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ABSTRACT
We present OpenNEEDS, the first large-scale, high frame rate, com-
prehensive, and open-source dataset of Non-Eye (head, hand, and
scene) and Eye (3D gaze vectors) data captured for 44 participants as
they freely explored two virtual environments with many potential
tasks (i.e., reading, drawing, shooting, object manipulation, etc.).
With this dataset, we aim to enable research on the relationship
between head, hand, scene, and gaze spatiotemporal statistics and
its applications to gaze estimation. To demonstrate the power of
OpenNEEDS, we show that gaze estimation models using individual
non-eye sensors and an early fusion model combining all non-eye
sensors outperform all baseline gaze estimation models considered,
suggesting the possibility of considering non-eye sensors in the
design of robust eye trackers. We anticipate that this dataset will
support research progress in many areas and applications such as
gaze estimation and prediction, sensor fusion, human-computer in-
teraction, intent prediction, perceptuo-motor control, and machine
learning.

CCS CONCEPTS
• Human-centered computing → User centered design; • Com-
puting methodologies→ Model verification and validation.
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Figure 1: Examples of the indoor and outdoor scenes dur-
ing open-ended VR gameplay. The 3D gaze vector has been
shown in these images for visualization purposes only
(green dot). These represent examples of potential tasks: a)
object interaction; b) playing a shooting game; c) drawing; d)
reading. The axis orientation of the dataset is also displayed
in a.

Papers), May 25–27, 2021, Virtual Event, Germany. ACM, New York, NY, USA,
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1 INTRODUCTION
Understanding the relationship between head, hand, scene, and gaze
information is relevant for many research areas and applications
such as eye tracking, multimodal learning, and human-computer
interaction. Previous works across a range of fields suggest a rela-
tionship between gaze information and hand spatiotemporal sta-
tistics [Land and Hayhoe 2001; Li et al. 2013; Ren and Crawford
2009], head motion [Einhäuser et al. 2007; Fang et al. 2015; Hu et al.
2019; Land and Hayhoe 2001; Li et al. 2013; Pelz et al. 2001; Yarbus
1967], and scene content [Cheng et al. 2015; Cornia et al. 2018; Hou
et al. 2017; Huang et al. 2015; Itti et al. 1998; Judd et al. 2009; Li and
Yu 2015; Rai et al. 2017; Sitzmann et al. 2018; Torralba et al. 2006].
Moreover, recent work has shown that various combinations of
eye, head, scene, and hand signals can be leveraged for applications
such as gaze estimation [Hu et al. 2019], prediction [Li et al. 2013],
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and classification [Kothari et al. 2020] as well as determining a
person’s focus of attention in a scene, e.g. [Cheng et al. 2015; Gofer-
man et al. 2012; Itti et al. 1998; Jia and Han 2013; Judd et al. 2009;
Kienzle et al. 2007; Koch and Ullman 1987; Liu et al. 2011; Torralba
et al. 2006]. Though these findings and approaches together provide
evidence for an association between gaze, head, hand, and scene
information, there is no dataset nor model that captures the com-
prehensive relationship between these signals, especially during
open-ended exploration (Table 1). Furthermore, the recent success
of data-driven machine learning models in capturing the complex
associations between multi-modal signals [Ramachandram and Tay-
lor 2017] has driven an increasing demand for datasets of sufficient
size and variety to capture and leverage these relationships for gaze
estimation and the many other research areas they could support.
To address this need, we release OpenNEEDS, a large-scale dataset
of sequences of head, hand, scene, and gaze signals sampled at 90Hz
as users explore open-ended virtual environments.

The widespread utility of eye tracking technology has created a
growing demand for consistent and reliable eye-tracking systems,
and there is still a need for new and creative approaches that can
enhance the accuracy of eye-tracking data. To demonstrate the
utility of OpenNEEDS, we quantify the extent to which these non-
eye signals (head, hand, scene) can be leveraged for producing a
spatially accurate estimate of gaze. Specifically, we use a machine
learning framework to show that gaze estimation models trained
on data from each non-eye sensor indivdiually and their complete
combination outperform all gaze estimation baselines considered.
Overall, we believe that OpenNEEDS has the potential to support a
wide range of applications beyond gaze estimation and prediction,
such as sensor fusion, intent inference, visual saliency, and human-
computer interaction. In addition, we believe that this dataset can
inform neuro-, cognitive, and perception science approaches to
understanding perceptuo-motor coordination.

2 RECORDING HEAD, HAND, SCENE, AND
GAZE DATA

2.1 Data capture
Participants: The dataset was captured from 44 voluntary partic-

ipants (age (years) = 31.7 (SD 10.5); 20 females; 40 right-handed; ipd
(mm) = 62.95 (SD 3.62)). Before taking part in data collection, all
participants provided written informed consent for using their data
for research and commercial purposes. All participants had normal
or corrected-to-normal visual acuity in both eyes. The dataset was
anonymized to remove any personally identifiable information.

Apparatus: Participants were fitted with a custom-made pro-
totype virtual reality head-mounted display (VR-HMD) and used
Oculus Rift positional sensors and controllers for interacting with
the virtual environment. The field-of-view of the VR-HMD was
104◦. The HMD was equipped with a custom-made eye-tracker
mounted with two synchronized eye-facing infrared cameras. The
eye tracker had a median gaze error (p50) of 1.3◦ following suc-
cessful calibration. We recorded the head and hand pose at 90 Hz
using Oculus Rift’s intertial measurement unit (IMU) and Touch
controllers respectively. Virtual environments were designed and

displayed using the Unity game engine. To produce real-time record-
ings of the scenes, we captured the pose and position of all interac-
tive objects in the scene and replayed each participants playtime
offline to create full-resolution (2560 x 1440 pixels) scene RGBD
images and motion vector maps.

Stimuli: Given that gaze distributions have been shown to differ
based on the type of scene (e.g., indoor vs. outdoor) and task (e.g.,
making a sandwich vs. ordering coffee) with which the observer is
engaged [Sprague et al. 2015], our scenes were designed to elicit
a range of tasks and therefore capture a wide variety of gaze be-
haviors. We created one indoor and one outdoor scene each with
the same interactive content (Figure 1): a table of graspable objects
(including a clipboard of instructions and a gun which initiates a
shooting game) and a canvas with crayons and an eraser. Together
these objects provided the opportunity for many behaviors such
as reading, throwing, object-manipulation, drawing, aiming, and
shooting, and the indoor and outdoors scenes are primed to capture
different gaze distributions [Sprague et al. 2015]. Therefore, we
anticipate that this will offer support for more robust and gener-
alizable algorithms utilizing the association between head, hand,
scene, and gaze across a variety of contexts.

Procedure: Participants stood in a large room and could move
freely within the space. They were asked to freely explore the
environments (indoor and outdoor) for up to five minutes each
with no further instructions, and were free to quit participation
when they wished. A clipboard of written instructions was provided
in each environment to encourage their awareness of the types of
opportunities for interaction (Figure 1), though no specific tasks
were explicitly requested, required, nor tracked throughout the
experiment. Eye-tracking calibration was performed at the start of
the experiment and between scenes using a custom-built calibration
procedure. Each calibration was performed until successful (i.e.
p50 of 1.3◦), and thus all participants included in the reported
dataset met this requirement. Of the 44 total participants, 41 and 43
successfully completed the indoor and outdoor scenes, respectively.
The three participants and one participant excluded from the indoor
and outdoor scene respectively were left out due to unsuccessful
calibration. There were no auditory stimuli. During playtime, we
recorded the positions of the interactive objects, the controllers,
head pose information, and 3D gaze vectors.

3 DATA PROCESSING
All recorded signals were referenced to the cyclopean eye (i.e. center
of the head between the eyes) making the OpenNEEDS dataset
egocentric. The axis orientation is represented in Figure 1a. Each
sensor signal was measured at 90Hz for a total of 2,194,865 samples
of data. In this section, we summarize the format in which each
signal is stored. We also characterize the gaze distributions and
fixation biases between scene types and users.

3.1 Sensors
Head: Pose: The head orientation was recorded as a unit quater-

nion at each frame (specifically 𝑋 , 𝑌 , 𝑍 , and𝑊 coordinates). The
use of quaternions offers singularity-free rotation with few param-
eters while maintaining correct algebraic operations [LaValle et al.
2014]. Motion: We encoded pixel motion in screen space within a
range of -1 to 1, representing the offset from the last frame to the
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Table 1: Comparing other publicly available datasets in the field of non-eye sensors and eye tracking to OpenNEEDS. No other
dataset comprehensively and explicitly captures head, hand, and scene non-eye sensors along with 3D gaze vectors in VR
scenes that offer object interaction. However, the existence of other related datasets points to the rich areas of research that
could be informed by OpenNEEDS. (Resolution in the table refers that of the scene images).

Sensors Other Characteristics

Dataset head hand scene gaze samples subjs resolution FR task

OpenNEEDS ✓ ✓(6-dof) ✓ ✓ 2,086,507 44 128 x 71 90Hz VR free task
GTEA Gaze+ [Li et al. 2015] ✓ ✓ ∼700,000 26 1280 x 960 24Hz meal prep
EGTEA Gaze+ [Li et al. 2018] ✓(masks) ✓ ✓ ∼2,500,000 32 1280 x 960 24Hz meal prep
Sitzmann et al., 2018 ✓ ✓ ✓ 1,980 169 1920 x 1080 120Hz VR fixed view
SGaze [Hu et al. 2019] ✓ ✓ ✓ 18,000 60 28 x 28 100Hz VR static scene
GW [Kothari et al. 2020] ✓ ✓ ✓ ∼5,800,000 19 1920 x 1080 300Hz four tasks

current frame. These motion values were stored as an image (128 x
71 pixels) at each frame in the red and green channels in a linear
color space at an 8-bit resolution.

Hand: Left- and right-hand controller data were captured for
each participant. The hand orientation was recorded as a unit
quaternion at each frame (𝑋 , 𝑌 , 𝑍 , and𝑊 coordinates). The 3D po-
sition of each hand relative to the center of the head was recorded
in meters (𝑋 , 𝑌 , and 𝑍 coordinates).

Scene: Color images: The on-screen image presented to the user
at each frame was stored as a 3-channel (RGB) image at an 8-bit
resolution in sRGB color space. In order to limit data storage to a
reasonable size for use, the color images were down-sampled to a
pixel resolution of 128 x 71. We chose color over grayscale images
given their potential utility for future use cases. Depth images: The
depth maps were recorded at on-screen resolution and the depth
values were the distance in meters from the cyclopean eye along the
viewing axis, calculated using the LinearEyeDepth shader function
in Unity. For reasonable storage, the depth maps were also down-
sampled to a pixel resolution of 128 x 71. Objects: The position and
quaternion of each interactive object in the scene was recorded for
replaying the gameplay offline to store the color, depth, and motion
images. The 3D position in meters and unit quaternion over time
are included for all 28 of the interactive objects.

Gaze: Ground truth 3D gaze vectors in meters are provided for
each frame. Gaze 𝑋 and 𝑌 were limited by the FOV (104◦), and gaze
𝑍 (depth) limits were [0.3,5] meters. We measured gaze vectors
and cornea centers of each participant using a user-calibrated glint-
based model [Guestrin and Eizenman 2006].

3.2 Fixation biases and inter-subject agreement
To explore whether OpenNEEDS captures typical gaze behavior,
and therefore assess its robustness for gaze estimation and gaze
prediction models in particular, we analyzed the gaze distributions
for each scene type and specifically determined whether previously
reported fixation biases exist in our dataset [Hu et al. 2019; Judd
et al. 2009; Nuthmann and Henderson 2010; Sitzmann et al. 2018].
Following the procedure in [Nuthmann and Henderson 2010], we
show that our dataset exhibits a center bias with a slight downward
vertical shift and a broader distribution along the vertical dimension
(Figure 2a). We found that the screen center and mean position of all
fixations [Cornia et al. 2018; Hu et al. 2019; Li et al. 2013; Nakashima
et al. 2015] were appropriate baseline metrics for our dataset given
that approximately 20% of all fixations lie within 5◦ eccentricity

of the screen center and 50% of all fixations lie within 10◦ of the
fixation mean respectively (Figure 2b).

Quantifying the agreement in gaze behavior across users is cru-
cial to understand the robustness of our data and thus its utility for
applications with success contingent on user generalizability. We
assessed inter-observer congruency by means of a receiver operat-
ing characteristic (ROC) curve [Le Meur and Baccino 2013; Torralba
et al. 2006], following a previously reported procedure [Sitzmann
et al. 2018]. For each user, we determined the extent to which their
gaze behavior agrees with the average gaze behavior of all other
users. A fast convergence of the ROC curve to its maximum value
of 1 (i.e. a high AUC) is indicative of high agreement between the
gaze behavior of the 𝑖𝑡ℎ user and all other users. Figure 3 shows
an ROC curve for each of the 43 and 41 users that participated in
the outdoor and indoor scenes, respectively, and indicates the high
average AUC for both scenes, suggesting a strong similarity in gaze
behaviors across users.

4 GAZE ESTIMATION
The widespread utility of eye-tracking technology has created a
growing demand for consistent and reliable eye-tracking systems.
Though there have been significant improvements in eye track-
ing, there is still a need for new and creative approaches that can
enhance the accuracy of eye-tracking data, specifically for perfor-
mance in noisy environments (e.g., strong environmental lighting,
facial occlusions). Previous studies suggest that non-eye signals are
useful for gaze estimation by incorporating head pose/motion into
visual saliency models to boost their performance [Nakashima et al.
2015; Sitzmann et al. 2018], using a combination of head motion,
hand position, and gaze temporal dynamics for gaze prediction in
egocentric video [Li et al. 2013], and combining head motion and
a coarse visual saliency map for gaze estimation in VR [Hu et al.
2019]. Though these previous approaches provide support for the
idea that head, hand, and scene signals are useful for estimating
gaze, they have not yet addressed how these signals individually
and in complete combination contribute to gaze estimation. Fur-
thermore, the datasets on which these models were built capture
gaze behaviors in constrained situations, such as only one type of
task [Li et al. 2013] or in VR environments without the potential
for object interaction [Hu et al. 2019]. Thus, using OpenNEEDS,
we can better characterize the contribution of non-eye sensors to
gaze estimation in more naturalistic conditions. As such, in this
section we report on a baseline experiment using a machine learn-
ing framework to quantify the contribution to gaze estimation of
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Figure 2: Fixation biases and inter-subject agreement in gaze behavior in OpenNEEDS. a) We found that both center and mean
biases are present in OpenNEEDS, as windows centered around these 2D points account for a large percentage of all fixations.
b ROC curves are calculated by assessing the quantity of fixations for a given subject (e.g. Binar Subj) that are accounted by
for the 𝑛%most salient reasons of the average ground truth saliency map (e.g. Saliency). A fast convergence to 1 (i.e. high AUC)
is indicative of high agreement between a given subject and all others. The ROC curve for each subject, and the average and
standard deviation of the AUC of the ROC curves across users are shown in the lower right-hand quadrant.

each individual non-eye sensor (head, hand, and scene) and the
full combination thereof via an early sensor fusion approach [Poria
et al. 2017].

4.1 Feature engineering
To prepare OpenNEEDS for training gaze estimation models, we
discarded all frames with missing gaze vectors and outlying ground
truth gaze vectors (i.e. with greater than 99 percentile scores), re-
ducing the dataset to 1,933,551 frames. To control for bias to users
or scenes, we created a data subset that required an equal number
of frames from each user and each scene type. This resulted in our
final dataset of 31 different users each with 2.5 minutes of game
play from each scene for a total of 837,000 frames. Given that the
goal of this paper is to release OpenNEEDS, we only intend to re-
port a baseline experiment that demonstrates this dataset’s utility,
particularly in the context of gaze estimation models. Thus, we did
not perform an exhaustive analysis of the optimal gaze estimation
model that could be designed using OpenNEEDS, nor did we train
our model on the comprehensive set of signals available, but rather
we report a baseline model trained on a representative subset of
signals including one from each category: head, hand, and scene.
The signal subset used as the dataset for our experiment was as
follows:

Head: We included head orientation as input to our gaze estima-
tion model. The head orientation was represented by the originally
recorded unit quaternion at each frame.

Hand: The left and right hand orientations and positions were
included as input to our gaze estimation model. Both hand orienta-
tions were represented by their originally recorded unit quaternions
at each frame. Both hand positions were represented by their stored
3D coordinates in meters relative to the cyclopean eye.

Scene: Rather than including the raw RGB images presented on
screen at each frame, we included their visual saliency maps (i.e. a
value within the range (0,1) that represents the expected density
of eye fixations for each pixel given the content of the scene). To
create these saliencymaps, we processed each of the original images
(down-sampled to 64x36 pixels) using a pre-trained, state-of-the-art

SAM-ResNet saliency predictor [Cornia et al. 2018]. We further
down-sampled each saliency map to 32x18 pixels for training.

Annotations: We transformed the original ground truth 3D gaze
vectors to 2D gaze angles, (𝜃, 𝜙), for training and testing.

4.2 Sensor Models
We characterize the task of gaze estimation as a supervised regres-
sion problem. We used gradient boosting regression trees (GBRT),
which are a powerful algorithm for supervised regression prob-
lems that produce an estimate by combining predictions across
many learners (trees) to create a powerful "committee" of weighted
votes. Gradient boosting is a particular type of boosting strategy
that iteratively includes the trees with predictions closest to the
maximal descent direction (the negative gradient) to help prevent
overfitting to the training data [Hastie et al. 2009]. Thus, a GBRT is
an additive model of the following form: 𝐹𝑚 (𝑥) = 𝐹𝑚−1 (𝑥) +ℎ𝑚 (𝑥),
where 𝐹 is the GBRT model, and ℎ𝑚 are the basis functions mod-
eled as small regression trees of fixed size. With each boosting
iteration, a new tree is added to the GBRT model, 𝐹 , and the
weights at each iteration are computed by the following equation:
𝑤𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤

1
𝑁
Σ𝑁
𝑖
𝐿(𝑦𝑖 , 𝐹 (X𝑖 ,𝑤)), where 𝐿 is the squared error

loss function in our case. We trained this model to estimate the 2D
gaze angle, Y = (𝜃, 𝜙), as a function of the input features, X. For a
more complete description of GBRTs, see [Chen and Guestrin 2016;
Friedman 2001; Hastie et al. 2009; James et al. 2013].

Comparison of the performance of each of the GBRT models
to the baselines was accomplished using 𝑘-fold (here 5-fold) cross
validation, resulting in a 80% (training data subset)/20% (test data
subsets) split. We instituted three different methods for creating
the data subsets for this procedure: In the Random method, original
data were shuffled into five equally-sized subsets. In the Subject-
stratified method, each of the five subsets was comprised of an
equal representation of each subject. In the Subject-independent
method, each of the five subsets included data from a unique set of
users. We trained a separate GBRT model for each non-eye sensor
i.e., head, hand, scene, and one model combining all these sensors
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with equal weighting. A separate GBRT model was trained for
each of the five-fold cross-validation methods, i.e., random, subject-
stratified, subject-independent, for a total of 12 GBRT models. For
each model, we applied an optimization procedure to decide values
for the following GBRT-hyperparameters: learning rate, number of
trees, tree depth, child weight, minimum loss reduction required
for partitioning 𝛾 , and the L1 regularization term on the weights
𝛼 . The optimal GBRT-hyperparameters chosen for each model are
shown in Table S2.

Evaluation Metric: We report the gaze estimation results in terms
of the spatial accuracy of the gaze estimate for each model. We
defined spatial accuracy as the angular error in degrees between
the estimated and ground truth 2D gaze angles.

Individual Sensor Models: We trained an individual GBRT model
for each non-eye sensor (head, hand, and scene). To quantify the
independent contribution of each sensor to the gaze estimate, we
performed five-fold cross-validation on each non-eye sensor model
using each of the three different data grouping methodologies de-
scribed above. We compared the performance of the individual
sensor models to the baseline models to determine whether each
sensor is useful for gaze estimation. Across all cross-validation
methods, each individual sensor model (i.e., head, hand, and scene)
had a lower average angular error than each of the three base-
line models (i.e., random, center, and mean) confirming that these
non-eye sensor can be leveraged for gaze estimation.

Early Sensor Fusion Model: For a baseline assessment of the com-
bined utility of the measured non-eye sensors for gaze estimation,
we trained an early fusion model by concatenating the multimodal
features (head, hand, and scene) into a single vector of input [Po-
ria et al. 2017]. Here, we did not apply dimensionality reduction
techniques to the features, nor did we explore more complex sen-
sor fusion approaches (i.e. intermediate and late [Atrey et al. 2010;
Khaleghi et al. 2009; Ramachandram and Taylor 2017]). Our goal
was to provide a baseline estimate of the combined utility of the
OpenNEEDS non-eye sensors for gaze estimation. Further investiga-
tion into advanced sensor fusionmethods (e.g. intermediate and late
fusion) will allow us and others to fully exploit the complementary
nature of the sensor modalities.

4.3 Baseline Models
The baseline models are defined based on fixation tendencies re-
vealed in previous research [Judd et al. 2009; Nuthmann and Hen-
derson 2010] and in our dataset (see Section 3.2). We cross-validated
the performance of each baseline model for each of the three five-
fold grouping methods, i.e. random, subject-stratified, and subject-
independent.

Random: This model estimates the 2D gaze angles directly from
a random normal distribution (N(0, 1)) truncated by the field-of-
view of the HMD. Based on gaze distributions reported previously,
e.g. [Judd et al. 2009; Li et al. 2013; Nuthmann and Henderson
2010], we found a standard normal distribution to be a reasonable
approximation of expected fixation patterns.

Center: This study (Figure 2) and many others have reported a
center bias for fixations [Clarke and Tatler 2014; Judd et al. 2009;
Nuthmann and Henderson 2010], and this bias has been exploited
to enhance the accuracy of visual saliency models, e.g. [Cornia et al.

2018; Kruthiventi et al. 2017; Kümmerer et al. 2015; Nakashima et al.
2015; Vig et al. 2014]. Our center baseline model estimates the 2D
gaze angle as the center point (i.e. 𝑌 (0, 0)) for each frame.

Mean: Given that the mean fixation point compared to the cen-
ter point accounted for a slightly higher percentages of all total
fixations in our dataset (see Figure 2a), we also used the mean fixa-
tion as a baseline for gaze estimation. The mean fixation was also
used as a baseline comparison for a previous VR gaze estimation
model [Hu et al. 2019]. Our mean baseline model estimates the 2D
gaze angle as the mean gaze vector of the training set.

4.4 Results
Figure 3 and Table 2 show that the gaze estimation model for each
individual non-eye sensor (head, hand, and scene) and their com-
plete combination outperform each of the baseline models across
all five-fold cross-validation methods. The combined early fusion
model outperforms all other models when the training and test
data are subject-independent, suggesting that this model is more
generalizable to novel users and thus more relevant for typical gaze
estimation applications. In general, the substantial improvement in
accuracy across models when all users are represented in the train-
ing and test data (random and subject-stratified cross-validation
methods) suggests user calibration, for individual differences in
features such as head-eye latency, handedness, arm length, etc.,
could improve the performance of the subject-independent mod-
els, shifting their accuracy closer to that of the other methods.
The subject-stratified hand GBRT model achieves the lowest error
across all models, reflecting the strong relationship between hand
and gaze position in OpenNEEDS (Figure S1 and Table S1). That
the hand GBRT model outperforms the combined model in this
condition suggests that our early fusion method might not be the
optimal multimodal design to optimally leverage the non-eye sen-
sor signals for gaze estimation. To begin to assess this, we tripled
the number of trees for the GBRT early fusion model and found
that the angular error improved to 2.75◦, however, still worse than
that of the hand GBRT model (2.46◦). This finding suggests the
need for designing more complex multimodal models to capture
the full complementary power of the non-eye sensor signals for
gaze estimation and how they can best be combined with eye data
to augment traditional eye-tracking approaches. We intend and en-
courage others to improve upon our reported results and to define
further research areas and applications for this dataset.

Figure 3: The spatial accuracy (i.e. angular error) in the gaze
estimate for baseline and sensor GBRT models (error bars
indicate 1 SEM). Each non-eye sensor alone and an early fu-
sion model outperform baseline metrics.
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Table 2: Baseline and sensormodel performances for gaze estimation reported in terms of error between predicted and ground
truth 2D gaze angles. The average and standard deviation (in parentheses) of the angular error (calculated by five-fold cross-
validation as the mean and standard deviation of the prediction error of the test set for each fold) is provided for each model.

Baseline Models Sensor Models

𝑘-fold method random center mean head hand scene all

Random 30.11 (0.025) 10.07 (0.004) 9.36 (0.006) 5.32 (0.007) 2.49 (0.013) 3.70 (0.012) 2.89 (0.014)
Subj-stratified 30.12 (0.022) 10.07 (0.015) 9.36 (0.008) 5.30 (0.019) 2.46 (0.016) 3.58 (0.010) 2.86 (0.007)
Subj-independent 30.12 (0.210) 10.04 (0.575) 9.35 (0.527) 8.51 (0.389) 8.81 (0.327) 8.21 (0.279) 8.05 (0.257)

5 CONCLUSION
We presented OpenNEEDS, a publicly available dataset capturing
head, hand, scene, and gaze signals as participants freely explored
interactive open-ended virtual environments.We demonstrated that
the non-eye signals of OpenNEEDS are informative for estimating
gaze, and we anticipate that this dataset will inform a variety of
future research endeavors and applications such as eye tracking,
sensor fusion, and human-computer, intent prediction, perceptuo-
motor control, and machine learning. The dataset is available for
download at https://www.dropbox.com/work/OpenNEEDS_2020
upon request (please email either of the corresponding authors with
your name and organization for permission).
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