
SynSin: End-to-end View Synthesis from a Single Image

Olivia Wiles1∗ Georgia Gkioxari2 Richard Szeliski3 Justin Johnson2,4

1University of Oxford 2Facebook AI Research 3Facebook 4University of Michigan

Figure 1: End-to-end view synthesis. Given a single RGB image (red), SynSin generates images of the scene at new
viewpoints (blue). SynSin predicts a 3D point cloud, which is projected onto new views using our differentiable renderer; the
rendered point cloud is passed to a GAN to synthesise the output image. SynSin is trained end-to-end, without 3D supervision.

Abstract
View synthesis allows for the generation of new views of

a scene given one or more images. This is challenging; it
requires comprehensively understanding the 3D scene from
images. As a result, current methods typically use multiple
images, train on ground-truth depth, or are limited to syn-
thetic data. We propose a novel end-to-end model for this
task using a single image at test time; it is trained on real
images without any ground-truth 3D information. To this
end, we introduce a novel differentiable point cloud ren-
derer that is used to transform a latent 3D point cloud of
features into the target view. The projected features are de-
coded by our refinement network to inpaint missing regions
and generate a realistic output image. The 3D component
inside of our generative model allows for interpretable ma-
nipulation of the latent feature space at test time, e.g. we can
animate trajectories from a single image. Additionally, we
can generate high resolution images and generalise to other
input resolutions. We outperform baselines and prior work
on the Matterport, Replica, and RealEstate10K datasets.

1. Introduction
Given an image of a scene, as in Fig. 1 (top-left), what

would one see when turning left or walking forward? We

Project page: www.robots.ox.ac.uk/˜ow/synsin.html.
∗Work done during an internship at Facebook AI Research.

can reason that the window and the wall will extend to the
left and more chairs will appear to the right. The task of
novel view synthesis addresses these questions: given a
view of a scene, the aim is to generate images of the scene
from new viewpoints. This task has wide applications in
image editing, animating still photographs or viewing RGB
images in 3D. To unlock these applications for any input
image, our goal is to perform view synthesis in complex,
real-world scenes using only a single input image.

View synthesis is challenging, as it requires compre-
hensive scene understanding. Specifically, successful view
synthesis requires understanding both the 3D structure and
the semantics of the input image. Modelling 3D structure
is important for capturing the relative motion of visible
objects under a view transform. For example in Fig. 1
(bottom-left), the sink is closer than the shower and thus
shifts more as we change viewpoints. Understanding se-
mantics is necessary for synthesising plausible completions
of partially visible objects, e.g. the chair in Fig. 1 (top-left).

One way to overcome these challenges is to relax
the single-image constraint and use multiple views to
reconstruct 3D scene geometry [12, 15, 50, 75]. This also
simplifies semantic modelling, as fewer positions will be
occluded from all views. Recent methods [55, 67, 73] can
be extremely effective even for complex real-world scenes.
However the assumption of multiple views severely limits
their applicability, since the vast majority of images are not
accompanied by views from other angles.

1

www.robots.ox.ac.uk/~ow/synsin.html


Another approach is to train a convolutional network to
estimate depth from images [13, 33], enabling single-image
view synthesis in realistic scenes [40]. Unfortunately this
approach requires a training dataset of images with ground-
truth depth. Worse, depth predictors may not generalise
beyond the scene types on which they are trained (e.g. a net-
work trained on indoor scenes will not work on outdoor im-
ages) so this approach can only perform view synthesis on
scene types for which ground-truth depth can be obtained.

To overcome these shortcomings, there has been grow-
ing interest in view synthesis methods that do not use any
3D information during training. Instead, an end-to-end
generative model with 3D-aware intermediate representa-
tions can be trained from image supervision alone. Existing
methods have shown promise on synthetic scenes of single
objects [31, 53, 54, 59, 66], but have been unable to scale
to complex real-world scenes. In particular, several recent
methods represent 3D structure using dense voxel grids
of latent features [36, 53]. With voxels, the fidelity of 3D
information that can be represented is tied to the voxel
dimensions, thus limiting the output resolution. On the
other hand, point clouds are more flexible, generalise
naturally to varying resolutions and are more efficient.

In this paper we introduce SynSin, a model for view
synthesis from a single image in complex real-world
scenes. SynSin is an end-to-end model trained without
any ground-truth 3D supervision. It represents 3D scene
structure using a high-resolution point cloud of learned
features, predicted from the input image using a pair of
convolutional networks. To generate new views from the
point cloud, we render it from the target view using a high-
performance differentiable point cloud renderer. SynSin
models scene semantics by building upon recent advances
in generative models [3], and training adversarially against
learned discriminators. Since all model components are
differentiable, SynSin is trained end-to-end using image
pairs and their relative camera poses; at test-time it receives
only a single image and a target viewpoint.

We evaluate our approach on three complex real-
world datasets: Matterport [4], RealEstate10K [73], and
Replica [57]. All datasets include large angle changes
and translations, increasing the difficulty of the task. We
demonstrate that our approach generates high-quality
images and outperforms baseline methods that use voxel-
based 3D representations. We also show that our trained
models can generalise at test-time to high-resolution output
images, and even to new datasets with novel scene types.

2. Related work
Research into new view synthesis has a long history in

computer vision. These works differ based on whether they
use multiple images or a single image at test time and on
whether they require annotated 3D or semantic information.

View synthesis from multiple images. If multiple images
of a scene can be obtained, inferred 3D geometry can be
used to reconstruct the scene and then generate new views.
Traditionally, this was done using depth maps [5, 46] or
multi-view geometry [11, 12, 15, 30, 50, 75].

In the learning era, DNNs can be used to learn depth.
[1, 9, 23, 36, 38] use a DNN to improve view synthesis
from a set of noisy, incomplete, or inconsistent depth
maps. Given two or more images of a scene within a small
baseline, [16, 55, 56, 62, 67, 73] show impressive results at
synthesising views within this narrow baseline. [35, 41, 53]
learn an implicit voxel representation of one object given
many training views and generate new views of that object
at test time. [14] use no implicit 3D representation. Unlike
these methods, we assume only one image at test time.
View synthesis from a single image using ground-truth
depth or semantics. A second vein of work assumes a
large dataset of images with corresponding ground-truth 3D
and semantic information to train their 3D representation
[40, 51, 61]. These methods are reliant on a large scale
benchmark and corresponding annotation effort. The depth
may be obtained using a depth or lidar camera [17, 28, 52]
or SfM [33]; however, this is time-consuming and challeng-
ing, especially for outdoor scenes, often necessitating the
use of synthetic environments. We aim to make predictions
anywhere, e.g. the wood scene in Fig. 5, and in realistic
settings, without 3D information or semantic labels.
View synthesis from a single image. DNNs can be used
to learn view synthesis in an end-to-end fashion. One such
line of work synthesises new views using purely image to
image transformations [7, 31, 42, 58, 59, 74]. Later work
performs 3D operations directly on the learned embedding
[66] or interprets the latent space as an implicit surface [54].
However, these works consider synthetic datasets with a
single object per image and train one model per object class.
Most similar to ours is the recent work of [8]. However,
they do not consider larger movements that lead to signifi-
cant holes and dis-occlusions in the target image. They also
consider a more constrained setup; they consider synthetic
object classes and mostly forward motion in KITTI [17],
whereas we use a variety of indoor and outdoor scenes.

Many works explore using a DNN to predict 3D object
shapes [18, 20, 24, 26, 63, 68] or the depth of a scene given
an image [6, 13, 33, 72]. These works focus on the quality
of the 3D predictions as opposed to the view-synthesis task.
Generative models. We build on recent advances in
generative models to produce high-quality images with
DNNs [3, 19, 27, 39, 43]. In [3, 27], moving between the la-
tent codes of different instances of an object class seemingly
interpolates pose, but explicitly modifying pose is hard to
control and evaluate. [39] allows for explicit pose control
but not from a given image; they also use a voxel represen-
tation, which we find to be computationally limiting.



Figure 2: Our end-to-end system. The system takes as input an image I of a scene and change in pose T. The spatial
feature predictor (f ) learns a set of features F (visualised by projecting features using PCA to RGB) and the depth regressor
(d) a depth map D. F are projected into 3D (the diagram shows RGB for clarity) to give a point cloud P of features. P is
transformed according to T and rendered. The rendered features F̄ are passed through the refinement network (g) to generate
the final image IG. IG should match the target image, which we enforce using a set of discriminators and photometric losses.

3. Method
In this section, we introduce SynSin (Fig. 2) and in

particular how we overcome the two main challenges of
representing 3D scene structure and scene semantics. To
represent the 3D scene structure, we project the image
into a latent feature space which is in turn transformed
using a differentiable point cloud renderer. This renderer
injects a 3D prior into the network, as the predicted 3D
structure must obey geometric principles. To satisfy the
scene semantics, we frame the entire end-to-end system
as a GAN and build on architectural innovations of recent
state-of-the-art generative models.

SynSin takes an input image I and relative pose T. The
input image is embedded to a feature space F via a spatial
feature predictor (f ), and a depth mapD via a depth regres-
sor (d). From F and D, a point cloud P is created which is
rendered into the new view (neural point cloud renderer).
The refinement network (g) refines the rendered features to
give the final generated image IG. At training time, we en-
force that IG should match the target image (discriminator).

3.1. Spatial feature and depth networks

Two networks, f and d, are responsible for mapping
the raw input image into a higher dimensional feature
map and a depth map, respectively. The spatial feature
network predicts feature maps at the same resolution as
the original image. These feature maps should represent
scene semantics, i.e. a higher-level representation than
simply RGB colours. The depth network estimates the
3D structure of the input image at the same resolution.
The depth does not have to be (nor would we expect it to
be) perfectly accurate; however, it is explicitly learned in
order to perform the task. The design for f and d follows
standard architectures built for the two tasks respectively:
Spatial feature network f . We build on the BigGAN
architecture [3] and use 8 ResNet blocks that maintain
image resolution; the final block predicts a 64-dimensional
feature for each pixel of the input image.

Depth network d. We use a UNet [47] with 8 downsam-
pling and upsampling layers to give a final prediction of the
same spatial resolution as the input. This is followed by a
sigmoid layer and a renormalisation step so the predicted
depths fall within the per-dataset min and max values.
Please refer to the supplement for the precise details.

3.2. Neural point cloud renderer

We combine the spatial features F and predicted depths
D to give a 3D point cloud of feature vectors P . Given
the input view transform T, we want to view this point
cloud at the target viewpoint. This requires rendering the
point cloud. Renderers are used extensively in graphics, as
reviewed in [29, 48], but they usually focus on forward pro-
jection. Our 3D renderer is a component of an end-to-end
system, which is jointly optimised, and so needs to allow for
gradient propagation; we want to train for depth prediction
without any 3D supervision but only with a loss on the final
rendered image. Additionally, unlike traditional rendering
pipelines, we are not rendering RGB colours but features.
Limitations of a naı̈ve renderer. A naı̈ve renderer projects
3D points pi to one pixel or a small region – the footprint –
in the new view. Points are sorted in depth using a z-buffer.
For all points in the new view, the nearest point in depth
(using the z-buffer) is chosen to colour that point. A non-
differentiable renderer does not provide gradients with re-
spect to the point cloud positions (needed to train our depth
predictor) nor the feature vectors (needed to train our spatial
feature network). Simply making the operations of a naı̈ve
renderer differentiable is problematic for two reasons (il-
lustrated in Fig. 3). (1) Small neighbourhoods: each point
projects to only one or a few pixels in the rendered view. In
this case, there are only a few gradients for each point in the
xy-plane of the rendered view; this drawback of local gradi-
ents is discussed in [25] in the context of bilinear samplers.
(2) The hard z-buffer: each rendered pixel is only affected
by the nearest point in the z-buffer (e.g. if a new pixel be-
comes closer in depth, the output will suddenly change).



Figure 3: Comparison of our rendering pipeline to a naı̈ve version. Given a set of points ordered in a z-buffer, our renderer
projects points to a region of radius r using α-compositing, not just the nearest point. When back-propagating through our
renderer, gradients flow not just to the nearest point, but to all points in the z-buffer. (For simplicity we show 1D projections.)

Our solution. We propose a neural point cloud renderer in
order to solve the prior two problems by softening the hard
decisions, as in Fig. 3. This is inspired by [34], which intro-
duces a differentiable renderer for meshes by similarly soft-
ening the hard rasterisation decisions and [76] which ren-
derers point clouds by splatting points to a region and accu-
mulating. First, to solve the issue of small neighbourhoods,
we splat 3D points to a disk of varying influence controlled
by hyperparameters r and M . Second, to solve the issue of
the hard z-buffer, we accumulate the effects of theK nearest
points, not just the nearest point, using a hyperparameter γ.

Our renderer first projects P onto a 2D grid under the
given transformation T. A 3D point pi is projected and
splatted to a region with centre pic and radius r. The
influence of the 3D point pi on a pixel lxy is proportional to
the Euclidean distance d2(·, ·) from the centre of the region:

N (pi, lxy) = 0 if d2(pic , lxy) > r

N (pi, lxy) = 1− d2(pic , lxy)

M
otherwise.

Though N is not differentiable, we can approximate
derivatives using the subderivative. r and M control the
spread and fall-off of the influence of a 3D point.

The projected points are then accumulated in a z-buffer;
they are sorted according to their distance di from the new
camera and only the K nearest points kept for each pixel
in the new view. The sorted points are accumulated using
alpha over-compositing (where γ is a hyperparameter):

ρimn = N (pi, lmn) (1)

F̄mn =

K∑
i=1

ργimn
Fi

i−1∏
j=1

(1− ργjmn
), (2)

where F̄ is the projected feature map in the new view and
F in the original view. γ controls the blending; if γ = 0,
this is hard z-buffering. This setup is illustrated in Fig. 3.
Implementation. Our renderer must be high-performance,
since we process batches of high-resolution point clouds
during training. We implement our renderer using a
sequence of custom CUDA kernels, building upon work on

high-performance triangle rasterisation with CUDA [32].
We use a two-stage approach: in the first stage we break
the output image into tiles, and determine the set of points
whose footprint intersects each tile. In the second stage, we
determine the K nearest points for each pixel in the output
image, sorting points in depth using per-pixel priority
queues in shared memory to reduce global memory traffic.
Other approaches. This method is related to the point
cloud rasterisers of [1, 24, 69]. However, our renderer is a
simpler than [69] and we apply it in an end-to-end frame-
work. While [1] also renders point clouds of features, they
only back-propagate to the feature vectors, not the 3D posi-
tions. [24] stores the predicted points in a voxel grid before
performing the projection step; this limits the resolution.
Performance. On a single V100 GPU, rendering a batch
of six point clouds with 5122 = 262,144 points each to a
batch of six images of size 256 × 256 takes 36ms for the
forward pass and 5ms for the backward pass. In contrast,
converting the same point cloud to a 2563 voxel grid using
the implementation from [24] takes ≈ 1000ms for the
forward pass and ≈ 2000ms for the backward pass.

3.3. Refinement module and discriminator

Even if the features are projected accurately, regions
not visible in the input view will be empty in the target
view. The refinement module should inpaint [2, 10] these
missing regions in a semantically meaningful (e.g. missing
portions of a couch should be filled in with similar texture)
and geometrically accurate (e.g. straight lines should
continue to be straight) manner. To solve this task, we take
inspiration from recent generative models [3, 27, 43].

Deep networks have been previously applied to inpaint-
ing [45, 60, 65]. In a typical inpainting setup, we know
a-priori which pixels are correct and which need to be
synthesised. In our case, the refinement network should
perform two tasks. First, it should inpaint regions with no
projected features, e.g. regions on the image boundary or
dis-occluded regions. The refinement module can discover
these regions, as the features have values near zero. Second,
the refinement module should correct local errors (e.g.
noisy regions resulting from noisy depth).



Figure 4: Qualitative results on RealEstate for ours and baseline methods. Given the input view and the camera parameters,
the methods are tasked to produce the target image. The red squares denote interesting differences between the methods. In
the upper row, our model better recreates the true 3D; in the bottom row, our model is better able to preserve detail.

To build the refinement network, we use 8 ResNet [21]
blocks, taking inspiration from [3]. Unlike [3], we aim to
generate a new image conditioned on an input view not a
random vector. Consequently, we find that it is important
to maintain the image resolution as much as possible to
obtain high quality results. We modify their ResNet block
to create a downsampling block. The downsampling block
is used to decrease the image resolution by two sizes before
upsampling to the original image resolution. To model the
ambiguity in the inpainting task, we use batch normalisa-
tion injected with noise [3]. We additionally apply spectral
normalisation following each convolutional layer [70].

The GAN architecture and objective used is that of [64].
We use 2 multi-layer discriminators at a lower and higher
resolution and a feature matching loss on the discriminator.

3.4. Training

Training objective. The network is trained with an
L1 loss, content loss and discriminator loss between
the generated and target image. The total loss is then
L = λGANLGAN + λl1Ll1 + λcLc.
Training details. The models are trained with the Adam
optimiser using a 0.01 learning rate for the discriminator,
0.0001 for the generator and momentum parameters (0,
0.9). λGAN = 1, λc = 10, λl1 = 1. γ = 1, r = 4 pixels,
K = 128, W = H = 256. The models are trained for 50K
iterations. We implement our models in PyTorch [44]; they
take 1-2 days to train on 3 Tesla V100 GPUs.

4. Experiments

We evaluate our approach on the task of view synthesis
using novel real-word scenes. We validate our design
choices in Section 4.3 by ablating our approach and
comparing against competing end-to-end view synthesis
pipelines. We also compare to other systems and find that

our model performs better than one based on a trained depth
predictor, which fails to generalise well to the new domain.
We additionally evaluate SynSin’s generalisation perfor-
mance to novel domains (Section 4.3) as well as higher
image resolutions (Section 4.4). Finally, we use SynSin to
synthesise trajectories from an initial image in Section 4.6,
demonstrating that it can be used for a walk-through
application. Additional results are given in the supplement.

4.1. Experimental setup

Datasets. We focus on using realistic data of indoor and
outdoor environments as opposed to synthetic objects.

The first framework we use is Habitat [49], which allows
for testing in a variety of scanned indoor scenes. The Habi-
tat framework can efficiently generate image and viewpoint
pairs for an input scene. We use two sources of indoor
scenes: Matterport3D [4], consisting of reconstructions of
homes, and Replica [57], which consists of higher fidelity
scans of indoor scenes. The Matterport3D dataset is divided
at the scene level into train/val/test which contain 61/11/18
scenes. The Replica dataset is only used at evaluation time
to test generalisability. Pairs of images are generated by
randomly selecting a viewpoint in a scene and then ran-
domly modifying the viewing angle in a range of ±20◦ in
each Euclidean direction and the position within ±0.32m.

The second dataset we use is RealEstate10K [73], which
consists of videos of walkthroughs of properties and the cor-
responding camera parameters (intrinsic and extrinsic) ob-
tained using SfM. The dataset contains both indoor and out-
door scenes. It is pre split into a disjoint set of train and test
scenes; we subdivide train into a training and validation set
to give approximately 57K/14K/7K scenes in train/val/test.
The scenes in the test set are unseen. We sample viewpoints
by selecting a reference video frame and then selecting a
second video frame a maximum of 30 frames apart. In
order to sample more challenging frames, we choose pairs



Matterport [4] RealEstate10K [73] Replica [57]

PSNR ↑ SSIM ↑ Perc Sim ↓ PSNR ↑ SSIM ↑ Perc Sim ↓ PSNR ↑ SSIM ↑ Perc Sim ↓
Both InVis Vis Both InVis Vis Both InVis Vis

1. SynSin (small ft) 21.36 20.37 22.06 0.72 0.70 0.70 1.58 0.43 0.91 20.783.51 0.700.15 1.160.53 21.64 0.79 1.70
2. SynSin (hard z) 20.14 19.51 20.62 0.66 0.68 0.64 1.93 0.46 1.20 21.034.01 0.690.16 1.170.58 21.95 0.79 1.69
3. SynSin (rgb) 21.03 19.98 21.69 0.68 0.69 0.66 2.15 0.47 1.35 21.194.30 0.670.15 1.450.54 21.71 0.80 2.03
4. SynSin 21.82 20.59 22.63 0.73 0.71 0.71 1.51 0.42 0.86 22.785.25 0.740.17 0.950.61 22.28 0.80 1.47

5. SynSin (w/ GT) 23.76 20.84 26.87 0.82 0.75 0.84 1.22 0.47 0.55 – – – 24.84 0.88 1.08
6. SynSin (sup. by GT) 21.93 20.63 22.86 0.73 0.71 0.72 1.50 0.42 0.85 – – – 21.58 0.78 1.60

7. Im2Im 13.22 13.42 13.33 0.32 0.36 0.30 3.94 1.00 2.84 16.513.29 0.470.15 1.940.72 12.66 0.37 3.88
8. Vox w/ UNet 18.52 17.85 19.05 0.57 0.57 0.57 2.98 0.77 1.96 17.312.63 0.530.15 2.300.40 18.69 0.71 2.68
9. Vox w/ ours 20.62 19.64 21.22 0.70 0.69 0.68 1.97 0.47 1.19 21.884.39 0.710.15 1.300.55 19.77 0.75 2.24

Table 1: Results on Matterport3D [4], RealEstate10K [73], and Replica [57]. ↑ denotes higher is better, ↓ lower is better.
XXY Y denotes std dev. Y Y . The ablations demonstrate the utility of each aspect of our model. We outperform all baselines
for both datasets and are nearly as good as a model supervised with depth (SynSin (sup. by GT)). We also perform best when
considering regions visible (Vis) and not visible (InVis) in the input view.

with a change in angle of > 5◦ and a change in position of
greater than 0.15 if possible (see [73] for a discussion on
metric scale). To report results, we randomly generate a set
of 2000 pairs of images from the test set.
Metrics. Determining the similarity of images in a manner
correlated with human judgement is challenging [71]. We
report multiple metrics to obtain a more robust estimate of
the relative quality of images. We report the PSNR, SSIM,
and perceptual similarity of the images generated by the
different models. Perceptual similarity has been recently
demonstrated to be an effective method for comparing the
similarity of images [71]. Finally, we validate that these
metrics do indeed correlate with human judgement by per-
forming a user study on Amazon Mechanical Turk (AMT).

4.2. Baselines

We first abate the need for a soft differentiable renderer
by comparing to variants with a small footprint, hard
z-buffering, and that directly project RGB values. These
models use the same setup, training schedule, and sequence
of input images/viewpoints as SynSin.
SynSin (small ft): We set K = 128 and r = 0.5 in our
model to investigate the utility of a large footprint.
SynSin (hard z): We set K = 1 and r = 4 in our model
to investigate the utility of the soft z-buffer.
SynSin (rgb): We project RGB values not features.

SynSin does not assume ground-truth depth at test time;
the depth predictor is trained end-to-end for the given task.
We investigate the impact of ground-truth (GT) depth by
reporting two variants of our model. These models act as
upper bounds and can only be trained on Matterport3D (not
RealEstate10K), as they use true depth information.
SynSin (w/ GT): The true depth is used as D.
SynSin (sup. by GT):D is supervised by the true depth. (In
all other cases SynSin’s D is learned with no supervision).

We evaluate our 3D representation by comparing to a
method that uses no 3D and one that uses voxels. As no

methods exist for the challenging datasets we consider,
we re-implement the baselines for a fair comparison.
The baselines use the same setup, training schedule, and
sequence of input images/viewpoints as SynSin.
Im2Im: This baseline evaluates an image-to-image
method; we re-implement [74]. [74] only considered a set
of discretised rotations about the azimuth and a smaller
set of rotations in elevation. However, the changes in
viewpoint in our datasets arise from rotating continuously
in any direction and translating in 3D. We modify their
method to allow for these more complex transformations.
Vox: This baseline swaps our implicit 3D representation
for a voxel based representation. The model is based on
that of [53]. However, [53] trains one model per object,
so their model effectively learns to interpolate between the
>100 training views unlike our model, which extrapolates
to new real-world test scenes given a single input view.
We consider two variants: Vox w/ UNet uses the UNet
encoder/decoder of [53] whereas Vox w/ ours uses a similar
ResNet encoder/decoder setup to SynSin. This comparison
evaluates our 3D approach as opposed to a voxel based one
as well as whether our encoder/decoder setup is preferable.

Finally, we compare SynSin to existing pipelines that
perform view synthesis. These systems make different
assumptions and follow different approaches. This compar-
ison validates our use of a learned end-to-end system.
StereoMag [73]: This system takes two images as input
at test time. Assuming two input views simplifies the
problem of 3D understanding compared to our work, which
estimates 3D from a single view.
3D View: This system trains a single-image depth predictor
on images with ground-truth depth (e.g. MegaDepth [33]).
Predicted depths are used to convert the input image to
a textured 3D mesh, which is extended in space near
occlusion boundaries using isotropic colour diffusion [22].
Finally the mesh is rendered from the target view. The
approach is similar to 3D Photos [37].



System comparison on RealEstate10K [73]

PSNR ↑ SSIM ↑ Perc Sim ↓
SynSin 22.785.25 0.740.17 0.950.61

3DView 21.888.43 0.640.24 1.290.88
StereoMag [73] 25.349.48 0.820.14 1.100.73

Table 2: SynSin performs better than a
system trained with GT depth (3DView)
and approaches the performance of [73],
which uses 2 input views at test time.

Generalisation to higher res.

PSNR ↑ SSIM ↑ Perc Sim ↓
SynSin 22.066.30 0.720.18 1.000.65

Vox w/ ours 18.822.52 0.610.14 2.470.36

Table 3: Results when applying
models trained on 256 × 256 images
to 512× 512 images.

AMT User Study

Ours Vox w/ ours Neither

E-O 68.7 31.3 –
E-O-N 55.6 27.3 17.2

Table 4: % of videos chosen
as most realistic. In E-O, users
choose the better method; in E-O-
N, users can say neither is better.

Figure 5: System comparisons on RealEstate10K, illustrat-
ing failure cases. Note StereoMag [73] uses two input im-
ages (second is shown as an inset). Unlike [73] we inpaint
missing regions (bottom row); [73] fails to model the left re-
gion and cannot inpaint the missing region. 3DView uses a
model pretrained for depth, causing their system to produce
inaccurate results in some cases (e.g. the bed in the top row).

4.3. Comparisons with other methods

Results on Matterport3D and RealEstate10K. We train
our models, ablations, and baselines on these datasets.

To better analyse the results, we compare models on
how well they understand the 3D scene structure and the
scene semantics (discussed in Section 1). To achieve this,
we report metrics on the final prediction (Both) but also on
the regions of the target image that are visible (Vis) and not
visible (InVis) in the input image. (Vis) evaluates the qual-
ity of the learned 3D scene structure, as it can be largely
solved by accurate depth prediction. (InVis) evaluates the
quality of a model’s understanding of scene semantics; it
requires a holistic understanding of semantic and geometric
properties to reasonably in-paint missing regions. In order
to determine the (Vis) and (InVis) regions, we use the GT
depth in the input view to obtain a binary mask of which
pixels are visible in the target image. This is only possible
on Matterport3D (RealEstate10K does not have GT depth).

Table 1 and Fig. 4 report results on Matterport3D and
RealEstate10K. On both datasets, we perform better than
the baselines on all metrics and under all conditions,
demonstrating the utility of both our 3D representation and
our inpainting module. These results demonstrate that the
differentiable renderer is important for training the depth

model (rows 1-4). Our encoder decoder setup is shown to be
important, as it improves the baseline’s performance signif-
icantly (rows 8-9). Qualitatively, our model preserves fine
detail and predicts 3D structure better than the baselines.
System comparison on RealEstate10K. We compare our
system to the 3DView and StereoMag [73] in Table 2 and
Fig. 5. Our model performs better than 3DView despite
their method having been trained with hundreds of thou-
sands of depth images. We hypothesise that this gap in
performance is due to the 3DView’s depth prediction not
generalising well; their dataset consists of images of mostly
close ups of objects whereas ours consists of scenes taken
inside or outdoors. This baseline demonstrates that using an
explicit 3D representation is problematic when the test do-
main differs from the training domain, as the depth predic-
tor cannot generalise. Finally, our method of inpainting is
better than that of 3DView, which produces a blurry result.
[73] does not inpaint unseen regions in the generated image.
Comparison with upper bounds. We compare our model
to SynSin (w/ GT) and SynSin (sup. with GT) in Table 1.
These models either use GT depth or are supervised by GT
depth; they are upper bounds of performance. While there
is a performance gap between SynSin and SynSin (w/ GT)
under the (Vis) condition, this gap shrinks for the (InVis)
condition. Interestingly, SynSin trained with no depth su-
pervision performs nearly as well as SynSin (sup. with GT)
under both the (Vis) and (InVis) conditions; our model also
generalises better to the Replica dataset. This experiment
demonstrates that having true depth during training does
not necessarily give a large boost in a downstream task
and could hurt generalisation performance. It validates our
decision to use an end-to-end system (as opposed to using
depth estimated from a self-supervised method).
Generalisation to Replica. Given the models trained on
Matterport3D, we evaluate generalisation performance
(with no further fine-tuning) on Replica in Table 1. Replica
contains additional types of rooms (e.g. office and hotel
rooms) and is higher quality than Matterport (it has fewer
geometric and lighting artefacts and more complex tex-
tures). SynSin generalises better to this unseen dataset;
qualitatively, SynSin seems to introduce fewer artefacts
(Fig. 6).



Figure 6: Comparison of SynSin against the baseline, Vox
w/ ours, at generalising to higher res 512× 512 images and
Replica [57]. Ours generalises better with fewer artefacts.

4.4. Generalisation to higher resolution images

We also evaluate generalisation to higher image resolu-
tions in Table 3 and Fig. 6. SynSin can be applied to higher
resolution images without any further training and limited
degradation in performance. The ability to generalise to
higher resolutions is due to the flexible 3D representation in
our approach: the networks are fully convolutional and the
3D point cloud can be sampled at any resolution to maintain
the resolution of the features. As a result, it is straightfor-
ward at test time to apply a network trained on a smaller
image size (e.g. 256 × 256) to one of a different size (e.g.
512× 512). Unlike our approach, the voxel baseline suffers
a dramatic performance drop when applied to a higher
resolution image. This drop in performance is presumably a
result of the heavy downsampling and imprecision resulting
from representing the world as a coarse voxel grid.

4.5. Depth predictions

We evaluate the quality of the learned 3D representation
qualitatively in Fig. 7 for SynSin trained on RealEstate10K.
We note that the accuracy of the depth prediction only
matters in so far as it improves results on the view synthesis
task. However, we hypothesise that the quality of the
generated images and predicted depth maps are correlated,
so looking at the quality of the depth maps should give
some insight into the quality of the learned models. The
depth map predicted by our method is higher resolution
and more realistic than the depth map predicted by the
baseline methods. Additionally, our differentiable point
cloud renderer appears to improve the depth quality over
using a hard z-buffer or a smaller footprint. However, we
note that small objects and finer details are not accurately
recreated. This is probably because these structures have a
limited impact on the generated images.

Figure 7: Recovered depth predictions for both our method
and the baselines. The baselines predict a less accurate
and coarser depth. Using a smaller radius or hard z-buffer
produces qualitatively similar or worse depth maps.

4.6. User study: Animating still images

Finally, we task SynSin to synthesise images along a
trajectory. Given an initial input frame from a video in
RealEstate10K, SynSin generates images at the camera po-
sition of the 30 subsequent frames. While changes are hard
to see in a figure (e.g. Fig. 1), the supplementary videos
clearly show smooth motion and 3D effects. These demon-
strate that SynSin can generate reasonable videos despite
being trained purely on images. To evaluate the quality of
the generated videos, we perform an AMT user study.

We randomly choose 100 trajectories and generate
videos using SynSin and the Vox w/ ours baseline. Five
users are asked to rate which method’s video is most
realistic. For each video, we take the majority vote to
determine the best video. We report the percentage of times
the users choose a given method in Table 4.
Either-or setup (E-O): Users rate whether the baseline or
our generated video is more realistic.
Either-or-neither setup (E-O-N): Users rate whether the
baseline or our generated video is more realistic or whether
they are equally realistic/unrealistic (neither). When taking
the majority vote, if their is no majority, neither video is
said to be more / less realistic

In both cases, users prefer our method, presumably be-
cause our videos have smoother motion and fewer artefacts.

5. Conclusion
We introduced SynSin, an end-to-end model for per-

forming single image view synthesis. At the heart of our
system are two key components: first a differentiable neural
point cloud renderer, and second a generative refinement
module. We verified that our approach can be learned
end-to-end on multiple realistic datasets, generalises to
unseen scenes, can be applied directly to higher image
resolutions, and can be used to generate reasonable videos
along a given trajectory. While we have introduced SynSin
in the context of view synthesis, we note that using a
neural point cloud renderer within a generative model has
applications in other tasks.



Acknowledgements The authors thank Johannes Kopf for
sharing code, Manolis Savva and Erik Wijmans for help
with the Habitat dataset, and Sebastien Ehrhardt, Oliver
Groth, and Weidi Xie for feedback on paper drafts.

References
[1] Kara-Ali Aliev, Dmitry Ulyanov, and Victor Lem-

pitsky. Neural point-based graphics. arXiv preprint
arXiv:1906.08240, 2019.

[2] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles,
and Coloma Ballester. Image inpainting. In Proc. ACM
SIGGRAPH, 2000.

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthesis.
In Proc. ICLR, 2019.

[4] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej
Halber, Matthias Niessner, Manolis Savva, Shuran Song,
Andy Zeng, and Yinda Zhang. Matterport3D: Learning
from rgb-d data in indoor environments. In International
Conference on 3D Vision (3DV), 2017.

[5] Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-
Hornung, and George Drettakis. Depth synthesis and
local warps for plausible image-based navigation. ACM
Transactions on Graphics (TOG), 2013.

[6] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-
image depth perception in the wild. In NeurIPS, 2016.

[7] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. InfoGAN: Interpretable rep-
resentation learning by information maximizing generative
adversarial nets. In NeurIPS, 2016.

[8] Xu Chen, Jie Song, and Otmar Hilliges. Monocular neural
image based rendering with continuous view control. Proc.
ICCV, 2019.

[9] Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H
Kim, and Jan Kautz. Extreme view synthesis. Proc. ICCV,
2019.

[10] A. Criminisi, P. Pérez, and T. Kentaro. Region filling and
object removal by exemplar-based image inpainting. IEEE
Transactions on Image Processing, 2004.

[11] Paul Debevec, Yizhou Yu, and George Borshukov. Efficient
view-dependent image-based rendering with projective
texture-mapping. In Rendering Techniques. 1998.

[12] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and ren-
dering architecture from photographs: A hybrid geometry-
and image- based approach. In Proc. ACM SIGGRAPH,
pages 11–20, 1996.

[13] David Eigen, Christian Puhrsch, and Rob Fergus. Depth
map prediction from a single image using a multi-scale deep
network. In NeurIPS, 2014.

[14] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse,
Fabio Viola, Ari S Morcos, Marta Garnelo, Avraham
Ruderman, Andrei A Rusu, Ivo Danihelka, and Karol
Gregor. Neural scene representation and rendering. Science,
360(6394), 2018.

[15] A. W. Fitzgibbon, Y. Wexler, and A. Zisserman. Image-based
rendering using image-based priors. IJCV, 63(2):141–151,
2005.

[16] John Flynn, Michael Broxton, Paul Debevec, Matthew

DuVall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and
Richard Tucker. Deepview: View synthesis with learned
gradient descent. In Proc. CVPR, 2019.

[17] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The KITTI dataset.
International Journal of Robotics Research (IJRR), 2013.

[18] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh
r-cnn. Proc. ICCV, 2019.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
pages 2672–2680, 2014.

[20] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. Atlasnet: A papier-
mâché approach to learning 3d surface generation. Proc.
CVPR, 2018.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc.
CVPR, 2016.

[22] Peter Hedman and Johannes Kopf. Instant 3d photography.
ACM Transactions on Graphics (TOG), 2018.

[23] Peter Hedman, Julien Philip, True Price, Jan-Michael
Frahm, George Drettakis, and Gabriel Brostow. Deep
blending for free-viewpoint image-based rendering. ACM
Transactions on Graphics (TOG), 2018.

[24] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised
learning of shape and pose with differentiable point clouds.
In NeurIPS, 2018.

[25] Wei Jiang, Weiwei Sun, Andrea Tagliasacchi, Eduard
Trulls, and Kwang Moo Yi. Linearized multi-sampling for
differentiable image transformation. Proc. ICCV, 2019.

[26] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In Proc. ECCV, 2018.

[27] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proc. CVPR, 2019.

[28] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Transactions on Graphics (TOG),
2017.

[29] Leif Kobbelt and Mario Botsch. A survey of point-based
techniques in computer graphics. Computers & Graphics,
2004.

[30] Johannes Kopf, Fabian Langguth, Daniel Scharstein,
Richard Szeliski, and Michael Goesele. Image-based
rendering in the gradient domain. ACM Transactions on
Graphics (TOG), 2013.

[31] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli,
and Josh Tenenbaum. Deep convolutional inverse graphics
network. In NeurIPS, 2015.

[32] Samuli Laine and Tero Karras. High-performance software
rasterization on gpus. In Proc. ACM SIGGRAPH Symposium
on High Performance Graphics., 2011.

[33] Zhengqi Li and Noah Snavely. Megadepth: Learning
single-view depth prediction from internet photos. In Proc.
CVPR, 2018.

[34] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. Soft
rasterizer: Differentiable rendering for unsupervised
single-view mesh reconstruction. Proc. ICCV, 2019.



[35] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural
volumes: Learning dynamic renderable volumes from
images. ACM Transactions on Graphics (TOG), 2019.

[36] Ricardo Martin-Brualla, Rohit Pandey, Shuoran Yang,
Pavel Pidlypenskyi, Jonathan Taylor, Julien Valentin,
Sameh Khamis, Philip Davidson, Anastasia Tkach, Peter
Lincoln, et al. Lookingood: enhancing performance capture
with real-time neural re-rendering. ACM Transactions on
Graphics (TOG), 2018.

[37] Kevin Matzen, Matthew Yu, Jonathan Lehman, Peizhao
Zhang, Jan-Michael Frahm, Peter Vajda, Johannes Kopf,
and Matt Uyttendaele. Powered by AI: Turning any
2D photo into 3D using convolutional neural nets.
https://ai.facebook.com/blog/-powered-by-ai-turning-
any-2d-photo-into-3d-using-convolutional-neural-nets/, Feb
2020.

[38] Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues
Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-
Brualla. Neural rerendering in the wild. In Proc. CVPR,
2019.

[39] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian
Richardt, and Yong-Liang Yang. HoloGAN: Unsupervised
learning of 3d representations from natural images. In Proc.
ICCV, 2019.

[40] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3D
Ken Burns effect from a single image. ACM Transactions
on Graphics (TOG), 2019.

[41] Kyle Olszewski, Sergey Tulyakov, Oliver Woodford, Hao
Li, and Linjie Luo. Transformable bottleneck networks. In
Proc. ICCV, 2019.

[42] Eunbyung Park, Jimei Yang, Ersin Yumer, Duygu Ceylan,
and Alexander C Berg. Transformation-grounded image
generation network for novel 3D view synthesis. In Proc.
CVPR, 2017.

[43] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive
normalization. In Proc. CVPR, 2019.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, 2019.

[45] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In Proc. CVPR, pages 2536–2544,
2016.

[46] Eric Penner and Li Zhang. Soft 3D reconstruction for view
synthesis. ACM Transactions on Graphics (TOG), 2017.

[47] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Proc. MICCAI, pages 234–241. Springer, 2015.

[48] Miguel Sainz and Renato Pajarola. Point-based rendering
techniques. Computers & Graphics, 2004.

[49] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A platform for embodied AI research. In
Proc. ICCV, 2019.

[50] Steven M Seitz, Brian Curless, James Diebel, Daniel
Scharstein, and Richard Szeliski. A comparison and evalua-
tion of multi-view stereo reconstruction algorithms. In Proc.
CVPR, 2006.

[51] Daeyun Shin, Zhile Ren, Erik Sudderth, and Charless
Fowlkes. 3D scene reconstruction with multi-layer depth
and epipolar transformers. In Proc. ICCV, 2019.

[52] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
Proc. ECCV, 2012.

[53] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-
Voxels: Learning persistent 3D feature embeddings. In
Proc. CVPR, 2019.

[54] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3D-
structure-aware neural scene representations. In NeurIPS,
2019.

[55] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the
boundaries of view extrapolation with multiplane images. In
Proc. CVPR, 2019.

[56] Pratul P Srinivasan, Tongzhou Wang, Ashwin Sreelal, Ravi
Ramamoorthi, and Ren Ng. Learning to synthesize a 4D
rgbd light field from a single image. In Proc. ICCV, 2017.

[57] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen,
Erik Wijmans, Simon Green, Jakob J. Engel, Raul Mur-
Artal, Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei
Yan, Brian Budge, Yajie Yan, Xiaqing Pan, June Yon,
Yuyang Zou, Kimberly Leon, Nigel Carter, Jesus Briales,
Tyler Gillingham, Elias Mueggler, Luis Pesqueira, Manolis
Savva, Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi,
Michael Goesele, Steven Lovegrove, and Richard New-
combe. The Replica dataset: A digital replica of indoor
spaces. arXiv preprint arXiv:1906.05797, 2019.

[58] Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning
Zhang, and Joseph J Lim. Multi-view to novel view:
Synthesizing novel views with self-learned confidence. In
Proc. ECCV, 2018.

[59] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas
Brox. Multi-view 3D models from single images with a
convolutional network. In Proc. ECCV, 2016.

[60] Piotr Teterwak, Aaron Sarna, Dilip Krishnan, Aaron
Maschinot, David Belanger, Ce Liu, and William T Free-
man. Boundless: Generative adversarial networks for image
extension. In Proc. ICCV, 2019.

[61] Shubham Tulsiani, Saurabh Gupta, David F Fouhey,
Alexei A Efros, and Jitendra Malik. Factoring shape, pose,
and layout from the 2D image of a 3D scene. In Proc.
CVPR, 2018.

[62] Shubham Tulsiani, Richard Tucker, and Noah Snavely.
Layer-structured 3D scene inference via view synthesis. In
Proc. ECCV, 2018.

[63] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and
Jitendra Malik. Multi-view supervision for single-view
reconstruction via differentiable ray consistency. In Proc.
CVPR, 2017.

[64] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew
Tao, Jan Kautz, and Bryan Catanzaro. High-resolution



image synthesis and semantic manipulation with conditional
GANs. In Proc. CVPR, 2018.

[65] Yi Wang, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Wide-
context semantic image extrapolation. In Proc. CVPR, 2019.

[66] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukham-
betov, and Gabriel J. Brostow. Interpretable transformations
with encoder-decoder networks. In Proc. ICCV, 2017.

[67] Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao
Su, and Ravi Ramamoorthi. Deep view synthesis from
sparse photometric images. ACM Transactions on Graphics
(TOG), 2019.

[68] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and
Honglak Lee. Perspective transformer nets: Learning
single-view 3d object reconstruction without 3d supervision.
In NeurIPS, 2016.

[69] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli,
and Olga Sorkine-Hornung. Differentiable surface splatting
for point-based geometry processing. ACM Transactions on
Graphics (TOG), 2019.

[70] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.
2019.

[71] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proc. CVPR, 2018.

[72] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In Proc. CVPR, 2017.

[73] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view
synthesis using multiplane images. ACM Transactions on
Graphics (TOG), 2018.

[74] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra
Malik, and Alexei A Efros. View synthesis by appearance
flow. In Proc. ECCV, 2016.

[75] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,
Simon Winder, and Richard Szeliski. High-quality video
view interpolation using a layered representation. ACM
transactions on graphics (TOG), 2004.

[76] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and
Markus Gross. Surface splatting. In Proc. ACM SIGGRAPH,
2001.



SynSin: Appendix

We give additional results in Section A, additional
architectural details in Section B, additional information
about baselines in Section C, and finally information about
datasets in Section D. Finally, we discuss some choices that
did and did not work in Section E.

A. Additional experimental results
Results on KITTI [17]. We evaluated our model on the
KITTI dataset in order to compare with [8]. We trained
our model on the KITTI dataset and compared with their
pretrained model on a held-out set in Table 5. We achieve
similar or better results on all metrics. Additionally,
because [8] resamples the input image, it cannot generate
pixels unseen in the original view. As shown in Fig. 8 (rows
1,2,6), this causes severe artefacts for backward motion.

We additionally show some failure cases for both
methods when the viewpoint change is much larger than the
average viewpoint change seen at test time in the bottom
two rows.
Additional qualitative results. We give additional qualita-
tive results on RealEstate10K (Fig. 9-10), Replica (Fig. 11),
and Matterport3D (Fig. 12). The supplementary video
shows sample videos of a model generating images along a
given trajectory. We compare SynSin to the baseline (Vox
w/ ours); SynSin has smoother motion with fewer artefacts.
We also visualise additional depth prediction results in
Fig. 13-14.

Comparison on KITTI [17]

PSNR ↑ SSIM ↑ Perc Sim ↓
SynSin 17.0 0.53 2.02

ContView [8] 17.0 0.54 2.20

Table 5: Comparison on KITTI to [8]. ↑ denotes higher is
better, ↓ lower is better.

Input Img Target Img ContView [8] SynSin

Figure 8: Qualitative results on KITTI [73] comparing
SynSin to [8]. The bottom two rows demonstrate failure
cases due to large viewpoint change. Zoom in for details.



Input Img Target Img StereoMag [73] Vox w/ ours SynSin

Figure 9: Additional results on RealEstate10K [73]. Zoom
in for details.

Input Img Target Img StereoMag [73] Vox w/ ours SynSin

Figure 10: Additional results on RealEstate10K [73].
Zoom in for details.



Input Img Target Img Vox w/ ours Vox w/ unet SynSin

Figure 11: Additional results on Replica [57]. Zoom in for
details.

Input Img Target Img Vox w/ ours Vox w/ unet SynSin

Figure 12: Additional results on Matterport3D [4]. Zoom
in for details.



Input Img SynSin SynSin (PC/−45◦) SynSin (PC/0◦)

Figure 13: Additional depth predictions on RealEstate10K
[73]. We also visualise the point cloud (PC) and the rotated
point cloud at−45◦. (Note that the point cloud in the model
is actually a point cloud of features, not RGB values.)

Input Img SynSin SynSin (PC/−45◦) SynSin (PC/0◦)

Figure 14: Additional depth predictions on RealEstate10K
[73]. We also visualise the point cloud (PC) and the rotated
point cloud at 0◦. (Note that the point cloud in the model is
actually a point cloud of features, not RGB values.)



B. Additional architectural details
Here we give more information about the precise archi-

tectural details used to build the components of our model.

ResNet blocks. Our spatial feature network and re-
finement networks are composed of ResNet blocks. The
ResNet blocks used are the same as those used in [3]
(Appendix B, Fig 15 (b)), reproduced in Fig. 15. However,
we consider three different setups. The block may be used
to increase the resolution of the features using an upsample
layer (as used in the original paper by [3]) (Fig. 15(a)). The
block may be used to decrease the resolution of the features
using an average pooling layer as opposed to the upsample
layer (Fig. 15(b)). The block may be used to maintain the
resolution of the features using an identity layer as opposed
to the upsample layer (Fig. 15(c)).

Spatial feature network. ResNet blocks are stacked
together to form the embedding network. In particular, we
use the setup in Fig. 16(a).

Refinement network. ResNet blocks are stacked to-
gether to form the decoder network. In particular, we use
the setup in Fig. 16(b).

Depth regressor. The depth regressor network uses a
UNet architecture, as illustrated in Fig. 17.

Additional details on the perceptual loss. We follow
the perceptual loss used in [43].

C. Additional details on baselines
In this section, we give further information about the

baselines used.

Im to im. We follow the architecture of [74]. However,
[74] only considers discrete rotations about the azimuth
and a small set of changes in elevation, so [74] takes four
values as input, the cos and sin values of the azimuth
and elevation. However, our datasets include rotation in
all three directions, as well as translational motion. As a
result, we modify their angle encoder to take 12 values (as
opposed to four), and pass the change in viewpoint, T to the
angle encoder. The network is visualised in Fig. 18.

Vox w/ unet. This baseline is based on [53], which
represents 3D shape in a neural network using a voxel
representation. Note that they train one model per instance,
so their model only generalises to that one object. Their
overall setup is as follows. An image is passed through an
encoder (e.g. our spatial feature network) to obtain a set of

features. The features are projected into a voxel grid, which
is transformed and projected into the new view. The fea-
tures are accumulated using an occlusion network, which
acts as a pseudo depth predictor and predicts the occupancy
of the voxels. The predicted occupancy is used to re-weight
and combine features. This is then passed to the decoder
(e.g. our refinement network) which predicts the scene at
the new view. Finally, the generated image is compared to
the true image using discriminators and photometric losses.

To reimplement this approach, we follow their architec-
tural choices and use a UNet style architecture for all net-
work components (the spatial feature network, refinement
network, and occlusion network). However, we use the
discriminators and photometric losses used to train SynSin
to ensure that both methods are fair in terms of the discrimi-
nator. The details for the encoder/decoder setup are given in
Fig. 19. The occupancy network is a 3D UNet, which takes
as input the rotated voxels and then predicts occupancy for
each voxel location; these are then normalised using a soft-
max layer over the depth dimension. The details are given
in Fig. 20. We use their setup but train the network to gen-
erate new images of a scene given a single image of a scene.

Vox w/ ours. Instead of using the UNet style spatial
feature and refinement network in vox w/ ours, we use a
sequence of ResNet blocks, as described in Fig. 21. The
set of ResNet blocks in the spatial feature network down-
samples the image to the appropriate size. The refinement
network similarly upsamples the projected features to the
appropriate image size. We also use a larger capacity in this
setup to ensure that our 3D representation is preferable. The
network was trained with a lower learning rate (lr=0.0004)
as opposed to (lr=0.001) as in our model, as we found that
the model struggled to learn with the higher learning rate.

Other setups. We experimented with other ResNet
block sequences and multiple learning rates when creating
this baseline. Instead of downsampling the features within
the encoder (e.g. the spatial feature network), we can use
the same spatial feature network as SynSin (to obtain fea-
tures of size C × 256× 256 and then downsample to obtain
features of size C × 64 × 64. Similarly, instead of upsam-
pling the features within the decoder (e.g. the refinement
network), we can upsample the transformed features to ob-
tain ones of size C × 256 × 256 and pass these upsampled
features to the refinement network and so use the same re-
finement network we use in SynSin. We found that the re-
sults were similar to those of the model used in the paper on
RealEstate10K but worse on Matterport.

We additionally found that the results were highly
dependent on the learning rate for this model.

3DView. This baseline is based on a depth predictor (e.g.
[33]), so 3DView predicts depth up to a scale ambiguity.



As the depth is only predicted up to a scale, we generate
images for multiple possible scales for each test image and
then report results for the best image.



(a) ResNet block. (b) ResNet block with an average pool block.

(c) ResNet block with an identity block.

Figure 15: An overview of ResNet blocks. In (a), we show the basic ResNet block, (b) when we replace the upsample block
by an average pool block, and (c) when we replace the upsample block by an identity block.



(a) Spatial feature
network.

(b) Refinement network.

Figure 16: Our sequence of ResNet blocks in the spatial
feature and refinement networks.

Figure 17: Depth regressor network. An Enc Block consists
of a sequence of Leaky ReLU, convolution (stride 2,
padding 1, kernel size 4), and batch normalisation layers.
A Dec Block consists of a sequence of ReLU, 2x bilinear
upsampling, convolution (stride 1, padding 1, kernel size
3), and batch normalisation layers (except for the final
layer, which has no batch normalisation layer).



Figure 18: An overview of the image to image network.
A Conv Layer consists of a sequence of a convolutional
layer (stride 2, padding 1, filter size 3), ReLU, and batch
normalisation layer. A Linear Layer consists of a sequence
of a linear layer, ReLU, and batch normalisation layer.
A Dec block consists of a sequence of a convolutional
layer (stride 1, padding 1, filter size 3), ReLU, batch
normalisation layer and upsample layer (except for the last,
which consists of simply a convolutional layer).

(a) Encoder network. (b) Decoder network.

Figure 19: The encoder and decoder network for the UNet
style encoder/decoder setup. An Enc block is a sequence
of a LeakyReLU, convolutional layer (stride 2, padding
1, kernel size 4) and batch normalisation layer. A Dec
block is a sequence of ReLU, bilinear upsampling layer,
convolutional layer (stride 1, padding 1, kernel size 3), and
batch normalisation layer (except for the last layer which
has no batch normalisation).



Figure 20: The 3D UNet for predicting the occupancy
of voxels. An Enc block consists of a sequence of a
LeakyReLU, convolutional layer (stride 2, padding 1,
kernel size 4) and batch normalisation layer. A Dec block
consists of a sequence of ReLU, bilinear upsampling layer,
convolutional layer (stride 1, padding 1, kernel size 3), and
batch normalisation layer (except for the last layer which
has no batch normalisation).

(a) Encoder network. (b) Decoder network.

Figure 21: The spatial feature and refinement networks for
the ResNet style setup in the Vox w/ ours baseline.



D. Additional information about datasets
Matterport3D. For Matterport, the minimum depth is
0.1 and the maximum depth 10.

RealEstate10K. For RealEstate10K, the minimum depth
is 1 and the maximum depth is 100.

KITTI. For KITTI, the minimum depth is 1 and the
maximum depth is 50.

E. A description of other setups we tried
Model setup

• We experimented with using a UNet architecture
instead of a sequence of ResNet blocks for the spatial
feature network and refinement network. This led to
much worse results and was more challenging to train.

Differentiable renderer setup

• Other settings for the differentiable renderer: We tried
a larger radius, r = 8, but this both takes longer to
train and gives worse results.

• Other settings for the accumulation function: We tried
using a weighted sum with and without normalisation
for the accumulation step. These led to similar
results, but without normalisation had noisier training
characteristics. The implementation of these different
accumulation setups is available in the online code.


