
Debugging Crashes using Continuous Contrast Set Mining
Rebecca Qian

∗

Facebook, Inc.

U.S.A.

rebeccaqian@fb.com

Yang Yu

Purdue University

U.S.A.

yu577@purdue.edu

Wonhee Park

Facebook, Inc.

U.S.A.

wonheepark@fb.com

Vijayaraghavan Murali

Facebook, Inc.

U.S.A.

vijaymurali@fb.com

Stephen Fink

Facebook, Inc.

U.S.A.

stephenfink@fb.com

Satish Chandra

Facebook, Inc.

U.S.A.

schandra@acm.org

ABSTRACT
Facebook operates a family of services used by over two billion

people daily on a huge variety of mobile devices. Many devices

are configured to upload crash reports should the app crash for

any reason. Engineers monitor and triage millions of crash reports

logged each day to check for bugs, regressions, and any other quality

problems. Debugging groups of crashes is a manually intensive

process that requires deep domain expertise and close inspection

of traces and code, often under time constraints.

We use contrast set mining, a form of discriminative pattern min-

ing, to learn what distinguishes one group of crashes from another.

Prior works focus on discretization to apply contrast mining to

continuous data. We propose the first direct application of contrast

learning to continuous data, without the need for discretization.

We also define a weighted anomaly score that unifies continuous

and categorical contrast sets while mitigating bias, as well as un-

certainty measures that communicate confidence to developers.

We demonstrate the value of our novel statistical improvements

by applying it on a challenging dataset from Facebook production

logs, where we achieve 40x speedup over baseline approaches using

discretization.

CCS CONCEPTS
• Software and its engineering→ Software reliability.

KEYWORDS
crash analysis, descriptive rules, rule learning, contrast set mining,

emerging patterns, subgroup discovery, multiple hypothesis testing

ACM Reference Format:
Rebecca Qian, Yang Yu, Wonhee Park, Vijayaraghavan Murali, Stephen Fink,

and Satish Chandra. 2020. Debugging Crashes using Continuous Contrast
Set Mining. In Software Engineering in Practice (ICSE-SEIP ’20), May 23–
29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3377813.3381369

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSE 2020 SEIP, 2020, Seoul, Korea
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7123-0/20/05.

https://doi.org/10.1145/3377813.3381369

1 INTRODUCTION
In commercial software development, despite significant invest-

ment in software quality processes including static and dynamic

analyses, code reviews and testing, defects still slip through and

cause crashes in the field. Fixing these crashes remains a manually

intensive process, demanding deep domain expertise and detailed

analysis of traces and code.

Large software organizations that develop mobile apps often

deploy automated crash triage systems, which capture error logs

when a mobile client crashes. These logs contain hundreds of key-

value pairs with metadata about the app’s execution environment,

such as the mobile OS version or app build, and possibly a trace

of where a crash occurred. Once captured, an automated system

usually groups crash logs into categories (e.g., by a hash on a de-

scriptive value, or through more sophisticated clustering) and then

assigns each category to on-call developers. If categorization were

perfect, each crash in a category would arise from the same root

cause.

Often, developers trying to resolve a group of crashes want to

knowwhat distinguishes a particular group of crashes. For instance,

developers ask: “does this group of crashes occur disproportionately

in build version X?”, or “does this group of crashes occur dispropor-

tionately for users from country Y?”. One simple way to describe a

group of crashes is to use standard statistical tests regarding the

distribution of features among members of the group. For example,

one could test if country:Y appears statistically more frequently

in one group of crashes than in the whole population.

One limitation of standard statistical tests is that they may not

reveal patterns involving interactions among multiple features. Our

crash data includes many dimensions of features, with a mix of

categorical, discrete, and continuous values. Additionally, we need

to generate interpretable insights that a human can comprehend,

which rules out standard dimensionality reduction techniques (e.g.
principal component analysis) which tend to compute complex,

unintuitive factors.

Recently, Castelluccio et al. [4] proposed using contrast set min-
ing to extract insights from multi-dimensional data about crashes.

Contrast set mining (CSM) [2] is a form of discriminative pattern

mining that attempts to discover significant patterns that occur

with disproportionate frequencies in different groups. It explores

the space of feature sets, i.e., sets of conjunctive feature-value pairs,

looking for deviations from expected distributions. For example,

the feature set {build_version : X, country : Y} is interpreted as the

https://doi.org/10.1145/3377813.3381369
https://doi.org/10.1145/3377813.3381369

ICSE 2020 SEIP, 2020, Seoul, Korea Qian, et al.

value of the build version feature being X and country being Y. CSM

models the expected distributions of these sets from the general

population of data points, i.e., independent of any particular group.

Then, given a particular group of points, if the distribution of a

feature set in that group differs significantly from its expected value,

it is labeled as a contrast set. The notion of differing significantly is

defined by an explicit statistical test, and denotes a degree to which

the contrast set is anomalous. Castelluccio et al. ’s application of

CSM produced relevant hints to developers regarding groups of

user-reported bugs, helping them fix bugs faster. It also helped un-

cover systematic breakages by detecting anomalous attribute-value

pairs.

Thus far, most applications of CSM consider only categorical

data. When applying CSM to discrete and continuous variables,

researchers typically discretize data by sorting values into buck-

ets, resulting in a limited number of possible states. For example,

{process_uptime : (0, 2000)} represents a discretized feature that

denotes instances where a process ran for less than 2000 millisec-

onds. Discretization has notable drawbacks; it does not scale well

to large datasets with thousands of features as it leads to an explo-

sion in the number of feature-value pairs. Moreover, if the feature

ranges are strongly skewed, the discretized bins do not capture

the distribution well. Discretized ranges are also often unintuitive,

causing resulting contrast sets to be difficult to interpret.

To address these drawbacks, we propose several improvements to

CSM to extend it to continuous features and other mixed data types,

such as event sequences, without discretization. We demonstrate

its effectiveness by applying it to a class of hard bugs: app deaths

from iOS out-of-memory crashes (OOMs). These OOMs are hard

to resolve since they do not provide logs with stack traces. Instead,

they are annotated with user navigation logs, i.e., sequences of

events that a user navigated, ordered chronologically, before the

crash occurred. As we will describe later, we compute a continuous

vector-space encoding of these navigation logs as a technique to

enable tractable analysis of this high dimensional data, while still

enabling accurate localized information about a potential root cause.

Towards these goals, our key contributions are the following:

• We propose Continuous Contrast Set Mining (CCSM), the

first direct application of contrast mining to continuous data

without discretization.

• We evaluate its effectiveness on a dataset containing 60k
iOS OOM crashes: using CCSM, on average we generated

1120 contrast sets in 458 seconds. This is a 40x speedup

over a naive discretization approach. We also evaluate the

usefulness of CCSM towards debugging software issues in

an industrial setting.

• We provide a formal definition of contrast set quality, al-

lowing us to rank and compare categorical and continuous

contrast sets while mitigating bias.

• We propose uncertainty measures based on confidence inter-

vals evaluating effect size and difference in means to provide

signals to developers on actionability.

The rest of the paper is organized as follows. Section 2 gives

an overview of the previously proposed algorithm for CSM and

its limitations when working with continuous features. Section 3

describes our proposed algorithm, CCSM, that handles continuous

features and a definition of anomaly score that unifies categorical

and continuous contrast sets. Section 4 discusses how contrast

sets from CCSM can aid software debugging in practice in the

industry. Section 5 presents experimental results evaluating our

algorithm, including preliminary experience with it. Section ??
describes threats to the validity of our study. Finally, Sections 6

and 7 discuss related works and future directions, respectively.

2 OVERVIEW
In this section, we describe the CSM problem and summarize the ex-

isting algorithm for CSMon categorical variables, namely STUCCO [2].

We then discuss what kind of continuous features arise in crashes

and limitations of using discretization to apply STUCCO to the

continuous domain.

2.1 STUCCO Contrast Set Mining Algorithm
The objective of CSM is to find statistically meaningful differences

between groups. In CSM, we start with a categorical dataset par-

titioned into mutually exclusive groups. A candidate contrast set

is a conjunction of attribute-value pairs, where an attribute is a

database field and the value is one of a range of values that field

can take on, e.g. country=IN.
For a contrast set X and group G, the support S(X ,G) is the per-

centage of vectors in group G for which the contrast set X is true. We

want to find "interesting" contrast sets whose support differs mean-
ingfully across groups. For differences in support to be meaningful,

the contrast set must be both significant and large. More formally,

contrast sets must satisfy two conditions,

∃ij s.t. P(X |Gi) , P(X |G j) (1)

and

maxi j |S(X ,Gi) − S(X ,G j)| ≥ δ (2)

where P(X |Gi) is the likelihood of observing setX for groupGi and

δ is the user defined minimum support difference. Equation (1) tests

a contrast set for statistical significance, and Equation (2) checks

for largeness, i.e., that the support of the contrast set differs by a

certain threshold for at least two groups.

For the baseline, we implemented the STUCCO algorithm, which

casts contrast set mining as a tree search problem [2]. Starting with

an empty root node, we begin by enumerating all attribute-value

pairs in the dataset. Figure 1 shows the initial candidates for a toy

dataset with two columns (country, os_version) that each can take

on two values.

For each candidate node, we scan the dataset and count support

for each group. We then examine whether the node is significant

and large. In STUCCO, a contrast set is statistically significant

if it passes a two-way Chi Squared test. The null hypothesis is
that the support of a contrast set is equal across all groups, i.e.,

independent of group membership. The Chi Squared test evaluates

this hypothesis by analyzing expected and observed frequencies,

taking into account factors such as the number of observations,

group sizes and variance.

Nodes that fail either condition (1) or (2) are pruned. After test-

ing all candidates in a given level, we generate children from the

surviving nodes by forming conjunctions of attributes. We use

Debugging Crashes using Continuous Contrast Set Mining ICSE 2020 SEIP, 2020, Seoul, Korea

	∅

	{	country: IN}

	{	country: US}

	{	os_version:4}

	{	os_version:5}

	{	country: IN,
os_version:4}

Not Meaningful? Prune

Meaningful? Expand

Figure 1: Sample generation of initial candidate sets

a canonical ordering of attributes to avoid redundant combina-

tions. For example, assuming no nodes are pruned, the children

of contrast set {country : IN} are {country : IN, os_version : 4.0}
and {country : IN, os_version : 5.0}.

The generated child nodes become the new candidate set. In

addition to significant and large conditions, we implement a variety

of pruning techniques as described by Castelluccio et al. [4]. We

repeat the above process of testing and generating contrast sets,

until no new child nodes can be formed. As in [4], we reduce the

likelihood of type 1 errors (false positives) in statistical testing by

applying the Bonferroni correction, which lowers critical values as

the tree depth increases.

Contrast set mining has several advantages when compared

to other techniques used to mine feature sets, such as Decision

Trees. Compared to CSM, limitations of Decision Tree algorithms

include the lack of statistical significance testing, which does not

provide guarantees on split quality. Additionally, as with other

greedy algorithms, the order of decisions impacts the results.

Next, we describe the setting inwhichwewish to apply CSM, and

the limitations of the standard STUCCO algorithm in this setting.

2.2 Continuous Features of Crash Reports
With billions of active mobile users, Facebook must monitor and

maintain the health of mobile apps at huge scale. When a crash

occurs, a snapshot of the mobile client and app level information

is logged into a crash report, which is then uploaded to a server.

A crash report often includes the stack trace associated with the

crash, which is one of the most important signals for a developer

debugging the crash.

For certain classes of crashes, however, the stack trace is unavail-

able or difficult to obtain. For instance, when an out-of-memory

error (OOM) occurs in unmanaged code, the OS kills the app and

does not have memory to snapshot a stack trace. In other crashes

from native code, the stack trace may not contain debugging sym-

bols and conveys little interpretable information. For these classes

of crashes, termed “hard bugs”, developers can only rely on other

features and metadata when debugging.

Table 1 shows a subset of the device metadata features that are

logged in crash reports. One feature that developers find particularly

useful for dealing with hard bugs are navigation logs. A navigation

log is a sequence of app surfaces that a user interacted with prior to

experiencing the crash. Figure 2 shows an example of a navigation

Table 1: Sample metadata collected by crash error logs

Attribute Explanation Type
Build ID Build number of the crashing app Categorical

OS Version Version of the mobile operating system Categorical

Fd count Number of open file descriptors Discrete

Country Country associated with the mobile de-

vice

Categorical

Process

uptime

Time since app process started Continuous

Nav logs Event navigation sequences before crash Sequential

Bi-grams in

nav logs

TF-IDF vectorization of bi-grams in nav

logs

Continuous

Figure 2: Contrived example of a navigation log and its con-
tinuous bi-gram features

Feed −→ Photos −→ Fundraiser −→ Feed −→ Photos −→ Friends

Bi-gram TF-IDF weight
Feed −→ Photos 2 ∗ 0.01

Photos −→ Fundraiser 1 ∗ 9.85

Fundraiser −→ Feed 1 ∗ 7.42

Photos −→ Friends 1 ∗ 1.25

Video −→ Feed 0 ∗ 0.05

. . . 0

log where the user transitioned from the Feed surface to Friends.
Bi-grams extracted from a navigation log show the source and

destination surface of a single navigation event. These bi-grams

help localize crash insights to certain parts of the whole sequence

and help reasoning about individual navigation events.

For instance, certain navigation events (bi-grams) tend to occur

more commonly than others – say, navigating to or from Feed
is more common than Fundraiser. Given a navigation log, this

information can be quantified by using the TF-IDF weight of the bi-

grams in the log. TF-IDF [9] is a well-known method in information

retrieval to filter the more important features of textual documents

from noise. The TF-IDF weight of a bi-gram denotes how often it

appears in the entire corpus of navigation events as opposed to a

particular log. Figure 2 illustrates an example. A high weight for a

bi-gram indicates that it is more important to this navigation log,

i.e., less common in the entire corpus. Thus, each bi-gram in the

corpus can be considered a feature that can take on any positive

real value for each navigation log.

While many features in Table 1, such as country, are categorical

(i.e., their values come from a finite set), TF-IDF encoded bi-gram

features are continuous. Categorical features are quite amenable

to CSM, whereas continuous features pose several challenges to

traditional CSM.

2.2.1 The Continuous Problem. The original STUCCO algorithm [2]

for CSM generates contrast sets based on categorical features, such
as user locale or CPU model, and Castelluccio et al. [4] applied it on
such features. In many real world settings, however, crash reports

include both categorical variables such as country, and numerical

variables (discrete or continuous) such as file descriptor counts

ICSE 2020 SEIP, 2020, Seoul, Korea Qian, et al.

and memory usage. Most applications of CSM to continuous fea-

tures rely on entropy-based discretization methods, i.e., splitting

the continuous domain into discrete intervals and treating them as

categorical values. Following the seminal STUCCO algorithm, Bay

proposed an initial data discretization method for CSM [1]. Simeon

and Hilderman proposed a slightly modified equal width binning

interval to discretize continuous variables [10].

In practice, however, discretization of continuous features has

several drawbacks. First, it greatly increases the number of candi-

date contrast sets. Each discretized bin results in a new candidate

contrast set, and computation can become prohibitively expensive

with a large number of continuous features. Section 5 presents

empirical results which quantify this computational cost.

Second, discretizing continuous data may yield results that are

difficult to interpret. Figure 3 shows the histogram of TF-IDF scores

of navigation event sequences. Let’s consider the case that we use

equal-width bins of width 0.5, and find an arbitrary set of bins,

say (0, 0.5), (2, 2.5), and (5, 5.5), are statistically significant, but not

other intervals. Developers may not find these results actionable,

as the results may reflect the choice of cut-off points more than

underlying patterns in the data.

Figure 3: Frequency Distribution of TF-IDF encodings of
event sequences

Finally, any form of discretization leads to information loss, es-

pecially at the tails. In figure 3, the strong skew in distribution with

a large proportion of zero values may drive discretization, with the

second smaller hump at (4.5, 5.5) going unnoticed. In this case, most

discretized contrast sets cannot represent the magnitude of mean

differences between two groups, even if mean difference provides

important debugging information to developers. In our context,

if repeated navigation events that are rare overall lead to out-of-

memory crashes, mean difference in number of navigation events

would convey important debugging context without information

loss.

These drawbacks of discretization provide motivation for devel-

oping a continuous version of contrast set mining.

3 CONTINUOUS CONTRAST SET MINING
Addressing the limitations just described, we propose the CCSM

algorithm,which applies CSMdirectly to continuous data. Addition-

ally, we define separate and unified anomaly scores for continuous

and categorical contrast sets. Recognizing that real world datasets

are frequently mixed, our unified anomaly score is the first ranking
algorithm that produces a normalized comparison of the two anom-

aly definitions. Finally, we describe confidence intervals on contrast

sets, and how we translate them into interpretable findings.

3.1 Base CCSM Algorithm
The CCSM algorithm adopts the same structure as STUCCO de-

scribed earlier in Section 2, with modifications to reason about sets

of continuous attributes. As previously discussed, STUCCO requires

discretization to handle continuous or discrete features with nu-

merical ranges. The CCSM algorithm instead reasons directly about

continuous contrast sets without introducing discretized bins.

For CCSM, the input consists of a set of k-dimensional numerical

vectors, where k is the number of continuous variables, partitioned

into mutually exclusive groups (SIGs). A contrast set is either a

single continuous variable or a set of continuous variables. We start

by considering single continuous variables.

As in the original STUCCO algorithm, we consider a contrast

set a deviation if it is both significant and large. We develop coun-

terparts for these two conditions in the continuous domain.

We define a contrast set to be significant or statistically signifi-

cant using one-way ANOVA F-test. One-way ANOVA F-test is used

to test whether there is a significant difference in the mean of a

continuous variable across groups. Applied to our context, one-way

ANOVA F-test tests the null hypothesis that the mean of the con-

trast set is the same across all groups and rejects the null when

there are at least two groups with a significant difference in mean.

This is a natural counterpart to the Pearson's chi-squared test used to
identify significant contrast sets in the original STUCCO algorithm,

which tests the null hypothesis that the percentage of the contrast

set is the same across all groups. As with the STUCCO algorithm,

we apply a set of pruning heuristics and apply the Bonferroni cor-

rection to reduce the likelihood of type 1 errors in tree-based search

and testing.

We define a contrast set to be large or practically significant

if there exist two groups such that the difference of the average

values of the contrast set in these two groups is greater than some

user-defined threshold δ . This definition also mirrors that in the

original STUCCO algorithm, where a contrast set is defined to be

large if the percentage difference of a contrast set in two groups is

larger than some threshold.

Given these definitions of significant and large, we apply the

STUCCO tree search algorithm to efficiently search for conjunctions

of contrast sets that distinguish a particular group of vectors (a SIG)

from the rest of the population. Algorithm 1 shows pseudo-code

for the CCSM algorithm, with the base algorithm starting on line 9.

Algorithm 1 additionally includes some details specific to mining

navigation logs – subsequent sections discuss these details.

3.2 Ranking Contrast Sets
We use Cohen's d as the anomaly score for continuous contrast

sets. Cohen's d is a measure of effect size, or more specifically, a

measure of the difference between two group means. The formula

is given by

d =
x̄1 − x̄2

s

Debugging Crashes using Continuous Contrast Set Mining ICSE 2020 SEIP, 2020, Seoul, Korea

Algorithm 1 Continuous Contrast Set Mining on Navigation Se-

quences

1: procedure CCSM algorithm

2: Q ← initial candidate set of n-grams in S
3: Result set R ← ∅
4: while Q is not empty do
5: preprocess:
6: for each q in Q do
7: IDF (q) = ln(

docCount−f (q)+0.5
f (q)+0.5

)

8: count f (q,d) for each FAD d ∈ D

9: CCSM:

10: for each q in Q do
11: is_significant← ANOVA(q,X)
12: means_difference ← maxi , j |mean(q |Gi) −

mean(q |G j)|

13: if prune(q) is True then
14: continue

15: if is_significant ∧means_difference > δ then
16: append q to R

17: Q ← gen_candidates(R)

18: return R

Table 2: Qualitative evaluations of Effect Size

Magnitude Effect Size (d)

very small 0.01

small 0.2

medium 0.5

large 0.8

very large 1.2

huge 2

where x̄1 and x̄2 are the two sample means, and s is the pooled

standard deviation, defined as

s =

√
(n1 − 1)s2

1
+ (n2 − 1)s2

2

n1 + n2 − 2

where s1 and s2 are the two sample standard deviations. The anom-

aly score can be seen as the standardized mean difference on con-

trast set X between group A and all the other groups. If we see

d = 1, we know that the two means differ by one standard devia-

tion; d = 0.5 tells us that the two means differ by half a standard

deviation, and so on. An advantage of Cohen's d over two-sample
t-statistic, another measure of standardized difference in means, is

that Cohen's d is not as heavily affected by sample size, because it

measures the effect size relative to the standard deviations of groups

rather than relative to the standard error of the mean difference,

which shrinks as the sample size grows.

Table 2 shows how we convert measures of effect size into de-

scriptive interpretations that can be displayed in crash analysis UI.

The higher the anomaly score is (which means X has larger values

inside A than outside A), the more prominent the contrast set X is

to group A.

For every group, we score each CCSM contrast set by its anomaly

score. We then submit the top deviations for each group, ranked by

their anomaly scores.

3.2.1 Unifying Continuous and Categorical Contrast Sets. As de-
scribed in Section 2, STUCCO relies on categorical inputs. Inspired

by STUCCO’s tree search strategy, CCSM defines a novel discrimi-

native pattern mining algorithm on continuous datasets. However,

it is more likely that real world datasets contain mixed data types;

Section 4 explains that crash data is high dimensional and heteroge-

neous. To enable comparisons between continuous and categorical

contrast sets, we need a unified ranking algorithm that uses both

types of features. The key is to make the anomaly scores for both

types comparable.

To do so, we propose a new definition of anomaly score for

categorical contrast sets. For a categorical contrast set X and group

A, we want to see if the percentage (or support) of X is higher inside

A than outside A. To achieve this, we use Cohen's h as the anomaly

score, which is the difference between two proportions after an

arcsine root transformation. Specifically, its formula is given by

h = 2(arcsin
√
p1 − arcsin

√
p2)

where p1 and p2 are the two sample proportions.

The goal of employing this transformation is to mitigate bias,

where very rare contrast sets are disproportionately surfaced as

significant and large. Without any transformation, the variance of

the proportion is given by p(1 − p); the variance is small when the

proportion is close to 0.5 and large when it is close to 0 or 1. For

example, if two proportions are both around 0.5, it is easy to detect

their difference; if they are both close to 0, it is hard to detect their

difference. The arcsine root transformation stabilizes the variance

for all proportions, and hence, makes all proportion differences

equally detectable. Cohen's d can be seen as standardized difference

of means, while Cohen's h can be seen as difference of standardized

proportions.

Note that Cohen's h has the same rule of thumb for categorizing

the magnitude of the effect size as Cohen's d, making the two com-

parable to each other. Also note that the comparison of Cohen's d
and two-sample t-statistic applies to Cohen's d and two-proportion

z-statistic, which is another measure of the difference between two

proportions, as well.

3.2.2 Comparing anomaly score to percent difference in supports.
The percent increase for a categorical contrast set to a group is

defined as

observed support − expected support

expected support

Here, observed support is defined as the percentage of a contrast

set in a certain group, whereas expected support is defined as the

percentage of a contrast set across all the groups. By Taylor's The-

orem, the new anomaly score (Cohen's h) for categorical contrast
sets can be approximated by

observed support − expected support√
expected support(1 − expected support)

up to some constant factor, under certain conditions. The major

difference between these two definitions lies in the denominator, or

ICSE 2020 SEIP, 2020, Seoul, Korea Qian, et al.

how we standardize the difference between observed support and

expected support. The new anomaly score not only comeswith nicer

statistical properties, but also mitigates the bias in ranking contrast

sets using the old anomaly score. When a contrast set is very rare

(i.e., expected support is very close to zero), the anomaly score of

this contrast set, under the previous definition, will universally

tend to be high. This makes ranking unfair to those comparatively

frequent contrast sets (those with expected support not so close to

zero).

However, under the new definition, when expected support is

very close to zero, square root of expected support will cause it

to deviate zero while (1 − expected support) stays very close to

one. Thus it gives a larger denominator and the difference in the

numerator is not over-standardized.

Moreover, the new anomaly score is closely connected to the

Pearson's Chi Squared test for independence. Specifically, the χ2

statistic is proportional to

(observed support − expected support)2

expected support(1 − expected support)

which is simply the square of the approximation of Cohen's h dis-

played above. However, instead of using the Chi Squared test, we

believe Cohen's h better suits our needs. The reason is that the

anomaly score based on Cohen's h is positive only if observed sup-

port is larger than expected support, while the χ2
statistic is always

positive, even when observed support is smaller than expected

support.

3.3 Confidence Intervals
For each anomaly we find, we provide confidence intervals for the

mean and percentage difference to increase actionability of results.

The first confidence interval is provided for the effect size (Co-

hen's d or Cohen's h). For example, a Cohen's d of 0.5 tells us that

based on the sample, there is a medium difference between current

group and rest of the groups on a certain feature. If we further

obtain a 95% confidence interval of (0.48, 0.52), we know that the

sample is a good representation of the population, and we can be

quite confident that there is a medium difference. However, if the

interval is (0.19, 0.81), we are not certain that the difference is of a

medium size; it could actually be large or small.

We use standard methods for constructing confidence intervals

for Cohen's d and Cohen's h [5]. We apply Bonferroni correction

on up to 20 anomalies for each group.

Another confidence interval is provided for the mean and per-

centage differences. We refer to (observed mean - expected mean)

for continuous contrast sets and (observed percentage - expected

percentage) for categorical contrast sets. This gives a better idea of

what the difference looks like at the original scale without any stan-

dardization. For example, if a given feature has an expected support

of 10% and an observed support of 50% in certain group, the differ-

ence of these two percentages is simply 40%; a confidence interval

of (39%, 41%) would reassure developers that the percentage dif-

ference is estimated relatively precisely, compared to a confidence

interval of (25%, 55%).

For continuous contrast sets, we use Welch's t-interval; for cate-

gorical contrast sets, we use Wilson score interval (without conti-

nuity correction). As before, we apply Bonferroni correction.

4 CONTRAST SET MINING IN PRACTICE
In this section, we give a broader picture of how CSMwould be used

in an industrial organization for crash diagnosis. Particularly, we

describe the architecture of mobile app reliability tools at Facebook

and how results from CSM can help developers.

4.1 Mobile App Reliability at Facebook
Figure 4 shows an overview of Facebook’s mobile crash analysis

architecture. When a client experiences a crash, the generated crash

report is received by a “categorizer”. The job of the categorizer is

to assign the crash to a particular group of crashes, such that all

crashes in the a group arise from the same root cause bug. The cat-

egorizer makes use of a mix of heuristics and ML-based approaches

to compute these groups, and in the end produces a unique signa-

ture representing the group to which the crash was assigned. We

will denote this group identifier as SIG and use it to refer to a group

of crashes.

The crash report is also fed through a feature extractor that

extracts metadata features such as the ones in Table 1. The features

can then be processed by CSM algorithms – categorical features can

be processed by the traditional STUCCO algorithm, and continuous

features can be used as input to the CCSM algorithm presented

in this paper. As shown in Figure 4, the SIGs that represent crash

groups are used by CSM. The output of the CSM algorithms are

contrast sets, which are conjunctions of feature-value pairs. While

the categorizer acts upon the contents of crashes to compute the

SIG, such as the stack trace and exception message, CSM algorithms

use the metadata features to compute contrast sets. In this regard,

CSM serves to explain properties of crash groups and why those

crashes were grouped together.

Contrast sets are useful for a variety of downstream purposes.

First, prominent contrast sets (based on our notion of anomaly score

presented here) are useful for describing groups. Each SIG indexes

into an internal issue tracker system where developers monitor

spikes of crashes in the SIG, create tasks to work on bug fixes and

mitigate issues. Contrast sets are ranked by their anomaly scores,

which denotes the degree to which CCSM believes the contrast set

to be prominent for the SIG, and displayed in the issue tracker UI.

Since string keys assigned by categorizers do not have semantic

meaning, contrast sets provide interpretable descriptions of groups

of crash reports.

Second, they can surface spikes in SIGs that would otherwise

go under the radar. For instance, users from a country Y using a

particular build version X can be experiencing a spike of crashes.

However, if the actual number of such crashes is small compared

to the size of the SIG, the regression is unlikely to be surfaced

at the SIG level. CSM would be able to produce the contrast set

{country : Y, build_version : X}, filtering on which would reveal

the spike.

Finally, contrast sets can provide useful hints to developers de-

bugging crashes in a SIG. Currently, the issue tracker UI displays a

simple count of features, which, as we discussed in section 1, can

be misleading. Contrast sets, on the other hand, surface features

that statistically distinguish a SIG from others, guiding developers

to which features are more likely to be related to the SIG.

Debugging Crashes using Continuous Contrast Set Mining ICSE 2020 SEIP, 2020, Seoul, Korea

Feature
Extractor

STUCCO

CCSM

𝑓":𝑣"
𝑓% :𝑣%
…

Categorical

Continuous
Contrast

Sets

Crashes
Outlier
Detection

Surfacing
Regressions

Categorizer
Crash Groups C-Set Score

!": $" 400%
!%: $% 75%

Debugging

Figure 4: Overview of the crash analysis system

4.2 Usability of Contrast Sets
As noted by Webb et al. [11], visualizing contrast sets is a challeng-

ing open problem in the pattern mining space. We identified two

key pain points to the consumption of contrast sets:

• Actionability: How much can we trust these findings? How

likely are developers to act upon this information? Develop-

ers value transparency in ML models and want to quantify

uncertainty. To address this, we provide a notion of confi-
dence in Section 3 so that end users can assess the represen-

tativeness of our findings.

• Interpretability: Anomalous features should be immediately

obvious to developers inspecting a group of crashes. This

becomes a more challenging task when we consider conjunc-

tive contrast sets as well.

To improve interpretability of statistical measures, we propose an

alternative to the current visualization for crash statistics that only

highlights meaningful statistical differences. As noted in Section

3.1, simple frequency counts can be misleading.

To illustrate the consequences of misleading visualizations, let

us go through a realistic example. Figure 5(a) shows a ranking of

mobile app builds for a particular SIG by count. Simply judging by

the prevalence of build 38 in the SIG, onemight incorrectly conclude

that it is closely associated with the bug. CSM, on the other hand,

revealed that build 38 is expected to be prevalent because it also

occurred with similar frequencies in other SIGs, perhaps being the

most used build of the app. Instead, it found that build 44 is the most

anomalous as its anomaly score is 150% above expected thresholds,

as shown in Figure 5(b). Engineers working on the SIG validated this

insight, and eventually fixed the bug by gating out this build. This is

an example of howCSM results can be presented to developers to aid

them in debugging. In addition to UI tooling, we can integrate CSM

results into the debugging workflow through scripts posting daily

findings to oncall groups, and bots that automatically comment on

open tasks associated with SIGs.

5 EVALUATION
To evaluate the proposed techniques, we consider the following

questions:

(a)

Feature Percent Deviation
{app_build: 44} 150%

{os_version: 4.0, country: US} 102%

{connection_type: WIFI} 45%

{device_brand: Samsung} 38%

. . .

(b)

Figure 5: (a) Counts of app builds for a particular SIG (modi-
fied screenshot from the tool), (b) Anomalous features found
by CSM

• RQ1: Does CCSM have lower computational cost than ex-

isting approaches? Is CCSM efficient enough to scale to high

cardinality, high dimensional datasets?

• RQ2: Does contrast set mining help diagnose crash reports

in our environment?

• RQ3: Does our definition of anomaly score add value over

previous ranking techniques relying on percentage differ-

ences?

ICSE 2020 SEIP, 2020, Seoul, Korea Qian, et al.

5.1 Implementation Details
To evaluate model efficiency, we collected on the order of 60k field

crashes each day from the week of September 10, 2019 to September

16, 2019. The data consists of iOS Out-of-Memory (OOM) crashes

from the core Facebook mobile app. As discussed in Section 2,

OOM crashes are difficult bugs without accompanying stack traces,

and are thus good candidates for contrast set mining. For each

crash, we have metadata such as the device OS and app build as in

Table 1, which include categorical, discrete, and continuous data

types. Many crash reports include a sequence of navigation events,

such as the example shown in Figure 2. We follow the procedure

described in Section 2 to extract bigrams and embed them using

TF-IDF weights, generating thousands of continuous columns for

each dataset.

We simulate using CCSM at different points in time in a produc-

tion setting. For our baseline, we use a standard implementation

of STUCCO with equi-width binning. We compare CCSM to the

binning approach with two different number of bins, 3 and 10. We

demonstrate that discretization of bigrams is much slower than

directly applying continuous contrast mining and generates lower

quality contrast sets.

To mitigate the effects of uneven group sizes on our evaluation,

we use stratified sampling to control the number of crashes fetched

for each SIG in expectation. For each day, we ran our evaluation on

1k , 10k and 60k crashes. At the end of each run, we recorded the

runtime and inspected the output contrast sets to ensure quality of

our results. We set an upper bound of 3600s (1 hour) for execution
time; runs that exceeded this threshold were terminated due to high

memory usage.

5.2 RQ1: Analysis of Execution Times
Figure 6 shows the execution times of different CSM models over

time. The results vary over time because at each time interval, we

collect a new set of crash reports. Since stratified sampling controls

sample sizes in expectation, the cardinality of our dataset varies

slightly as well across runs.

Both baseline approaches perform poorly when compared to

CCSM. We find that discretization suffers from acute scalability

problems. This is especially true of smaller binwidths; discretization

with 10 bins consistently exceeded the time limit for the N = 60k
dataset. On average, CCSM achieves a 40x speedup over discretiza-

tion with 10 bins and a 10x speedup over discretization with 3

bins. Prior work observed that using fewer bins generally leads to

faster execution [13], but outputs fewer contrast sets and incurs

greater information loss from bucketing. We validate these findings

empirically in our results.

It should be noted that in pattern mining research, it is com-

mon to partition data ranges into hundreds of bins [13]. Since

finer partitions would only further increase computational costs

of discretization, we demonstrate our efficiency improvements on

relatively simple baseline approaches.

5.3 RQ2: Validation of results
We considered 24 high priority crash tasks (all closed) generated

from July-September 2019, where contrast mining generated find-

ings. 16 of the tasks involved hard bugs, where stack traces were

unavailable or difficult to parse. For these tasks, we selected 32

contrast sets we generated with the highest ranked anomaly scores.

We have manually analyzed this set of crashes and the discussion

and code changes that are attached to them, along with contrast

mining findings. We labelled each contrast set as directly useful,

relevant or compatible, and not helpful. We found 12 cases where

the tool surfaced interesting patterns that were directly useful to

the crash resolution; 18 cases where the tool generated compatible

results but were not sufficient to root cause the bug, and 2 cases

where our mining tool was not helpful.

5.4 RQ3: Improvement in Usability of Anomaly
Scores

. In pattern mining we analyze the data in an exploratory fashion,

where the emphasis is not on predictive accuracy but rather on

finding previously unknown patterns in the data.

We thus use an example to illustrate how the new anomaly

score and the current practice of using percent difference between

expected and observed supports rank the features differently. We

ran contrast set mining using data from July 2019. Figure 7 contains

anomalies found for a regressing SIG, and the anomalies are ranked

by the new anomaly score and the original percent difference based

ranking.

It is easy to see that the original anomaly score is in favor of find-

ing anomalieswith low expected support, such as time_since_init_ms:
(0, 150000) and background_time_since_init_ms: (0, 1000).

The new anomaly score gives a higher rank to anomalies where

the expected support is not extremely low, such as major_app_version:
229. This mitigates bias towards rare feature sets.

5.5 Early Experiences
Since experimenting with contrast set mining on field crashes, en-

gineers trying the tool have found numerous cases where CCSM

surfaced important insights on hard issues, and in some cases, found

the root cause of groups of crashes. We find that the analysis of

embedded navigation event sequences using CCSM adds signifi-

cant value to crash analysis using STUCCO. By pinpointing specific

frames, CCSM is able to provide more actionable insights than anal-

ysis on categorical variables alone. We describe several instances

where both CCSM and STUCCO helped guide the debugging pro-

cess below.

• Root Cause for Hard Bugs. Testing CCSM on production data

over multiple days when a group of crashes was the most

prevalent among users, engineers found that navigation to

and from a navigation module related to comments showed

up within the top five anomalous features consistently. Prod-

uct engineers confirmed that the fix for the issue involved

the navigation events surfaced by CCSM. This crash is an

example of OOM errors, which are especially difficult to de-

bug due to the lack of stack traces (see Section 2). This is

a case where continuous CSM makes it possible to analyze

hard bugs due to its scalability to high dimensional datasets.

If STUCCO with equi-width binning instead of CCSM was

applied, the anomalous navigation events might not be sur-

faced, since the limited sample size at the non-zero bins

Debugging Crashes using Continuous Contrast Set Mining ICSE 2020 SEIP, 2020, Seoul, Korea

(a) 1k crash reports. (b) 10k crash reports.

(c) 60k crash reports. (a) Run time vs. Input size.

Figure 6: Execution times for different contrast mining implementations. The blue line is the CCSM approach.

Figure 7: Comparison of statistical ranking definitions

Features Expected Support Observed Support Weighted Anomaly Score Percent Difference

app version = 2 0.68 1 1.364 0.472

app build = 123 0.68 1 1.363 0.471

time since init = (0, 150000) 0.081 0.214 0.518 1.657

OS version = 12 0.742 0.858 0.355 0.156

background time since init = (0, 1000) 0.086 0.172 0.341 1.008

would be quite unlikely to yield a statistically significant

difference, as discussed in Section 2.2.1.

• Issue Discovery. Engineers using the contrast mining tool saw

that a certain app build was highly anomalous and experi-

encing high crash rates. For the corresponding SIG, contrast

mining data showed that the number of app crashes we ob-

served with this build was 56% higher than expected. This

build number represents the x86 build type. Engineers con-

firmed that underlying issues such as this can otherwise be

left unnoticed because the cohort of affected devices is very

small, and signal is diluted because the build type failures

are spread across 5-6 different SIGs.

• Describing Crash Groups. Contrast mining finds statistically

significant deviations to help pinpoint the root cause of

crashes. We ran contrast mining on a SIG associated with a

high priority task. We then contacted the task owner with

the list of anomalous features. The mobile engineer found

the information very helpful as a way to differentiate be-

tween normal behavior and statistically significant differ-

ences. Specifically, one highly anomalous contrast set indi-

cated that connection class was poor. “The fix that I proposed

is based on the assumption that the network is slow, and this

confirms that.”

ICSE 2020 SEIP, 2020, Seoul, Korea Qian, et al.

The qualitative case studies have been performed by authors to

evaluate the algorithm in production setting with engineers and

may suffer from selection bias as positive results are more likely to

be reported.

6 RELATEDWORK
There is a growing body of research applying machine learning

techniques to crash triaging and resolution. Information retrieval

based bug localization techniques extract semantic information

from crash stacks, and have been shown to scale to large project

sources with low cost text analysis [8]. Wu et al. located crash-

inducing changes by training classification models on candidates

extracted from buckets of crash reports [12].

The problem of bucketing crash reports has been well studied in

literature. Dhaliwal et al. [6] found that crash clusters containing

reports triggered by multiple bugs took longer to fix, and proposed

grouping crashes using the Levenshtein distance between stack

traces. Campbell et al. [3] found that off-the-shelf information re-

trieval techniques outperformed crash deduplication algorithms

in categorizing crashes at scale. Fan et al. [7] conducted a compre-

hensive study of open source Java crash reports and distilled 11

common categories of developer errors.

For the most part, the above approaches focus on mining infor-

mation at the trace level, or individual crash reports. Our approach

focuses on analyzing characteristics of groups of crashes in aggre-

gate to aid developers in crash triaging and resolution. Using our

tool in conjunction with aforementioned crash analysis techniques

can give developers more actionable insights, both for hard bugs

and for standard crash reports with stack traces. Castelluccio et
al. [4] presented the first application of CSM to the problem of crash

group analysis. To the best of our knowledge, we are the first to

bring contrast set mining to the continuous domain.

7 CONCLUSION AND FUTUREWORK
App crashes are severe symptoms of software errors, causing signif-

icant pain for both end users and oncall engineers. Maintaining app

health is therefore one of the top priorities of large software orga-

nizations. We propose CCSM, a novel pattern mining algorithm for

continuous data that scales to datasets with thousands of features.

We found that automated crash analysis can detect anomalous pat-

terns that are difficult to identify with manual inspection, and that

the analysis of continuous features greatly adds value to existing

categorical data mining approaches.

In the future, we plan to experiment with non-parametric meth-

ods to test statistical significance. Both the one-wayANOVA and two-
sample t-test are known to be robust to the normality assumption.

However, one-way ANOVA also assumes homogeneity of variances

among the groups, which may not be realistic for distributions of

field crashes. When this assumption is violated, we can use meth-

ods such as a Kruskal-Wallis H Test to test statistical significance

instead.

Currently, CCSM also relies heavily on domain expertise to set

user-defined thresholds to prune nodes that are not large. Exploring
heterogeneous thresholds for different sets of features based on

domain expertise will be useful contribution to the literature.

ACKNOWLEDGMENTS
We would like to thank Facebook engineers for their many engi-

neering contributions and insight into unique challenges engineers

face in a large software ecosystem. Saransh Bansal, Rushabh Shah

and Phuong Nguyen applied contrast mining to Android reliability

issues and provided domain expertise to help us design contrast

mining tools. Alex Cohen and Jeremie Marguerie scoped out the

continuous use case, and served critical roles in the application of

CCSM to iOS reliability. Corrine Torrachio built visualizations of

CCSM results. We also thank Eric Liaw, Surupa Biswas and Erik

Meijer for their continued support for projects applying machine

learning to software engineering problems.

REFERENCES
[1] Stephen D. Bay. 2000. Multivariate Discretization of Continuous Variables for

Set Mining. In Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’00). ACM, New York, NY, USA,

315–319. https://doi.org/10.1145/347090.347159

[2] Stephen D. Bay and Michael J. Pazzani. 1999. Detecting Change in Categorical

Data: Mining Contrast Sets. In Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’99). ACM, New York,

NY, USA, 302–306. https://doi.org/10.1145/312129.312263

[3] Joshua Charles Campbell, Eddie Antonio Santos, and Abram Hindle. 2016. The

Unreasonable Effectiveness of Traditional Information Retrieval in Crash Report

Deduplication. In Proceedings of the 13th International Conference on Mining
Software Repositories (MSR ’16). ACM, New York, NY, USA, 269–280. https:

//doi.org/10.1145/2901739.2901766

[4] Marco Castelluccio, Carlo Sansone, Luisa Verdoliva, and Giovanni Poggi. 2017.

Automatically Analyzing Groups of Crashes for Finding Correlations. In Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2017). ACM, New York, NY, USA, 717–726. https://doi.org/10.1145/

3106237.3106306

[5] Jacob Cohen. 1992. Statistical Power Analysis. Current Directions in Psychological
Science 1, 3 (1992), 98–101.

[6] Tejinder Dhaliwal, Foutse Khomh, and Ying Zou. 2011. Classifying field crash

reports for fixing bugs: A case study of Mozilla Firefox. IEEE International
Conference on Software Maintenance, ICSM, 333–342. https://doi.org/10.1109/

ICSM.2011.6080800

[7] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su. 2018. Large-Scale

Analysis of Framework-Specific Exceptions in Android Apps. In 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE). 408–419. https:

//doi.org/10.1145/3180155.3180222

[8] Shivani Rao and Avinash Kak. 2011. Retrieval from Software Libraries for Bug

Localization: A Comparative Study of Generic and Composite Text Models. In

Proceedings of the 8th Working Conference on Mining Software Repositories (MSR
’11). ACM, New York, NY, USA, 43–52. https://doi.org/10.1145/1985441.1985451

[9] Stephen Robertson. 2004. Understanding inverse document frequency: On theo-

retical arguments for IDF. Journal of Documentation 60 (2004).

[10] Mondelle Simeon and Robert Hilderman. 2008. Categorical Proportional Dif-

ference: A Feature Selection Method for Text Categorization. In Proceedings
of the 7th Australasian Data Mining Conference - Volume 87 (AusDM ’08). Aus-
tralian Computer Society, Inc., Darlinghurst, Australia, Australia, 201–208. http:

//dl.acm.org/citation.cfm?id=2449288.2449320

[11] Geoffrey I. Webb, Shane Butler, and Douglas Newlands. 2003. On Detecting Dif-

ferences Between Groups. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’03). ACM, New York,

NY, USA, 256–265. https://doi.org/10.1145/956750.956781

[12] Rongxin Wu, Ming Wen, Shing-Chi Cheung, and Hongyu Zhang. 2018. Change-

Locator: Locate Crash-inducing Changes Based on Crash Reports. In Empiri-
cal Software Engineering 23 (ESE 2018). ACM, New York, NY, USA, 2866–2900.

https://doi.org/10.1007/s10664-017-9567-4

[13] Gangyi Zhu, Yi Wang, and Gagan Agrawal. 2015. SciCSM: Novel Contrast

Set Mining over Scientific Datasets Using Bitmap Indices. In Proceedings of the
27th International Conference on Scientific and Statistical Database Management
(SSDBM ’15). ACM, New York, NY, USA, Article 38, 6 pages. https://doi.org/10.

1145/2791347.2791361

https://doi.org/10.1145/347090.347159
https://doi.org/10.1145/312129.312263
https://doi.org/10.1145/2901739.2901766
https://doi.org/10.1145/2901739.2901766
https://doi.org/10.1145/3106237.3106306
https://doi.org/10.1145/3106237.3106306
https://doi.org/10.1109/ICSM.2011.6080800
https://doi.org/10.1109/ICSM.2011.6080800
https://doi.org/10.1145/3180155.3180222
https://doi.org/10.1145/3180155.3180222
https://doi.org/10.1145/1985441.1985451
http://dl.acm.org/citation.cfm?id=2449288.2449320
http://dl.acm.org/citation.cfm?id=2449288.2449320
https://doi.org/10.1145/956750.956781
https://doi.org/10.1007/s10664-017-9567-4
https://doi.org/10.1145/2791347.2791361
https://doi.org/10.1145/2791347.2791361

	Abstract
	1 Introduction
	2 Overview
	2.1 STUCCO Contrast Set Mining Algorithm
	2.2 Continuous Features of Crash Reports

	3 Continuous Contrast Set Mining
	3.1 Base CCSM Algorithm
	3.2 Ranking Contrast Sets
	3.3 Confidence Intervals

	4 Contrast Set Mining in Practice
	4.1 Mobile App Reliability at Facebook
	4.2 Usability of Contrast Sets

	5 Evaluation
	5.1 Implementation Details
	5.2 RQ1: Analysis of Execution Times
	5.3 RQ2: Validation of results
	5.4 RQ3: Improvement in Usability of Anomaly Scores
	5.5 Early Experiences

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

