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Abstract

Bayesian optimization (BO) is a popular
method for optimizing expensive-to-evaluate
black-box functions. BO budgets are typically
given in iterations, which implicitly assumes
each evaluation has the same cost. In fact, in
many BO applications, evaluation costs vary
significantly in different regions of the search
space. In hyperparameter optimization, the
time spent on neural network training increases
with layer size; in clinical trials, the monetary
cost of drug compounds vary; and in optimal
control, control actions have differing complex-
ities. Cost-constrained BO measures conver-
gence with alternative cost metrics such as
time, money, or energy, for which the sample
efficiency of standard BO methods is ill-suited.
For cost-constrained BO, cost efficiency is far
more important than sample efficiency. In this
paper, we formulate cost-constrained BO as a
constrained Markov decision process (CMDP),
and develop an efficient rollout approximation
to the optimal CMDP policy that takes both
the cost and future iterations into account. We
validate our method on a collection of hyper-
parameter optimization problems as well as a
sensor set selection application.

1 INTRODUCTION

Bayesian optimization (BO) is a class of methods for
global optimization of expensive black-box functions.
In BO, a probabilistic surrogate model is used to ap-
proximate the objective and future evaluations are
selected via an acquisition function. BO has been suc-
cessfully applied to applications such as robotic gait
control [Calandra et al.,[2016], sensor set selection |Gary

nett et al.| [2010], and neural network hyperparameter
tuning [Snoek et al.| [2012]. BO is favored for these tasks
because of its sample-efficient nature. Achieving this
sample-efficiency requires BO to balance exploration
and exploitation. However, standard acquisition func-
tions such as expected improvement (EI) are often too
greedy in practice. As a result, they perform poorly on
multimodal problems |[Hernandez-Lobato et al.| [2014]
and have provably sub-optimal performance in certain
settings, e.g., bandit problems [Srinivas et al. 2010].
A key research goal in BO is developing less greedy
acquisition functions |[Shahriari et al., 2016]. Examples
include predictive entropy search (PES) [Herndndez{
Lobato et al.,2014] or knowledge gradient (KG) [Frazier
et al 2008]. Lam et al. [2016] frame the exploration-
exploitation trade-off as a balance between immediate
and future rewards in a continuous state and action
space Markov decision process (MDP). In this frame-
work, non-myopic acquisition functions are optimal
MDP policies, and promise better performance by con-
sidering the impact of future evaluations up to a given
BO budget (also referred to as the horizon).

While BO budgets are typically given in iterations, this
implicitly measures convergence in terms of iteration
count and assumes uniform evaluation cost. For many
practical BO applications, evaluation costs may vary in
different regions of the search space. For example, the
time spent on neural network training increases with
layer size; the cost of different drug compounds vary;
and control actions in optimal control have differing
complexities. In all these cases, standard BO is often
unable to achieve fast convergence in terms of unit cost.
Motivated by these examples, we develop methods that
improve convergence when measured by cost. This cost
may be time, energy, or money, and the goal is to
minimize the objective given a cost budget.

Cost-constrained BO measures convergence with these
alternative cost metrics for which standard BO methods
are unsuited. We extend non-myopic BO to handle the
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Figure 1: Runtime distribution, log-scaled, of 5000 randomly selected points for the k-nearest-neighbors (KNN),
Multi-layer Perceptron (MLP), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF)
hyperparameter optimization problems, each trained on the OpenML w2a dataset [Vanschoren et all [2013]. The

runtimes vary, often by an order of magnitude or more.

cost-constrained setting. Our contributions follow:

e We analyze failure modes of common approaches
to cost-constrained BO, in which greedy behavior
results in poor per-cost performance.

o To avoid overly greedy behavior, we formulate cost-
constrained BO as an instance of a constrained
Markov decision process (CMDP). This formula-
tion is a novel extension of recent research on non-
myopic BO which uses a simpler Markov decision
process (MDP) formulation.

e We introduce an approximation to the optimal
constrained MDP policy based on rollout of fea-
sible trajectories. Rollout is a popular class of
approximate MDP solutions in which future BO
realizations and their corresponding values are
simulated using the surrogate and then averaged.

e We validate the performance of our methods on
a set of practical hyperparameter optimization
problems and a sensor set selection problem.

2 RELATED WORK

Most prior approaches to cost-constrained BO occur
in the grey-box setting, in which additional informa-
tion about the objective is available. Multi-fidelity BO
is a widely studied setting in which fidelity parame-
ters s € [0,1]™, such as iteration count or grid size,
are assumed to be a low-accuracy approximation of
high-fidelity evaluations [Forrester et al., 2007} Kan-
[dasamy et all [2017] [Poloczek et all 2017, [Wu and]
Frazier, |2019]. Increasing s increases the accuracy at
the expense of run time. In addition, Multi-fidelity
methods are often application-specific. For example,
Hyperband [Li et al, and its BO variants
et al 2018, Klein et al., 2017ayb] cheaply train many
neural network configurations for a few epochs, and
then prunes unpromising configurations. In multi-task

BO [Swersky et al., 2013], hyperparameter optimiza-
tion is first run on cheaper instances before considering
more expensive ones. Swersky et al|[2013] introduce a
cost-constrained, multi-task variant of entropy search to
speed-up optimization of logistic regression and latent
Dirichlet allocation. Cost information is input as a set
of cost preferences (e.g., a parameter x; is more expen-
sive than a parameter x3) by [Abdolshah et al.| [2019],
who develop a multi-objective, constrained BO method
that evaluates cheap points before expensive ones, as
determined by the cost preferences, to find feasible,
low-cost solutions. These methods outperform their
black-box counterparts by evaluating cheap proxies
or cheap points before selecting expensive evaluations,
which is accomplished by leveraging additional cost
information inside the optimization routine. While all
these methods demonstrate strong performance, they
sacrifice generality and do not apply to black-box BO.
Moreover, by relying on parallel resources, these tech-
niques target time efficiency rather than compute time,
cost, or energy efficiency.

3 BACKGROUND AND
MOTIVATION

Gaussian process regression and BO: The goal in
BO is to find a global minimizer of a continuous func-
tion f(x) over a compact set Q C R?. If f(x) is expen-
sive to evaluate, we want to rely on a sample-efficient
optimization method. BO uses a Gaussian process
(GP) to model f(x) from the data Dy = {(x;, y;) }i_;.
We write this as f(x) ~ GP(ui(x),0%(x)), where
pi(x), 02 (x) are the GP mean and variance at x, respec-
tively (see|A|in the supplementary materials for more
details). The next evaluation location x:11 is deter-
mined by maximizing an acquisition function A(x | Dy):
X1 = argmaxg A(x | Dy).

Cost-constrained BO: BO’s sample efficiency leads



to fast convergence only if evaluations have similar
costs, an assumption that is often not true in practice.
Cost-constrained BO is an important problem, and we
argue that many BO problems in machine learning are,
in fact, cost-constrained. Figure (1] illustrates this by
randomly evaluating 5000 hyperparameter configura-
tions for five common hyperparameter optimization
problems (HPO). The resulting evaluation times vary,
sometimes by more than two orders of magnitude. More-
over, the majority of evaluations are cheap, suggesting
that significant cost savings may be achieved by using
a cost-efficient instead of a sample-efficient optimizer.

The de-facto cost-constrained method in the black-box
setting is to normalize the acquisition by cost model
¢(x). This extends EI to EI per unit cost (Elpu):

EI(x)

c(x)

Elpu(x) :=

which is designed to balance the objective’s cost and
evaluation quality. Snoek et al.|[2012] showed that EIpu
can boost performance on a variety of HPO problems.

However, Elpu often demonstrates underwhelming per-
formance. We examine why this may occur in Figure
in which Elpu (green) is slower than EI (red) at HPO
of a k-nearest-neighbor model. The empirical optimum,
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Figure 2: We run EI and ElIpu on KNN. Left: EIpu
evaluates many more cheap points than EI, which eval-
uates more expensive points. The optimum’s cost, one
of the most expensive points, is a black star. Right:
Elpu performs poorly as a result.

namely the best point over all trials (black star), has
high cost —thus, dividing by the cost penalizes Elpu
away from the optimum and diminishes its performance.
This is evident from the evaluation time histograms:
Elpu evaluates many cheap points while EI evaluates
fewer but more expensive points. Due to its bias to-
wards cheap points, Elpu is likely to only display strong
results when optima are relatively cheap, which is prob-
lematic in the general black-box setting. Indeed, one
can adversarially increase the cost at the optimum to
make Elpu perform poorly.

Markov decision processes: Nonmyopic BO frames
the exploration-exploitation trade-off as a balance of im-
mediate and future rewards in a finite horizon Markov
decision process (MDP). We use standard notation
from [Puterman| [2014]: an MDP is the collection
<T,S,A,P,R>. Here, T ={0,1,...,h—1}, h < 0o is
the set of decision epochs, assumed finite for our prob-
lem. The state space S encapsulates the information
needed to model the system from time ¢ € T'. A is the
action space. Given a state s € S and an action a € A,
P(s'|s,a) is the transition probability of the next state
being s'. R(s,a,s’) is the reward received for choosing
action a from state s, and ending in state s’.

A decision rule, m; : S — A, maps states to actions
at time ¢t. A policy 7 is a series of decision rules w =
(7o, 71,...,Th—1), one at each decision epoch. Given
a policy 7, a starting state sg, and horizon h, we can
define the expected total reward V;7(so) as:

h—1

Vii(so) =E ZR(Staﬂ't(St)aSt—H)
t=0

In phrasing a sequence of decisions as an MDP, our
goal is to find the optimal policy 7* that maximizes
the expected total reward, i.e., sup,cr; V;7 (o), where
IT is the space of all admissible policies.

Constrained Markov decision processes: A con-
strained Markov decision process (CMDP) is an MDP
with an additional set of cost constraints
[1999, [Piunovskiy}, 2006, Bertsekas|, [2005]. These costs,
like MDP rewards, are accumulated through state by
action until a certain horizon. A CMDP extends an
MDP, and is the collection < T, S, A, P, R, C, T >. Here,
C(s,a,s'): Sx AxS — Ris a cost function measuring
the cost of choosing action a from state s, and ending
in state s’. 7 is the cost constraint, and we assume
without loss of generality that it is a positive scalar.

The cost function C' in a CMDP induces a cumulative
cost function C7 (sp), which is analogous to a value
function that replaces the reward with the cost:

h—1
Ch(so) =E Z C(st,me(st), 8t+1)

t=0

C}(s0) measures total expected cost given a policy ,
starting state sg, and horizon h. The goal in a CMDP
is to find the optimal policy, defined as:

" = argmax V)" (so),
subject to C} (so) < 7.

In other words, we want to determine the policy that
maximizes the expected reward subject to having cost
less than 7. We refer readers to the standard CMDP
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Figure 3: We illustrate the importance of nonmyopia on a carefully chosen toy problem. The top row depicts BO
using a myopic acquisition; the middle row depicts nonmyopic, cost-constrained BO; the bottom row depicts
feasible trajectories of length two. We run BO until the objective’s minimum is infeasible. Myopic BO exhausts its
budget before getting close to the global minimum. A nonmyopic approach accounts for the cost (and infeasibility)
of future evaluations, and is able to sample the global minimum early. To save space, we only plot feasible
trajectories for the myopic approach in the top row. The trajectory contour for nonmyopic BO is very similar.

treatment [Altman) 1999] for more information. The

notion of feasible trajectories is important when dis-
cussing both exact and approximate CMDP solutions.
A CMDP trajectory is a sequence of states and actions:

(50,0a0),(51,01),...,(Sh—1,0n_1).

A CMDP trajectory is said to be feasible if it doesn’t
violate its cost constraint 7 for any non-negative integer
0 < ¢ < h—1 less than horizon h:

4
Z C(St, Qag, St—i-l) <T.

t=0

For consistency, we can extend all feasible trajectories
to have length h by introducing an intermediate state
and action which produce zero reward and cost (the
formal equivalent of “standing still”). The set of all
feasible trajectories is known as G.

4 NONMYOPIC,
COST-CONSTRAINED BO

We might think of cost-constrained BO as the following
constrained optimization problem:

min min f(x
)(»512Q x€X F(x)

subject to Z c(x) < 7.

Because our optimization domain is 2%, i.e., the power
set of 2, we have a nested minimization problem. We
assume f(x) outputs not only its value, but also its
evaluation cost determined by a cost function c(x)
—which is also black-box. Our goal is to minimize f(x)
subject to the total evaluation cost not exceeding 7.
This is a pre-specified upper bound on total cost, such
as compute time, dollars, or energy consumption.

One recent research direction in BO has been the de-
velopment of nonmyopic BO [Frazier} 2018, Lam et al.

2016}, Lam and Willcox], [2017], [Yue and Kontar], 2019

Lee et all [2020a], which account for the impact of
future evaluations and are thus able to make better

decisions. These decisions are computed by modeling
BO as an MDP and then approximating its optimal
policy. We aim to leverage this MDP framework to
make similarly principled, nonmyopic decisions in the
cost-constrained setting. We do this by extending the
MDP to a CMDP, which takes into account variable
evaluation costs. The next decision in this setting is a
approximation to the optimal CMDP policy.

Figure [3] illustrates the advantage of accounting for
the cost of future evaluations with CMDP. The objec-
tive and cost, which have been carefully chosen, are
plotted in black and red respectively, and the bottom
row indicates feasible trajectories of length two as the
optimization continues. The optimization domains are
similarly shaded when evaluations become infeasible.



A greedy approac}El7 seen in the first row, does not
account for the remaining budget, and is therefore un-
able to evaluate the global minimum before its becomes
infeasible due to an insufficient budget. A nonmyopic
policy, seen in the second row, better accounts for the
cost of future evaluations; it sees that by the fourth
iteration, the right side of the domain becomes infeasi-
ble, and decides to evaluate there earlier. As a result,
it gets much closer to the global minimum.

In the next section, we formalize our CMDP framework.
We note that our framework is vaguely related to BO
with resources (BOR) [Dolatnia et al., 2016], who con-
sider a partially observable MDP (POMDP) framework
for BO when resource consumption of the objective
varies, and when there might be multiple agents that
can evaluate the acquisition function in parallel.

4.1 BO AS A CONSTRAINED MARKOV
DECISION PROCESS

Given a deterministic cost function ¢(x) : Q@ — RT, a
cost budget 7, and a GP prior over the observation
set Dy with mean p; and kernel k;, we model h steps
of cost-constrained BO as the following CMDP: <
T,S,A,P,R,C,T >.

Here, T is the set of decision epochs {0,1,...,h —
1} representing h steps of BO. While we might want
to use an infinite horizon, e.g., h = oo to continue
optimization until our cost budget is exhausted, we
assume a finite horizon for tractability. Our state space
is the set of observations reachable from starting state
D, with h BO steps, and the action space is §2; actions
correspond to sampling a point in .

The transition probabilities from state D; to state Dyyq,
where Dyy1 = DeU{(X¢41,Yt+1)}, given an action X441,
are defined as:

P(Di11 | Dy, xe41)
~ N (D (0115 Dr), KO (%041, X141 Dr)).

In other words, the probability of transitioning from
Dy to Dyyq is the probability of sampling y.y1 from
the posterior of GP (s, 02) at xy41.

Given an action and transition to a new state Dy 1,
our reward function is derived from the the EI cri-
terion [Jones et all [1998]. Let y; be the minimum
observed value in the observed set Dy, ie., y; =

"We show EI over Elpu for space’s sake; the former
performs better than the latter. The low cost on the left
part of the domain causes Elpu to evaluate exclusively
there.

min{yo, ..., y:}. Then our reward is expressed as:

R(Dy,x¢41, Div1) = (Y — yeg1) ™

= max(y; — ye+1,0).

Our CMDP cost is given by ¢(x). We assume that this
cost is deterministic and state-independent; it only de-
pends on the action. In practice, the cost function may
be learned as well. We emphasize that we assume a de-
terministic cost function; the algorithms and theory we
establish do not extend trivially to stochastic cost func-
tions. Finally, we assume a positive scalar constraint 7.
However, we could extend this to a vector-valued con-
straint. For example, in materials design, there might
be a finite amount of each constituent component, each
with its own budget |Abdolshah et al., 2019].

The expected total reward and cost of a policy 7 are

Vi (Dy) =E Z R(Dt, 7t(Dt), Di41)
et
> i - )|
- t=k
rk+h—1
> c(ﬂt(Dt))}

- t=k

rk+h—1 :|

[
&=

C7(Dy) =E

More intuitively, V;7(Dy) is the expected reduction in
the objective function using policy 7, and CJ (Dy) is
the accompanying expected cost. We can represent a
trajectory though this CMDP as the sequence:

(Xk:a yk))a (Xk+17 yk:-i—l)a ey (Xk:-‘rla yk+h)-

As our cost is strictly positive, a trajectory
(X, Yk )y (Xkt1, Yrt1)s o (Xt 1, Yre) Is feasible if
Zfi,f c(x;) < 7 for some £ < h.

5 METHODS

CMDPs are considered far more difficult to solve than
MDPs [Altman! |1999], and the standard dynamic pro-
gramming approach of Bertsekas| [2017] does not extend
trivially —Bellman’s principle of optimality no longer
applies. Indeed, unlike the MDP case, the existence
of an optimal policy is not guaranteed. The standard
CMDP solution is to solve a large linear program in
the state and action spaces, but this is computation-
ally intractable for all but the smallest problems. The
difficulty of solving CMDPs in the BO setting is made
more difficult by the exponentially growing infinite state
space, which consequently excludes standard solutions
such as an exact solve on a discretized problem.

In this paper, we approximate the optimal CMDP pol-
icy through rollouts, which has been used successfully



in the standard BO setting to improve performance
over myopic acquisition functions |Lam et al.| [2016].

5.1 ROLLOUT

MDP Rollout Rollouts forward-simulate the value
function of a fixed policy, and select the action yielding
the maximal simulated reward. We make this more
precise as follows. For a given current state Dy, we de-
note our base rollout policy @ = (7o, 71, ..., 7Th—1). We
introduce the notation Dy o = Dy, to define the initial
state of our MDP and Dy ; for 1 <t < h to denote
the random variable that is the state at each decision
epoch. In the case of BO, each individual decision rule
7; consists of maximizing the base acquisition function
A given the current state s; = Dy 4,

7y = argmax Ay(x | Dy t)-
xEQN
Using this policy, we define the non-myopic acquisition
function Ay (x) as the rollout of 7 to horizon h i.e., the
expected reward of 7 starting with the action 7y = x:

Ap(Xpg1) == E| VT (D U{(Xk41, Urs1)}) |

where yi11 is the noisy observed value of f at xp41. Ap
is better than A in expectation for a correctly specified
GP prior and for any acquisition function. This follows
from standard results in the MDP literature |[Bertsekas
2017|. If we can sample from the transition probability
P, we can estimate the expected reward of 7 through
policy evaluation, i.e., Monte-Carlo integration:

N h—1
Voo & 3 | 0 RGs As)ost)|-
i=1 L t=0
CMDP Rollout In the CMDP setting, rollout is
also forward simulation of action and reward given
a fixed base policy, except that CMDP rollout only
forward simulates feasible trajectories in G and discards
infeasible trajectories [Bertsekas| |2005]. In practice,
this means that as we roll out a base policy 7, we
terminate either once we reach the horizon or violate
the cost constraint. There remains the question of what
base policy we might use; the performance of rollout
depends on its base policy. We develop a base policy
by considering the following two cases:

h = 1: Assume the argmax of EI has cost ¢(x*) < 7.
The following policy 7w is CMDP optimal:

m(D;) = x* = argmax EI(x | Dy).
xe

h > 1: Assume the argmax of EI has cost ¢(x*) = 7*
and there exists a point of small cost c¢(x.) = e. If

T =T7% 4 ¢, then x, should be evaluated before x*. In
the limit, a point that is free to evaluate should be
evaluated first.

A reasonable base policy should, at the minimum, sat-
isfy these two cases. For the first case, maximizing EI
must necessarily be the last step in our base policy. In
the second case, we note that maximizing EIpu for the
first rollout iteration will result in the desired behavior.
For simplicity’s sake, we extend Elpu until the last

iteration. The base rollout policy @ = (7g, ..., Th_1)
that we consider is therefore
- arg max,cq Elpu(x | Dy), t<h—1,
T (Dy) =
arg max, o EI(x | Dy), t=h-—1.

In other words, 7 rolls out A — 1 steps of Elpu followed
by a last step of EI.

This base policy has a few advantages. If h = 1 and
the budget is sufficient, it is CMDP optimal. If the cost
is uniform, this is equivalent to rollout of EI, which
has been shown to improve performance in standard
BO [Wu and Frazier], 2019, [Lee et al., [2020a]. Lastly,
this base policy is consistent with an early exploration,
late exploitation strategy, which is a common heuristic
in multifidelity and multitask settings; Elpu tends to
select cheaper points. Therefore, 7 starts by trying to
select cheaper points and then ends with selecting a
point that is likely more expensive.

5.2 THEORETICAL ANALYSIS

If a base policy 7 is deterministic, rollout in the MDP
setting will perform better in expectation than the base
policy itself. The same holds true in the CMDP setting
if ¢(x) is also deterministic.

Definition 1 [Bertsckas, |2017]: A policy  is sequen-
tially consistent if, for every trajectory from any sg:

(0,a0), (51,@1); - -+ (Sh—1,An-1),
w generates the following trajectory starting at sy:
(s1,0a1), (52,02) - .., (Sh—1,an—1).
Theorem 1 [Bertsekas, |2005]: In the CMDP setting,

a rollout policy .o does no worse than its base policy
T in expectation if T is sequentially consistent i.e.,

Vet (sg) > ViF (s0)-
Thus, the value function of a rollout policy is always

greater than the value function of the base policy.

To guarantee sequential consistency of our acquisition
function, we need only consistently break ties if the
acquisition function has multiple maxima.



6 EXPERIMENTS

We compare CMDP rollout, which we compute via
quasi-Monte Carlo integration, to EI and EIpu. We use
a GP with the Matérn-5/2 ARD kernel to model both
the objective and the cost functioﬂﬂ and learn hyper-
parameters via maximum likelihood estimation. When
rolling out acquisition functions, we use L-BFGS-B
using 5 restarts, selected by evaluating the acquisition
on a Latin hypercube of 10d points and picking the
five best as starting points. When comparing different
replications we first need to interpolate the objective
function values onto a set of discrete costs. Given these
interpolated value, we plot the mean with one stan-
dard deviation. Code to reproduce our experiments
is found at https://github.com/ericlee0803/
lookahead release.

6.1 SYNTHETIC PROBLEM

Objective and Cost BO Performance
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Figure 4: In this example, we examine a carefully cho-
sen example showcasing the strength of the rollout ap-
proach. We consider the a multimodal objective whose
most expensive point is the global minimum. Elpu per-
forms worse than EI, and both tend to get stuck in
cheaper, local minimum. Our rollout policy for horizons
2 and 4 performs better than both EI and Elpu

In Figure[d] we examine a carefully chosen synthetic ex-
ample showcasing the strength of the rollout approach.
We consider the cost-constrained optimization problem

f(x) = 10[[x]|2 sin(27[|x]]2),
e(x) = 10 — 5]|x]|2,

in the domain [—1,1]2, and a budget of 150. The cost
function has been designed so that its maximum aligns
with the minimum of the objective. As we motivated
earlier, Elpu struggles with these types of problems.
We run BO with EI, Elpu, and rollout with our base
policy 50 times and plot the results. This is seen on the
right, in which Elpu (green) performs worse than EI
(blue). However, rollout of our base policy, for horizons

2We use a log-warped GP to model positive cost.

two and four in pink and red respectively, performs
much better than both.

6.2 HYPERPARAMETER
OPTIMIZATION

We compare rollout performance to EI and Elpu on
HPO of three different models: k-nearest neighbors
(KNN), decision trees, and random forests, with bud-
gets of 800, 15, and 15 seconds respectively. These are
relatively small problems, chosen due to the number of
replications required to show statistical significance. All
models are trained for 50 replications on the OpenML
w2a dataset [Vanschoren et al., 2013]. We compare the
competing algorithms in terms of the best classification
error achieved on the validation set.

k-nearest neighbors: The k-nearest neighbors algo-
rithm is a class of methods used for classification of
either spatially-orientated data or data with a known
distance metric (i.e., data embedded in a Hilbert space).
We consider a 5d search space: dimensionality reduc-
tion percentage in [le—6,1.0] (log-scaled), type in
{Gaussian, Random}, neighbor count in {1,2,...,256},
weight function in {Uniform, Distance}, and distance
in {Minkowski, Cityblock, Cosine, Euclidean, L1, L2,
Manhattan}. We one-hot encode categorical variables.

Decision Trees: Decision trees are popular predictive
models used in statistics, data mining, and machine
learning. In the case of classification, leaves represent
class labels and paths represent sets of features that
lead to those class labels. During training, a tree is built
by splitting the source set into subsets which constitute
the successor children. The splitting is based on a
threshold that maximizes some notion of information
gain such as entropy. The depth of a decision tree is
pre-specified. We consider a 3d search space: tree depth
in {1,2,...,64}, tree split threshold in [0.1,1.0] log-
scaled, and split feature size in [le—3,0.5] (log-scaled).

Random Forests: A random forest is a set k of deci-
sion trees, and classifies based off the plurality decision
generated form all its trees —this technique is known
as bagging, and improves robustness in the classifica-
tion algorithm. We consider a 3d search space: number
of trees in {1,2,...,256}, tree depth in {1,2,...,64},
and tree split threshold in [0.1,1.0] (log-scaled).

6.3 SENSOR SET SELECTION

The sensor set selection problem [Garnett et all, 2010]
seeks to improve the predictive accuracy, as measured
by the root mean squared error (RMSE), of a physical
sensor network. We denote a sensor network’s configura-
tion of m sensors in d-dimensional space as X € R™*<,
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Figure 5: We compare the classification error among EI, Elpu, and our cost-constrained rollout for horizons 2 and
4. Rollout performs better than both EI and Elpu. Shaded areas represent one standard deviation around the

mearn.

This configuration must be manually adjusted each
time it is updated. This is typically assumed to have
uniform cost; we modify the problem to consider a sen-
sor adjustment cost. We assume this cost is correlated
with the distance each sensor in the network has to
move; for simplicity, we assume the cost of any new sen-
sor configuration X’ is proportional to the straight-line
distance d(X,X’) = || X — X'|| . This is an example of
a CMDP whose cost is not state-independent; our cost
now depends on the prior state.

We consider a small sensor set selection problem using
ten sensors. Our objective is RMSE of the sensor predic-
tions against ground truth weather data taken from UK
Meteorological Office MIDAS surface stations |[Centre,
2012]. The time budget is twenty years.

6.4 ANALYSIS

We plot the resuts of our HPO and sensor set selection
experiments in Figure 5] and find that CMDP rollout
generally outperforms both EI and Elpu. In this sec-
tion we discuss key insights gained over the course of
experimentation.

Cost Modeling: We found the cost function to be sim-
pler to model than the objective function. In practice,
the cost may only depend on a few key parameters (e.g.,
tree depth). Thus, using a vanilla GP to model the cost
is inefficient —a tailored (parametric) cost model or a
GP that incorporates parameter importance into its
lengthscale priors will likely lead to better results [Lee
et al., 2020b, |Guinet et al., 2020].

Search Space Sensitivity: Elpu’s performance de-
pends on the correlation between objective value and
cost. Unsurprisingly, this correlation often depends on
the search space in practice. For example, assume a
decision tree of depth d achieves maximal classification
error and that its training cost increases with depth.

(i) If the search space is [1,d], the maximum will be
the most expensive point and Elpu will perform poorly;
(ii) if the search space is [1,2d], the maximum will be
have middling cost and Elpu will perform moderately
well; (iii) if the search space is [1,10d], the maximum
will have cheap cost and Elpu will perform very well.
In our experiments, we found CMDP rollout to be
more robust to the shape of the cost surface. This is
expected, as a CMDP optimal policy selects the point
that maximally reduces the objective function given
the cost constraint.

7 CONCLUSION

In this paper, we have shown the importance of cost-
constrained BO and formulated it as an instance of a
constrained Markov decision process (CMDP). We de-
veloped a rollout algorithm using a cheap exploration,
expensive exploitation base policy that performed bet-
ter than EI and Elpu on three hyperparameter opti-
mization problems and a sensor set selection problem.

These investigations into cost-constrained BO are
promising and we believe there are many interesting
directions for future work. First, the overhead of the
optimizer itself should be taken into account, espe-
cially in the context of HPO. While the overhead is
negligible when the cost of evaluating the black-box
is high (e.g., when training deep neural networks), fu-
ture work could explore simpler heuristics to lower the
overhead of using rollouts. Second, we believe approxi-
mate solutions to CMDPs other than rollout are worth
investigating. State aggregation and state truncation
are classic methods in the MDP setting that reduce
the state space according to the transition probabilities
and |Altman| [1999] extends them to the CMDP setting.
Consequently, we may approximate our model through
state aggregation and state truncation and then com-
pute an exact solution via linear programming.



Finally, we have limited our discussion to the sequential
BO setting. However, cost-constrained BO becomes
significantly more complex in the batch setting, when
evaluations are performed in parallel. This is another
interesting topic for future work.
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A GAUSSIAN PROCESS
REGRESSION

We place a GP prior on f(x), denoted by f ~ GP(u, K),
where p: Q@ - R and k : Q x Q2 — R are the mean
function and covariance kernel, respectively. The kernel
k(x,x") correlates neighboring points, and may contain
hyperparameters, such as lengthscales that are learned
to improve the quality of approximation [Rasmussen
and Williams, |2006]. For a given D; = {(x;,y;)}!_;, we
define:

Y1 k(x,x1) k(x1)"

K:

3

" k(x, x) K(xp)T

We assume y; is observed with Gaussian white noise:
yi = f(xi) + €, where ¢, ~ N'(0,0?). Given a GP prior
and data Dy, the resulting posterior distribution for
function values at a location x is the Normal distribu-
tion N (14 (x; Dy), 07 (x; Dy)):

pe(x;Dp) = (%) + k(%) (K +0?1) "y — p(x),
U?(x; D:) = k(x,x) — k(x)T(K + UQIt)_lk(x),

where |I; is the t x ¢ identity matrix.

A.1 KERNELS

The kernel functions we use in this paper are the
squared exponential (SE) kernel, Matérn 5/2 kernel,
and Matérn 3/2 kernel, respectively

N o2 = x|
kse(x,x') = o eXP( 502

V5 5) \/5||X—X/||
N 2 -
ksj2(x,x') = a <1+£ —|—3€2 exp 7

baya(%,x) = o (1 + f) exp (‘/‘S’”XEX>

B COMPUTATIONAL COST

The main computational subroutines in a point-wise
calculation of Ay (x| D) are h sequential updates of
a Cholesky factorization to update the GP posterior,
and h maximizations of A(x | Dy,).

Assume the GP’s kernel matrix is K;; € R™*" =
L1 LT,. Augmenting the Cholesky of Ki; augmented
with a single row and column is done by:

Ky
K,

Kz

K =
{ Ko

} , Ky =L LT,

L1y 0
L P—
[L1T2 L22]

L12 = L1_11K12 5 L22 = ChOl(K22 - L{2L12).

Sequentially updating the Cholesky will increase the
size of the kernel matrix each time. Therefore, updating
the Cholesky h times has total cost O(h(n + h)?)

Maximizing A(x | D,,) is done with quasi-Newton meth-
ods, typically via BFGS or L-BFGS with r restarts.
Obtaining the gradient of EI is equivalent to obtaining
the gradient for (™ (x;D,) and K™ (x,x’;D,). The
cost of obtaining the gradient is O(n?d) (we treat the
number of quasi-Newton iterations and restarts as a
constant). Therefore, maximizing A(x | D,,) sequen-
tially h times has total complexity O(n?d).

B.1 EFFICIENT INTEGRATION

Monte Carlo (MC) is well-suited to high-dimensional
integration and is the standard way to rollout a base
policy. MC converges at a rate of o/v/N, the standard
deviation of the MC estimator, where o is the sam-
ple variance and N is the total number of samples.
MC’s primary drawback is slow convergence. Increas-
ing precision by an order of magnitude requires two
orders of magnitude more samples. If ¢ is high, many
samples may be required to converge. We use two vari-
ance reduction techniques shown in [Lee et al.| [2020a)
to significantly reduce the computational overhead of
rollout: Quasi-Monte carlo and common random num-
bers. Variance reduction is a class of methods that
improve convergence by decreasing the variance of the
estimator.

Quasi-Monte Carlo (QMC) Instead of sampling
directly from the probability distribution, QMC in-
stead uses a low-discrepancy sequence as its sample set.
QMC converges at a rate bounded above by log(N)" /N,
where N is the number of samples and & is the in-
tegral’s dimension. This bound stems from the well-
known Koksma-Hlawka inequality |Caflisch| [1998], and
is roughly linear for large N and moderate h. In prac-
tice, this bound is often loose and convergence proceeds
faster.

Common random numbers (CRN) CRN is used
when estimating a quantity to be optimized over param-
eter x, and is implemented by using the same random
number stream for all values of x. CRN does not de-
crease the point-wise variance of an estimate, but rather
decreases the covariance between two neighboring esti-
mates, which smooths out the function.
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