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Abstract

Transformer models have shown promising results in neural
speech synthesis due to their superior ability to model long-term
dependencies compared to recurrent networks. The computa-
tion complexity of transformers increases quadratically with se-
quence length, making it impractical for many real-time appli-
cations. To address the complexity issue in speech synthesis do-
main, this paper proposes an efficient transformer-based acous-
tic model that is constant-speed regardless of input sequence
length, making it ideal for streaming speech synthesis applica-
tions. The proposed model uses a transformer network that pre-
dicts the prosody features at phone rate and then an Emformer
network to predict the frame-rate spectral features in a stream-
ing manner. Both the transformer and Emformer in the pro-
posed architecture use a self-attention mechanism that involves
explicit long-term information, thus providing improved speech
naturalness for long utterances. In our experiments, we use a
WaveRNN neural vocoder that takes in the predicted spectral
features and generates the final audio. The overall architecture
achieves human-like speech quality both on short and long ut-
terances while maintaining a low latency and low real-time fac-
tor. Our mean opinion score (MOS) evaluation shows that for
short utterances, the proposed model achieves a MOS of 4.213
compared to ground-truth with MOS of 4.307; and for long ut-
terances, it also produces high-quality speech with a MOS of
4.201 compared to ground-truth with MOS of 4.360.

Index Terms: speech synthesis, transformer, emformer,
streaming

1. Introduction

The progress in neural text-to-speech (TTS) technologies has
led to a substantial breakthrough in audio quality of state-of-
the-art TTS systems. The capability of synthesizing human-like
voice finds excellent uses in a wide range of today’s and future
applications, from enhanced gaming experience of TTS-capable
virtual reality platforms to lifestyle improvement with TTS-
enabled voice assistant gadgets. On the other hand, such wide
TTS applications also bring deployment challenges in many
complex but essential scenarios. First, speech synthesis appli-
cations tend to be real-time, such as when used for interacting
with end-users, and therefore latency can be critical. Second, it
is the most desirable to perform all the TTS computations on-
device in today’s mobile world, which puts a tight constraint
on computing complexity. Third, compatibility with streaming
services is also essential so that the TTS does not require a large
buffering overhead.

Practical TTS systems usually consist of two stages: an
acoustic model that predicts the prosody and spectral fea-
tures followed by a neural vocoder that generates the audio
waveform. Recent works on acoustic modeling [[1H4] have
achieved significant improvements in naturalness, accompanied
with neural vocoder advancements [5H10] that have enabled

real-time TTS with human-like audio quality in today’s appli-
cations. However, practical deployment scenarios usually bring
further challenges, especially in resource-limited and real-time
applications. In this paper, we focus on high quality streaming
acoustic modeling with reduced complexity. Existing acous-
tic models such as Tacotron2 [1}2] use the Bi-directional Long
Short-term Memory (BLSTM) recurrent networks. These ap-
proaches usually suffer from inefficiency in inference and can-
not effectively model long-term dependencies, resulting in a
poor quality on long speech. On the other hand, attention based
models such as FastSpeech [3]] and [4] deliver state-of-the-art
quality in modeling speech prosody and spectral features, but
they are unsuitable for streaming TTS applications because at-
tention computation is parallel over the full utterance context.
Our previous work [[11]] proposes a streamable model architec-
ture that computes a global attention context using low-rate fea-
tures such as sentence-level, phrase-level, and word-level fea-
tures and then sequentially predicts the spectral frames with
an LSTM network. While this architecture delivers efficient
computation and high audio quality, the prosody naturalness de-
grades for long utterances (e.g., > 20s) due to LSTM’s inability
to model strong long-term dependency.

Transformers-based models [[12] have shown promising re-
sults in a wide range of sequential tasks, including natural
language processing [[13}/14] and speech [4,/15}|16]. Conven-
tional recurrent neural networks, e.g., long short-term mem-
ory (LSTM) [17], use a hidden state to pass temporal infor-
mation across the input sequence. In comparison, transformer
networks introduce a multi-head self-attention mechanism that
connects arbitrary pairs of positions in the input sequences di-
rectly, enabling long-term dependency and global information
to be modeled explicitly. However, two major issues make
the generic transformer model impractical for streaming tasks.
First, it needs to access the complete input sequence before
it can start generating output; Second, the computational cost
and memory usage grow quadratically as the input sequence
length increases. If the input is sufficiently long, transform-
ers will result in high latency and high real-time factor (RTF).
In order to make transformers streamable, several strategies
have been investigated. The time-restricted self-attention ap-
proach [18-20] restricts the computation of attention only on
the past frames and a fixed number of future frames. The
block processing strategy used in [21] chunks the input utter-
ances into segments, and self-attention performs on each seg-
ment. In this way, the time and space cost will not grow
quadratically. Based on block processing, a recurrent con-
nection can be further introduced to explicitly extracts history
embeddings from the previous segment, including transformer-
XL [22]], augmented-memory transformer [23}[24] and efficient
memory transformer [25] (Emformer).

In this paper, we propose a transformer-based acoustic
model for streaming speech synthesis. This work is an exten-
sion to our previous work on the multi-rate attention model [[11]]
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Figure 1: Transformer-based acoustic model: The prosody
model adopts a transformer network to predict the phone-rate
duration and FO features, which are then rolled-out using rep-
etition to the frame rate. The spectrum model uses the pre-
dicted prosody features, along with multi-rate linguistic fea-
tures to predict the frame-rate spectral features. In the spec-
trum model, a streamable Emformer network is used as encoder,
and decoding is performed on the encoder output and a global
multi-rate attention context computed using low-rate linguistic
features [[11]].

for streaming speech synthesis and the Emformer model [16,25]]
originally designed for streaming speech recognition. The
acoustic model is composed of a prosody model and a spec-
trum model. The prosody model is modeled as a transformer
network [12]; the spectrum model is modeled as a streamable
Emformer network [25]. These transformer-based architectures
are leveraged to improve the TTS quality, particularly on long
speech. Our MOS and RTF evaluations show that the pro-
posed method synthesizes high-quality speech while remaining
a constant inference speed independent of input lengths. It out-
performs a baseline acoustic model that uses a BLSTM with
content-based global attention [26] as prosody model and an
LSTM with multi-rate attention [11] as spectrum model. On
long utterances, it can preserve the high speech quality close to
the ground truth.

The rest of this paper is organized as follows: we present
the model architecture in Section 2. Section 3 discusses the
experimental results, followed by a summary in Section 4.

2. Transformer-based Acoustic Model

The diagram of the transformer-based acoustic model is illus-
trated in Figure[T] It consists of a prosody model and a spec-
trum model. The prosody model unrolls the phone-rate linguis-
tic features to predict the phone-rate prosody features: duration
and fo. Then, the spectrum model takes in the linguistic features
and the prosody features from the prosody model to predict the
frame-rate spectral features in a streaming manner. The spec-
trum model is a multi-rate attention model [[11]]. The encoder-
decoder module processes frame-rate input features to generate
the spectral features. The multi-rate attention bootstraps the de-
coder with a frame-rate context vector, using the decoder’s hid-
den state as query and the multi-rate linguistic features as key
and value. In this work, to leverage the transformer architec-
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Figure 2: Transformer architecture in prosody model: It con-
sists of a multi-head attention block and a feed-forward block.
Layer normalization and residual connection are applied to each
block.

Multi-head Attention

ture, we investigate the transformer network [[12]] as the prosody
model and the Emformer network [25] as the encoder in the
spectrum model. The self-attention mechanism in transformer
and Emformer involves more long-term information, thus has
the potential to improve the TTS quality, particularly on long
utterances.

2.1. Transformer-based prosody model

The prosody model is modeled as a transformer network. Fig-
ure 2] shows the transformer topology. A transformer layer con-
sists of a multi-head attention [12]] block and a feed-forward
block composed of two linear transformations and a nonlinear
activation function. To allow stacking multiple transformer lay-
ers, layer normalization [27|] and residual connection are added
to each block.

The multi-head attention block contains multiple self-
attention components that individually operate the input se-
quence. Given the input sequence X = (@1, ...,x1) Where
x; € RP and T stands for the input sequence length, one self-
attention first projects the input respectively to query Q, key K
and value V,

Q=W.,X, K=Wi.X, V=W,X )

where Wy, Wy, W, are parameters to optimize. Next, dot
product is applied to get an attention distribution over @ and
K for position ¢ in Q, a distribution o is given as

exp(5Q1 Kr)

At = . (2)
ZT’ exp(%QIKﬂ)
The output of self-attention is computed via
z = attn(Q:, K, V) = > ai, V. A3)

The self-attention outputs are finally concatenated and linearly
transformed to form the output of the multi-head attention
block.

The transformer model requires O(T?) time to compute
the self-attention, which grows quadratically with input length.
However, in this paper’s TTS framework, the prosody model



processes the data in phone rate. The length of phone-rate data
is sufficiently small. The computation can be negligible even
on long sequences, compared with the spectrum model that pro-
cesses data in frame rate. Therefore, we use this non-streaming
transformer architecture for the prosody model. As operating on
the whole input sequence, it can model better prosody for long
utterances. The streaming challenge of the proposed acoustic
model mainly depends on the frame-rate spectrum model. It
will be discussed in the following section.

2.2. Emformer-based spectrum model

The spectrum model processes the frame-rate feature sequence.
For streaming reasons, it is required to incrementally process
the data. In this work, the Emformer [25]] architecture is used
as the encoder model of the spectrum model. It is a streamable
transformer variant that processes sequence data in a block pro-
cessing [21]] fashion to achieve controllable latency. The Em-
former model resolves the transformer’s quadratic computation
complexity via an augmented memory mechanism [23]]. The
long-range history is distilled into an augmented memory bank
to alleviate the heavy computation on attention.

Figure [3| shows the Emformer architecture. On the n-th
Emformer layer, the input sequence X is chunked into mul-
tiple non-overlapping fixed-size segments. For the -th segment
C7', to alleviate the boundary effects, it is processed together
with left context L;" and right context R;'. The right context
R is directly used. For efficiency, the left context L is in-
directly introduced via key K7’ ; and value V', which has al-
ready been calculated in the previous segments. The memory
bank M;" is internally maintained in the Emformer. It stores
distilled embeddings for the processed segments. Usually, the
memory bank keeps a fixed length. Only a fixed number of the
most recent slots are stored in the memory. In this way, long-
range information can be efficiently captured according to the
memory instead of a large number of raw input frames. The
attention part of Emformer is computed as follows,

Q! =[C}, R}, “
K[ = [WiM]', Ki,, WCT, WiR[], (5
Vin = [WvMin7 i,nLa WVC'{L7 WVR;LL (6)

where the memory bank M" is recursively accumulated in pro-
cessing successive segments and layer:

&7 = mean(CP ), ™
m} = attn(s? 5 KI5 VDY) ®
M = M, m"4]. ©9)

Emformer processes the data with a O(T') time complexity, the-
oretically giving a constant RTF. When running on frame rate,
it is able to operate efficiently regardless of the sequence length.
In addition, the segment size of Emformer determines how
many frames to process in each update, which can be viewed as
an algorithmic latency. The latency can directly be controlled
via the segment size.

3. Experiments
3.1. Dataset and feature extraction

The dataset used in our experiments was recorded in a voice
production studio by contracted professional voice talents. The

'Emformer uses successive layers to compute memory to improve
the training efficiency. More details are discussed in [25].
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Figure 3: Emformer architecture in spectrum model: The atten-
tion block is described in detail. Each input segment (yellow)
is processed together with right context (blue), and left context
(green). Left context is introduced via the key and value carried
over from previous segments. Memory (red) is recursively ac-
cumulated between successive layers and segments, described
in the purple path. Layer normalization and residual connection
are omitted.

training set consists of about 110K utterances from six speakers,
approximately 90 hours of data with a 24kHz sampling rate. For
evaluation, we excluded testing utterances from different speak-
ers in the training data. In the MOS experiments, two evaluation
sets were prepared according to the audio length. The “normal”
set includes 112 utterances with audio lengths ranging from 1 to
10 seconds. The “long” set includes 58 utterances with lengths
ranging from 15 to 40 seconds. The long set was used to evalu-
ate the modeling ability in capturing long-form information. In
the RTF experiments, a separate set was prepared, containing
utterances with lengths ranging from 1 to 60 seconds.

The feature used in the experiment includes the linguistic
feature, phone-level duration feature and fy feature. The phone-
level duration feature was extracted with an unsupervised align-
ment algorithm using the softDTW loss [28]]. The f, feature was
extracted for each frame using spectrum analysis. More details
can be found in [[11]].

3.2. Experiment setup

The baseline acoustic model is of a similar topology as Figure[T]
Its prosody model is a one-layer BLSTM of 256 hidden units
with content-based global attention [26]. Its spectrum model is
a multi-rate attention model using a one-layer LSTM encoder
of 512 hidden units and a one-layer LSTM decoder of 512 hid-
den units. The baseline model is described with more details
in [[11]. We refer to the baseline prosody model as “BLSTM
with self-attention”, the baseline spectrum model as “multi-rate
attention”, in the following discussion.

The proposed transformer-based acoustic model used in
evaluation is presented as follows. The transformer-based
prosody model contains six transformer layers. On each trans-
former layer, the input and output have 512 nodes. The multi-
head attention block contains eight attention heads, and the out-
put dimension is 512. In the feedforward block, the ReLU ac-
tivation function is used, and the in-block hidden dimension is
256. Between each pair of fully connected layers, a dropout of
0.5 is applied. The Emformer-based spectrum model is a multi-
rate attention model using an Emformer encoder. The decoder



| System [[ Prosody | Spectrum [ Normal | Long |

| Groundtruth H - [ - H 4.307 + 0.037 [ 4.360 £+ 0.044 ‘
Baseline [[11] || BLSTM with self-attention [26] | Multi-rate attention [11] 4.173 £ 0.042 | 4.019 £ 0.055
Ours-1 Transformer Multi-rate attention 4.174 +£0.042 | 4.107 £ 0.052
Ours-2 BLSTM with self-attention Emformer with multi-rate attention || 4.192 4+ 0.041 | 4.034 4+ 0.053
Ours-3 (best) || Transformer Emformer with multi-rate attention || 4.213 4+ 0.042 | 4.201 + 0.048

Table 1: MOS with 95% confidence intervals: the proposed model leads to small improvements over the baseline model for normal
length audio (0-15 seconds) and more significant improvements for long audio (20-40 seconds).

is a one-layer LSTM decoder of 512 hidden units. The Em-
former encoder contains 2 Emformer layers. On each Emformer
layer, the input and output have 256 nodes. The attention block
is composed of 8§ attention heads and the output dimension is
256. The feedforward block uses the ReLLU activation function,
and the hidden dimension is 256. The length of the Emformer
memory bank is 4. Due to the latency constraints, the segment
size is fixed as 32 frames in this paper. Left context and right
context are respectively set to 12 frames. The spectrum model
ultimately predicts a 19-dim spectrum feature vector consisting
of a 13-dim MFCC feature, a 1-dim fj, feature, and a 5-dim pe-
riodicity feature. The loss function to train the spectrum model
is a weighted sum of the mean square errors of MFCC, f, and
periodicity. The MFCC, f; and periodicity loss weights are set
to 1.0, 10.0 and 5.0, respectively.

In training, both the prosody and spectrum models were op-
timized using the Adam [29]] optimizer with an initial learning
rate of 10™* and a decay factor of 0.95 for every 45K updates.
The prosody model was trained in 500k updates. The spectrum
model was trained in 700K updates. All models were trained
using 1 Nvidia V100 GPU. To evaluate RTFs, a single core on
the Intel(R) Xeon(R) 2.0GHz CPU was used.

In inference, the baseline and proposed acoustic models
were used to predict spectral features. The synthesized speech
was finally generated through a WaveRNN [5]] conditional neu-
ral vocoder with hidden dimension 1024.

3.3. Results

We conducted the mean opinion score study on the two evalu-
ation sets. Each MOS test had 400 participants who rated each
sample between 1-5 (1:bad - 5:excellent). Table summarizes
the results of the MOS studies. Overall, the proposed trans-
former acoustic models achieved better MOS scores than the
baseline modeﬂ In the comparison of prosody models (ours-1
and baseline), they achieved similar performance on the normal
set, however the transformer outperformed the BLSTM with
self-attention on the long set. This indicates transformer can
estimate a better prosody for long speech. The prosody and
spectrum models showed some level of complementarity; the
TTS quality was further improved when using transformer ar-
chitectures on both models (ours-3 v.s. our-1 & 2). The baseline
showed a quality degradation on the long set. However, the pro-
posed model (ours-3) was only influenced slightly. The robust-
ness of the proposed model on the long set demonstrates that
transformer-based architecture can capture long-term informa-
tion in speech synthesis and deliver long but natural TTS speech
that is close to human speech.

We then evaluated the inference speed by measuring the
real-time factor, which is a key metric for TTS products. The
RTF is defined as ‘otalsynthesize time = A discyssed in Sec-

audio length

tion 2.1, the computation on the prosody model can be negli-

2 Audio: https://transformer-tts-accoustic-model. github.io/samples/

gible, we fixed the transformer prosody model and compared
the baseline and our Emformer spectrum models. Also, we in-
cluded a transformer spectrum model to illustrate how the RTF
grows on a non-streamable model concerning the input length.
Figure [d compares the log-scale RTF with audio length ranging
from 1 to 60 seconds. Similar to the baseline, the streamable
Emformer model approximately stays a constant RTF regard-
less of audio length. Its RTF is only slightly higher on short
utterances. The non-streamable transformer model operates on
the complete input sequence, which the RTF curve shows a
quadratic growth.
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Figure 4: Log-scale RTF comparison: RTF is evaluated for the
computation intensive spectral model with audio length ranging
from 1 second to 60 seconds. The proposed Emformer based
model shows comparable RTF as the multi-rate attention base-
line [11], both of which deliver constant compute speed per
second of audio generation regardless of audio length. A non-
streaming transformer spectrum model (yellow) is also reported
to indicate how the RTF grows concerning audio length.

4. Conclusion

In this work, we propose a transformer-based acoustic model
for streaming speech synthesis. It uses a transformer prosody
model to predict the phone-rate prosody features, and then an
Emformer spectrum model to predict the frame-rate spectral
features in a streaming manner. The attention mechanism in
transformer and Emformer involves more long-range informa-
tion, thus improving the naturalness of long-form speech. In
our experiments, we use a WaveRNN neural vocoder that takes
in the predicted spectral features and generates the final audio.
The overall architecture achieves speech quality close to human
naturalness both on short and long utterances while maintain-
ing a low latency and constant RTF. Future work will reduce
the RTF and model size of transformer-based TTS models, e.g.,
Conformer-based network [30]] for spectrum models.
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