for recent ML conferences. Source for number of papers 
accepted and acceptance rates: https://github.com/lixin4ever/Conference-Acceptance-Rate  
 
While the value of having code extends long beyond the review period, it is useful, in those cases 
where code is available during the review process, to know how it is used and perceived by the 
reviewers. When surveying reviewers at the end of the review period, we found: 
 
Q. Was code provided (e.g. in the supplementary material)?   Yes: 5298 

If provided, did you look at the code?      Yes: 2255 
If provided, was the code useful in guiding your review?   Yes: 1315 
If not provided, did you wish code had been available?    Yes: 3881 

 
We were positively surprised by the number of reviewers willing to engage with this type of 
artefact during the review process. Furthermore, we found that the availability of code at 
submission (as indicated on the checklist) was a significant factor on the reviewer score (p<1e-
08). 
 

4. The NeurIPS 2019 reproducibility challenge 
 
The main goal of this challenge is to provide independent verification of the empirical claims in 
accepted NeurIPS papers, and to leave a public trace of the findings from this secondary 
analysis. The reproducibility challenge officially started on Oct.31 2019, right after the final 
paper submission deadline, so that participants could have the benefit of any code submission by 
authors. By this time, the authors’ identity was also known, allowing collaborative interaction 
between participants and authors. We used OpenReview (OpenReview.net) to enable 
communication between authors and challenge participants. 
 
As shown in Table 2, a total of 173 papers were claimed for reproduction. This is a 92% increase 
since the last reproducibility challenge at ICLR 2019. We had participants from 73 different 
institutions distributed around the world (see Appendix, Figure A.2), including 73 universities 



and 10 industrial labs. Institutions with the most participants came from 3 continents and include 
McGill University in Canada, KTH in Sweden, Brown University in the US and IIT Roorkee in 
India. In those cases (and several others), high participation rate occurred when a professor at the 
university used this challenge as a final course project.  
 
 

Conference # papers 
submitted 

Acceptance 
rate 

# papers claimed 
for reproducibility 

# participating 
institutions 

# reproducibility 
reports reviewed 

ICLR 2018 981 32.0 123 31 
 

n/a 

ICLR 2019 1591 31.4  90 35 26 
NeurIPS 2019 6743 21.1 173 73 84 

 
Table 2. Participation in the Reproducibility Challenge. Source for number of papers accepted 
and acceptance rates: https://github.com/lixin4ever/Conference-Acceptance-Rate 
 
All reports submitted to the challenge are available on OpenReview (OpenReview.net) for the 
community; in many cases with a link to the reimplementation code.  The goal of making these 
available is to two-fold:  first to give examples of reproducibility reports so that the practice 
becomes more widespread in the community, and second so that other researchers can benefit 
from the knowledge, and avoid the pitfalls that invariably come with reproducing another team’s 
work.   While many readers may be looking for a simple answer to the question Is this paper 
reproducible? There is rarely such a concise outcome to a reproducibility study.  Most reports 
produced during the challenge offer a much more detailed & nuanced account of their efforts, 
and the level of fidelity to which they could reproduce the methods, results & claims of each 
paper.   Similarly, while some readers may be looking for a “reproducibility score”, we have not 
found that the findings of most reproducibility studies lend themselves to such a coarse 
summary. 
 
Once submitted, all reproducibility reports underwent a review cycle (by reviewers of the 
NeurIPS conference), to select a small number of high-quality reports, which will be published in 
an upcoming edition of the journal ReScience.  This provides a lasting archival record for this 
new type of research artefact. 
 

5. The NeurIPS 2019 ML reproducibility checklist 
 
The third component of the reproducibility program involved use of the Machine Learning 
reproducibility checklist (see Appendix, Figure A.3). This checklist was first proposed in late 
2018, at the NeurIPS conference, in response to findings of recurrent gaps in experimental 
methodology found in recent machine learning papers. An earlier version (v.1.1) was first 
deployed as a trial with submission of the final camera-ready version for NeurIPS 2018 papers 
(due in January 2019); this initial test allowed collection of feedback from authors and some 
minor modifications to the content of the checklist. The edited version 1.2 was then deployed 
during the NeurIPS 2019 review process, and authors were obliged to fill it both at the initial 
paper submission phase (May 2019), and at the final camera-ready phase (October 2019). This 
allowed us to analyze any change in answers, which presumably resulted from the review 
feedback (or authors’ own improvements of the work). The checklist was implemented on the 



CMT platform; each question included a multiple choice “Yes, No, not applicable”, and an 
(optional) open comment field. 
 

 
Figure 3. Author responses to all checklist questions for NeurIPS 2019 submitted papers.  
 
Figure 3 shows the initial answers provided for each submitted paper. It is reassuring to see that 
97% of submissions are said to contain Q#. A clear description of the mathematical setting, 
algorithm, and/or model. Since we expect all papers to contain this, the 3% no/na answers might 
reflect margin of error in how authors interpreted the questions. Next, we notice that 89% of 
submissions answered to the affirmative when asked Q#. For all figures and tables that present 
empirical results, indicate if you include: A description of how experiments were run. This is 
reasonably consistent with the fact that 9% of NeurIPS 2019 submissions indicated “Theory” as 
their primary subject area, and thus may not contain empirical results. 
 
One set of responses that raises interesting questions is the following trio: 
Q#. A clear definition of the specific measure or statistics used to report results. 
Q#. Clearly defined error bars. 
Q#. A description of results with central tendency (e.g. mean) & variation (e.g. stddev). 
In particular, it seems surprising to have 87% of papers that see value in clearly defining the 
metrics and statistics used, yet 36% of papers judge that error bars are not applicable to their 
results.  
 
 



 
Figure 4. Acceptance rate per question. The numbers within each bar show the number of 
submissions for each answer. See Fig.3 for text corresponding to each Question # (x-axis). The 
red dashed line shows the acceptance rate for all submissions.  
 
 
As shown in Figure 4, many checklist answers appear to be associated with a higher acceptance 
rate when the answer is “yes”. However, it is too early to rule out potential covariates (e.g. 
paper’s topic, reviewer expectations, etc.) At this stage, it is encouraging that answering “no” to 
any of the questions is not associated with a higher acceptance rate. There seems to be a higher 
acceptance rate associated with “NA” responses on a subset of questions related to “Figures and 
tables”. Although it is still unclear at this stage why this effect is observed, it disappears when 
we only include manuscripts for which the reviewers indicated that the checklist was useful for 
the review.  
 
Finally, it is worth considering the reviewers’ point of view on the usefulness of the ML 
checklist to assess the soundness of the papers. When asked “Were the Reproducibility Checklist 
answers useful for evaluating the submission?”, 34% responded Yes. 
 
We also note, as shown in Figure 5, that reviewers who found the checklist useful gave higher 
scores. And that those who found the checklist useful or not useful were more confident in their 
assessment than those who had not read the checklist. Finally, papers where the checklist was 
assessed as useful were more likely to be accepted. 
 
 
 
 
 
 
 



 
 
 
Figure 5. Effect of the perceived usefulness of the ML reproducibility checklist on the review 
outcomes. (a) Effect on the paper score (scale 1-10). (b) Effect on the reviewer confidence score 
(scale of 1 to 5, where 1 is lowest). (c) Effect on the final accept/reject decision. 
 

6. Discussion 
We presented a summary of the activities & findings from the NeurIPS 2019 reproducibility 
program. Perhaps the best way to think of this effort is as a case study showing how three 
different mechanisms (code submission, reproducibility challenge, reproducibility checklist) can 
be incorporated into a conference program in an attempt to improve the quality of scientific 
contributions. At this stage, we do not have concluding evidence that these processes indeed 
have an impact on the quality of the work or of the papers that are submitted and published. 
 
However we note several encouraging indicators: 

- The number of submissions to NeurIPS increased by nearly 40% this year, therefore we 
can assume the changes introduced did not result in a significant drop of interest by 
authors to submit their work to NeurIPS. 

- The number of authors willingly submitting code is quickly increasing, from less than 
50% a year ago, to nearly 75%. It seems a code submission policy based on voluntary 
participation is sufficient at this time. We are not necessarily aiming for 100% 
compliance, as there are some cases where this may not be desirable. 

- The number of reviewers indicating that they consulted the code, or wished to consult it 
is in the 1000’s, indicating that this is useful in the review process. 

- The number of participants in the reproducibility challenge continues to increase, as 
does the number of reproducibility reports, and reviewers of reproducibility reports. 
This suggests that an increasing segment of the community is willing to participate 
voluntarily in secondary analysis of research results. 

- One-third of reviewers found the checklist answers useful, furthermore reviewers who 
found the checklist useful gave higher scores to the paper, which suggests the 
checklist’s use is useful for both reviewers and authors. 

 
The work leaves several questions open, which would require further investigation, and a careful 
study design to elucidate: 

- What is the long-term value (e.g. reproducibility, robustness, generalization, impact of 
follow-up work) of the code submitted? 



- What is the effect of different incentive mechanisms (e.g. cash payment, conference 
registration, a point/badge system) on the participation rate & quality of work in the 
reproducibility challenge? 

- What is the accuracy of the ML checklist answers (for each question) when filled by 
authors? 

- What is the measurable effect of the checklist on the quality of the final paper, e.g. in 
terms of soundness of results, clarity of writing? 

- What is the measurable effect of the checklist on the review process, in terms of 
reliability (e.g. inter-rater agreement) and efficiency (e.g. need for response/rebuttal, 
discussion time)? 

 
A related direction to explore is the development of tools and platforms that enhance 
reproducibility. Throughout this work we have focused on processes & guidelines, but stayed 
away from prescribing any infrastructure or software tooling to support reproducibility. Software 
containers, such as Docker, can encapsulate operating systems components, code and data into a 
single package. Standardization of such tools would help sharing of information and improve 
ease of reproducibility. 
 
In conclusion, one aspect worth emphasizing is the fact that achieving reproducible results across 
a research community, whether NeurIPS or another, requires a significant cultural and 
organizational changes, not just a code submission policy or a checklist. The initiative described 
here is just one step in helping the community adopt better practices, in terms of conducting, 
communicating, and evaluating scientific research. The NeurIPS community is far from alone in 
looking at this problem. Several workshops have been held in recent years to discuss the issue as 
it pertains to machine learning and computer science (ICLR, 2019; ICML, 2017; ICML, 2018; 
SIGCOMM, 2017). Specific calls for reproducibility papers have been issued (ECIR, 2020). An 
open-access peer-reviewed journal is dedicated to such papers (ReScience C).  
And in the process, many labs are changing their practices to improve reproducibility of their 
own results.  
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Figure A.1. The NeurIPS 2019 code submission policy. Reproduced (with permission) from: 
[ADD URL] 
 

 
Figure A.2. NeurIPS 2019 Reproducibility Challenge Participants by geographical location. 
 



 
 
Figure A.3. The Machine Learning Reproducibility Checklist, version 1.2, used during the 
NeurIPS 2019 review process. 
 


