
0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2021.3097287, IEEE Micro

Datacenter-Scale Analysis and Optimization of
GPU Machine Learning Workloads

Lukasz Wesolowski
Facebook, Inc.

Bilge Acun
Facebook, Inc.

Valentin Andrei
Facebook, Inc.

Adnan Aziz
Facebook, Inc.

Gisle Dankel
Facebook, Inc.

Christopher Gregg
Stanford University,

Facebook, Inc.

Xiaoqiao Meng
Facebook, Inc.

Cyril Meurillon
Facebook, Inc.

Denis Sheahan
Facebook, Inc.

Lei Tian
Facebook, Inc.

Janet Yang
Carnegie Mellon University

Peifeng Yu
University of Michigan

Kim Hazelwood
Facebook, Inc.

Abstract—We present a system to collectively optimize effi-
ciency in a very large scale deployment of GPU servers for
machine learning workloads at Facebook. Our system (a) mea-
sures and stores system-wide efficiency metrics for every executed
workflow, (b) aggregates data from across the execution stack
to identify optimization opportunities that maximize fleet-wide
efficiency improvements, (c) provides periodic and on-demand
whole-system profiling for workflows and, (d) automatically
analyzes traces for common anti-patterns. We present each
component of the stack and show case studies demonstrating
the use of the tools to significantly improve performance. To our
knowledge, our system is the most complete and effective solution
for identifying and addressing efficiency problems in datacenter-
scale GPU deployments.

I. INTRODUCTION

Large-scale deployments of GPU servers, once rarely found
outside national laboratories, cloud service providers, and aca-
demic research centers, have in the past few years proliferated
across the technology sector and other industries as GPUs have
become a dominant architecture for machine learning (ML)
workloads key to the business of many companies. In contrast
to research-focused GPU supercomputers that must support
many programming languages, runtime systems and parallel
libraries [1], large-scale industry GPU deployments tend to
feature a much higher homogeneity of application domains
and libraries, with most jobs executing ML workloads using
a common ML library, and a higher cohesion of the user
base, typically comprising employees of the company owning
the resource. This presents an opportunity for performance
measurement and optimization that provide both global and
workflow-level information and identify the highest yield
targets for improving efficiency. Similar opportunities may
exist in consolidated resource-sharing environments. Nonethe-
less, there is a lack of existing systems that satisfy the key
requirements for tooling in this space.

In this paper we demonstrate a methodology and tooling
for improving the efficiency of a large GPU deployment at
Facebook. Our system comprises the following components,
which together allow a relatively small number of GPU
performance experts to support a much larger number of ML
specialists:

• A telemetry infrastructure capable of collecting detailed
performance metrics for all applications and execution
stack levels via an in-process library (Section IV)

• Data aggregation and visualization tools that automati-
cally analyze fleet-wide metrics and surface global per-
formance issues (Section V)

• A profiling service integrated with the existing perfor-
mance analysis portal and workflow management tools to
enable the collection and display of detailed performance
profiles with the click of a button for any running
workflow in the fleet (Section VI)

• A timeline trace analysis tool that identifies common
performance issues and provides actionable recommen-
dations (Section VI-C)

To the best of our knowledge, our system is the most
comprehensive solution for identifying and fixing global per-
formance issues in a datacenter-scale GPU deployment as well
as for individual workflows.

The rest of the paper is organized as follows. We present
a survey of related work and how it differs from our efforts
in Section II. An overview of our hardware and infrastructure
follows in Section III. We then describe infrastructures built
for telemetry, data aggregation, performance profiling and op-
timization in Sections IV, V, VI respectively. We demonstrate
the capabilities of our system with case studies based on real
applications in Section VII and conclude in Section VIII.

II. RELATED WORK

Utilizing GPUs efficiently in a shared large-scale envi-
ronment brings a set of unique challenges. Developers of
deep learning frameworks like TensorFlow, PyTorch, MXNet,
CNTK, etc. are spending considerable effort on balancing the
work between the host CPU and the GPU, efficient graph com-
piling through fused operators or smart tensor caching, reduced
precision training, etc., in order to minimize communication
with the host processor and reduce idle times on the GPU.

When using multiple GPUs for solving tasks like deep-
learning (DL) distributed training, achieving high utilization
efficiency becomes even more difficult. Scaling efficiency
is a difficult problem to solve in distributed training and

Authorized licensed use limited to: Facebook Inc.. Downloaded on July 20,2021 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2021.3097287, IEEE Micro

researchers have developed solutions like gradient compres-
sion or efficient communication patterns. Finally, at fleet-wide
level, all the efficiency limiting effects observed at single-
GPU and multi-GPU level get amplified proportionally with
the size of the infrastructure. In [2], the average observed GPU
utilization in a multi-tenant environment running deep learning
training was 52%, which demonstrates the magnitude of some
of the challenges we mentioned. Also, as the authors mention,
this number is an optimistic upper bound because it does not
include to what extent each GPU is being used, only that it is
active.

To achieve efficient GPU usage in a large-scale setup,
monitoring and introspection tools that are capable of showing
both detailed utilization metrics and system-wide bottlenecks
are desirable.

NVIDIA partly addresses these needs with the combination
of the Datacenter GPU Manager (DCGM) for fleet-wide moni-
toring and NVIDIA Nsight Systems for system-wide profiling.
While DCGM provides a big improvement over previous tools
such as NVIDIA System Management Interface (nvidia-smi),
it is the CUDA Profiling Tools Interface that provides the most
comprehensive and detailed set of metrics.

When designing a fleet-wide performance introspection
system, there is a trade-off between the quantity of gathered
information and the overhead of the data collection. [3]
describes how Cloud TPU Tools and TensorBoard can be used
to analyze the performance of workloads running on Google’s
TPU [4]. The tools provide two analysis modes: profiling and
monitoring. While the profiling mode provides a rich set of
metrics, traces and more, the monitoring mode tracks only
device idle time, TPU matrix utilization and step time. The
profiling information can only be collected for small time
windows as opposed to the entire workload’s duration. An-
other open-source Microsoft solution for monitoring resource
utilization in GPU clusters is described in [5]. The monitor
collects statistics like GPU utilization, memory utilization and
thermal data, obtained from NVIDIA NVML. This is the same
API used by nvidia-smi and does not provide the detailed
GPU utilization metrics available in DCGM or CUPTI. In [6]
and [7] solutions for monitoring GPU utilization on Amazon
Web Services (AWS) are presented and they also rely on data
provided by NVIDIA NVML, being limited to basic device
utilization and temperature readings.

The workflow performance optimization system in this
paper has parallels to efforts in the HPC space. There exist
several open tracing and telemetry infrastructures actively used
by the community such as TAU, Projections, and HPCToolkit.
Score-P is a tool suite for profiling, event tracing, and online
analysis of HPC applications. It supports a range of analysis
tools such as Vampir and Scalasca.

The solution presented in this paper has distinguishing
attributes critical to systematically improving efficiency of
large GPU fleets used for ML workloads:
• continuous metric collection of all executing ML workflows

at low overhead (<1%) and transparent to users, by means
of an in-process library leveraging NVIDIA CUPTI [8]

• on-demand and periodic trace collection transparent to users
• metric and trace aggregation and visualization tools that

identify commonly observed issues across the fleet

III. HARDWARE AND SOFTWARE INFRASTRUCTURE

A. Hardware Platforms

The supercomputer-scale GPU datacenter described in this
paper is composed of Big Basin GPU servers, with design
specifications released publicly as part of the Open Compute
Project [9]. A single Big Basin server has two Intel CPUs
(various generations) and eight NVIDIA GPUs. Tesla P100 or
V100 GPU accelerators are connected by NVIDIA NVLink
[10] to form an eight-GPU hybrid cube mesh. Each GPU has
either 16GB or 32GB HBM2 memory. Servers have 256 GB
RAM and are connected via 100 Gbps ethernet.

B. Machine Learning Models and Use Cases

Our GPU servers are primarily used for training vari-
ous models for production and experimental purposes. Most
workflows use PyTorch [11], due to ease of experimentation
with Python, imperative style and simplicity, and FBLearner
Flow, Facebook’s ML training platform that provides work-
flow pipeline management, integration with systems for data
reading and scheduling, and user interface for experimentation
management.

Machine learning algorithms used in the workflows include
state of the art Deep Neural Networks (DNN), i.e. Multi-Layer
Perceptrons (MLP), Convolutional Neural Networks (CNN),
and Recurrent Neural Networks (RNN/LSTM), as well as
other techniques such as Logistic Regression (LR), Support
Vector Machines (SVM), Gradient Boosted Decision Trees
(GBDT).

IV. TELEMETRY INFRASTRUCTURE

The first step to improve performance for a large-scale
deployment of GPU servers is enabling detailed visibility into
resource utilization across the key resources such as CPUs,
GPUs, memory, network and I/O.

Our solution is to deploy a custom CUPTI-based perfor-
mance monitoring- and profiling-library, Kineto [12] (Fig-
ure 1a). Kineto is an open source project, available at GitHub
and integrated with the PyTorch Profiler. Compared to NVML-
based telemetry such as nvidia-smi, and even DCGM, the
Kineto profiling library significantly improves visibility into
ML training workloads by providing a means of collect-
ing both detailed GPU hardware performance counters and
timeline traces. This approach enables a large degree of
customization to and integration with our environment.

A core set of event counters are collected continuously for
nearly every workload running in the fleet. These include
elapsed cycles, active cycles, active warps and instructions,
and are collected for each streaming multiprocessor (SM)
of every GPU. With these we can report metrics such as
SM efficiency, achieved occupancy, instructions per cycle and
others discussed in section V.

2

Authorized licensed use limited to: Facebook Inc.. Downloaded on July 20,2021 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2021.3097287, IEEE Micro

Collection
Config

Telemetry Daemon

CUPTI Library

Process

Time series
DB

Aggregation &
Analysis

On-demand
Collection Event Counts

Combined metrics

Diagnostics
DB

Data
Warehouse

Dashboards /
Alerts

Fleet-wide Analysis
Dashboards

Host

(a) Our CUPTI-based profiling library collects performance
events for nearly all workloads running in the fleet. Event counts
are sent to a system telemetry daemon present on every host
where they are combined with other system metrics, including
device-level GPU metrics collected via NVML or DCGM, and
logged to three different telemetry systems.

copy

Backward Pass
torch::autograd::AccumulateGrad

addmul
launchKernellaunchKernel

Thread 1

Thread 2

Thread 1

GPU Stream 2

Trainer

Reader

GPU Stream 1 memcpy

memcpyAsync

sgemm kernel

RPC Start

RPC End

Handle Request

TorchScript Function

PyTorch Framework Function

Execution Unit

User Annotated Function

CUDA Runtime function

CUDA GPU Operation

(b) Anatomy of a timeline trace. Events are collected from
several sources: Workload user instrumentation, TorchScript and
PyTorch Profiler frameworks, NVIDIA API instrumentation,
GPU operations from CUPTI, and RPC calls.

Sampling Config

Trace Collector and
Telemetry Daemon

Trace & Telemetry Library

Process A

StorageAggregation &
Analysis

On-demand
Collection

Tracing API

Tracepoints

Trace & Telemetry Library

Process B

Tracing API

TracepointsRPC
Ctx

RPC
Ctx

Relu LookupSpans and Events

Combined traces
and metrics

Trace Visualization

Outbound Request

Fleet-wide
Analysis

Dashboards

(c) Trace Collection Infrastructure: The telemetry infrastructure
described in Figure 1a is extended to collect traces on-demand.
Section VII contains several examples of actual trace snippets.

Fig. 1: Telemetry and Tracing Infrastructure

Counters from each SM are aggregated into a few buckets
(p5, p25, p50,...), allowing us to detect SM imbalances, includ-
ing unused SMs. The counters are then sent from the workload
to our system Telemetry Daemon, which runs on every host in
our fleet. Here they are combined with a collection of other
system metrics and sent to the general telemetry infrastructure
(Figure 1a). Counter values are logged every 10 seconds by
default. This frequency allows us to observe phase changes in
a typical training job, particularly training epochs.

Metrics are collected continuously for all workloads. Avoid-
ing sampling increases accuracy, simplifies collection and
downstream processing, and enables analysis of resource
utilization such as Dr. Sankey, described in section V. We
rarely see more than 1% overhead from continuous counter
collection, which we consider an acceptable cost for the benefit
of having complete coverage.

NVIDIA’s counters are 32 bits and can overflow in under
a second. We therefore read them at least twice per second.

3

Authorized licensed use limited to: Facebook Inc.. Downloaded on July 20,2021 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2021.3097287, IEEE Micro

On the other hand, if we issue too many reads across multiple
processes and GPUs, we experience read latencies exceeding
one second, causing counters to overflow. As a mitigation,
we limit collection to a single process per GPU. Since we
generally don’t stack workloads onto a single GPU, this is not
a critical limitation.

The collected metrics are sent to three different telemetry
systems:

• A time series database serving real-time system-level metric
dashboards and alerts.

• A metric store for near-realtime (∼1 minute delay) drill-
down and diagnostics, used for debugging and individual
workload analysis, including ad-hoc metric collection.

• A data warehouse with longer retention supporting arbitrary
complex queries and processing, used for fleet-wide analy-
sis. Tables here are typically delayed by a few hours and
have daily scheduled analysis pipelines.

V. DATA AGGREGATION TOOLS

A. Metric Terminology

GPUs are massively parallel devices consisting of tens
to hundreds of streaming multiprocessors (SMs). Work for
CUDA GPUs is expressed using kernels, routines executed
on grids of threads. A thread grid is logically partitioned into
blocks, which define the granularity at which work is assigned
to SMs, and further into warps, groups of 32 threads which
share scheduling logic. We leverage the following metrics
to analyze the achieved parallelism at various levels of the
architecture:

• GPU Utilization measures the fraction of time the GPU is
busy. GPU Utilization does not capture parallelism within
the GPU. For example, on a V100 GPU, executing a
GPU kernel with just one active thread yields 100% GPU
Utilization while using less than 0.01% of the compute
resources.

• SM Efficiency measures SM activity. It is calculated as the
percentage of cycles when an SM is active (i.e. has at least
one warp in flight). To reach 100% aggregate SM Efficiency
for the GPU, at least one warp must be active on every SM
for every elapsed cycle.

• SM Occupancy measures warp-level parallelism per SM.
It is calculated as the number of warps active per SM,
averaged over time. It can be measured over either SM active
cycles (as is done for NVIDIA’s achieved occupancy metric),
indicating warp-level parallelism averaged over duration of
all kernels, or over elapsed cycles (i.e. counting cycles when
the SM has no active warps as 0 occupancy). SM occupancy
over elapsed cycles is the product of SM Efficiency and SM
occupancy over active cycles. As a measure of warp-level
parallelism over entire program duration, it is our preferred
top-line metric for reporting workflow efficiency. The other
metrics are still helpful in determining whether low SM
activity or low active warp count is the dominant problem.

B. Dr. Sankey

We developed a new model for fleet-wide efficiency analy-
sis, which we nicknamed Dr. Sankey. This allows us to mea-
sure and consolidate inefficiencies across the operating stack
in a server pool. This compact representation helps identify
at a glance utilization bottlenecks and prioritize optimization
efforts. The model relies on a simple drill-down process that
estimates the utilization of resources, from coarse to fine.

Let’s illustrate the process using the fleet described in Sec-
tion III. A central job scheduler is responsible for managing
the fleet resources and optimize the placement of jobs on hosts
based on resource requirements and availability.

1) First we consider the availability of hosts in the fleet.
At any given point in time, a number of hosts are in
repair or temporarily offline for maintenance and therefore
not capable of running jobs. We measure the operational
efficiency of the fleet with the Host Activation rate, defined
as the ratio of hosts capable of running jobs (schedulable)
and hosts deployed in the fleet.

2) Next, zooming in on the schedulable hosts, we examine
how much of the fleet is actually put to work. This is
measured by the Host Utilization rate, defined as the
ratio of busy hosts and schedulable hosts. Insufficient job
demand is a common cause of low host utilization.

3) Next, we estimate how many GPU devices are left stranded
(unallocated) in busy hosts. The GPU Allocation rate is
defined as the ratio of GPUs allocated by jobs and total
GPUs provisioned on busy hosts. A low allocation rate in-
dicates high fragmentation of GPU resource. This suggests
inefficiencies in the scheduler placement algorithm and/or
wasteful job requirements - e.g. a job requests all of a host
memory but only 1 GPU, leaving 7 GPUs stranded.

4) Next, we measure the utilization of allocated GPUs. The
GPU Utilization rate is the ratio of cycles a GPU was busy
executing instructions and total elapsed cycles, summed
over all allocated GPUs. A low GPU utilization means jobs
are not able to funnel enough work to the GPUs, and may
be caused by CPU or I/O bottlenecks, such as fetching
training data.

5) Finally, we measure how efficiently the GPU execution
cores are used with the SM Utilization rate. This is defined
as the fraction of SMs that are utilized (running a warp),
averaged over all cycles the GPU is busy. SM Utilization
is very similar to SM Efficiency, except that it is only
calculated over GPU active cycles instead of elapsed cy-
cles, i.e. SM Efficiency combines GPU Utilization and SM
Utilization into a single metric. A low SM utilization rate
suggests insufficient SM-level parallelism.

The utilization metrics defined above form a hierarchy of
nested metrics, in a Russian doll fashion. The metrics can be
conveniently visualized using a Sankey diagram, with each
layer representing a level of inefficiency. Figure 2a represents
the efficiency of a fictitious GPU fleet of 10, 000 hosts. The
inefficiencies at each layer are expressed relatively to the
deployed fleet (top layer), so that the percentages add up to

4

Authorized licensed use limited to: Facebook Inc.. Downloaded on July 20,2021 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2021.3097287, IEEE Micro

(a) A Sankey diagram depicting fleet-wide resource efficiency.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Resource available
Resource busy

0%

20%

40%

60%

80%

100%

Re
so

ur
ce

 u
til

iza
tio

n

Cycles

Time

0

1

2

3

4

5

6

7

8

9

Re
so

ur
ce

s

Resource utilization

T0 T1 T2 T3 T4 T5 T6

(b) Illustration of Resource Utilization (with T = 5 and N = 10).

Fig. 2: Dr. Sankey

100%. The compound efficiency of the fleet is the ratio of
the bottom and top layers in the figure. In this example, the
ratio (24.3%) represents the effective utilization of the all SMs
deployed in the fleet, averaged over time and space.

This methodology is not specific to GPU hardware architec-
ture, and can be generalized to arbitrary types of fleet. Let’s
first formalize the notion of resource utilization. The average
utilization ur of N homogeneous resources of type r over
period [0, T], with the resource utilization function ur(n, t)
defined as 1 if resource n is busy (or allocated, not usable,
etc.) at time t, 0 otherwise, can be expressed as:

ur =
1

T ·N
∑
t<T

∑
n<N

ur(n, t)

Figure 2b offers a graphic representation of this definition.
Resources in a fleet can typically be organized in a hier-

archy, from coarse to fine. For example, a fleet comprises
hosts, which comprise CPU chipsets, which comprise CPU
cores, etc. This tree allows to simply identify the parent of a
utilization metric. Recursing through the parents up to the root
yields a sequence of utilization metrics, nested in a Russian
doll fashion. The compound utilization u∗R for resource R
represents the fully diluted utilization of resource R over the
fleet, i.e. the effective utilization of resources of type R over
the entire fleet. It can be calculated with the product of all
ancestor utilization metrics along the path to the root:

u∗R =
∏
r≤R

ur

C. GPU Efficiency Dashboard

The Dr. Sankey chart provides a good overview of inefficien-
cies across the execution stack. Some of the highest sources
of inefficiency are at the workflow level, corresponding to the
lowest two levels of Dr. Sankey.

The GPU Efficiency dashboard provides a workflow-centric
view of GPU efficiency metrics by aggregating performance
metrics from Kineto with job execution metadata from our
scheduler datasets. The dashboard helps performance engi-
neers identify and prioritize optimization opportunities among
the large set of running workflows. It tracks SM Efficiency,
SM Occupancy over active cycles, and SM Occupancy over
elapsed cycles as defined in Section V-A, along with resource
use, defined as GPU hours consumed by a run.

There are hundreds of different workflow types executed
across our fleet in any given week, many with a large number
of instances. Each workflow executes the distributed training
code corresponding to its workflow type, though instances
vary with respect to resource requirements and duration.
Aggregating data by workflow type allows us to find work-
flow types with highest aggregate resource use and lowest
efficiency. These are the best targets for optimization. The top
10 workflow types by resource use across the fleet account for
more than 70% of all resources consumed. By optimizing these
workflows we can significantly improve average efficiency,
which in practice allows more runs to execute concurrently.

To use the dashboard, one selects a time window and metric
to track, and optionally a workflow type and list of users.
Information available through the dashboard includes:

• List of workflow types ranked by aggregate resource use
and their corresponding average efficiency

5

Authorized licensed use limited to: Facebook Inc.. Downloaded on July 20,2021 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2021.3097287, IEEE Micro

(a) Line plots generated from the dashboard showing SM occupancy
over elapsed cycles and resource use for an example use case. While
resource use is trending up, efficiency appears to be regressing.

(b) An example scatter plot produced using the GPU Effi-
ciency dashboard, displaying resource use and efficiency
of all runs of a workflow within a selected period of time,
labeled by user (legend is not displayed for privacy).

Fig. 3: GPU Efficiency Dashboard

• Line plots of efficiency and resource use over time (a) in
aggregate across all workflows, (b) for a single workflow,
or (c) for a list of users of a workflow

• List of all runs matching selected criteria, their resource use,
efficiency, and link to their execution logs

• A scatter plot of resource use vs efficiency for all runs with
selected criteria, labeled by user
Figure 3a shows an example of efficiency and resource use

line plots generated by the dashboard. This view helps to spot
negative trends, such as workflows that increase in resource
use while degrading in efficiency. Another example from the
dashboard is shown in Figure 3b, showing a scatter plot of
efficiency and resource use labeled by user for a set of runs
of a workflow. This view helps to identify users with heavy
resource use or particularly high or low workflow efficiency.
Users that have higher efficiency could be applying special
optimizations that others could benefit from. Meanwhile, users
with very low efficiency could be misconfiguring their jobs.

VI. TOOLS FOR OPTIMIZING INDIVIDUAL WORKFLOWS

A. On Demand Tracing

Once workflows have been identified as promising candi-
dates for optimization, the next step is to perform top-down
performance analysis to reveal bottlenecks, estimate possible
improvements, and remove the bottlenecks if desirable.

Timeline tracing is one of the best tools for identifying
bottlenecks in parallel applications. Many of the bottlenecks
that are typical to the GPU workloads we run in our fleet are
quickly recognizable when looking at a timeline trace.

Figure 1b shows an example portion of a timeline trace
to illustrate the different elements involved. Each colored bar
in the diagram represents the duration of a particular event,
which can be composed of sub-events, including via RPC
to other processes and hosts. There are also other types of
dependency relationships, such as when a CPU thread issues
an asynchronous GPU kernel launch to the CUDA API.

To support our goal of enabling trace collection for any
workflow running in the fleet, the Kineto profiling library is
able to record GPU traces via the CUPTI API. The GPU

traces are combined with CPU activity traces from supported
frameworks such as PyTorch. Traces may be collected for any
workload running in the fleet at any time without special setup.
This on-demand aspect is key to us for several reasons:

• It allows GPU performance experts to dissect any workload
running in the fleet without help from workflow owners.

• It allows workflow owners to analyze their workflows with
a click of a button. Ease-of-use matters greatly for adoption.

• Collecting traces in production often reveals different bot-
tlenecks than during development and testing.

Figure 1c shows how we extended the telemetry infras-
tructure in Figure 1a to include timeline tracing. We added
a tracing API to the telemetry library, and added support
for tracing across process and host boundaries to the RPC
mechanism. In the case of a distributed workload, traces may
be collected from multiple processes and hosts separately and
simultaneously, and merged by the Trace Collector or in post
process. Metrics and patterns are extracted from traces for
fleet-wide analysis.

A key requirement of trace collection is avoiding significant
workload performance overhead. Typical duration of trace
collection is on the order of seconds, so this performance
overhead has minimal effect on workflow efficiency over
the entire run, but it can distort the timeline and mask real
bottlenecks. In order to keep overhead low, we employ two
strategies:

1) A trace warmup period is used to initialize and “warm up”
the tracing infrastructure and data structures. In some cases
we observe several seconds of large performance impact
before the workload stabilizes with a small overhead,
typically < 5%. This warmup period is synchronized across
different processes and hosts for distributed workloads.

2) The trace is first logged into memory buffers using an
efficient and compact format. Only when the trace is
complete do we write the trace to one or more destinations,
in a background thread, using a more portable format.

For distributed workloads, the ability to capture a trace of
a particular time window from multiple processes and hosts

6

Authorized licensed use limited to: Facebook Inc.. Downloaded on July 20,2021 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2021.3097287, IEEE Micro

involved in an AI workload and combine them into a single
trace has proven helpful.

An extensible trace processing pipeline enables metric ex-
traction and pattern detection on traces, which we will explore
in more detail in Section VI-C.

Since trace collection is part of a larger performance profil-
ing infrastructure with a web-based GUI, it is also desirable
that trace visualization can be done directly in the browser,
and that a link to a trace can be easily shared between
people, attached to tasks and chat groups and so on. This
greatly speeds up collaborative analysis and tuning, as well as
allowing GPU experts to quickly investigate and offer advice.

B. PerfDoctor

Timeline traces reveal many issues common to GPU work-
loads. In some cases, however, it is helpful to look at a larger
set of metrics relating to other resources, such as system
memory, I/O, network, etc.

We continuously collect additional performance data on
every machine in the fleet, including:

• System level metrics such as CPU utilization, memory
and network bandwidth

• Application data including stacks, memory allocations,
throughput counters etc.

PerfDoctor is a tool for marshaling this performance data
and presenting it to developers and production engineers in a
single screen. It presents a curated set of data views that per-
formance engineers find most useful for analysis. PerfDoctor
has an extensive UI which combines links to performance data,
detailed analysis, highlighted issues and pointers to potential
solutions. The UI is composed of tabs for CPU, GPU, Memory,
Network, Application etc.

For ML workflows, PerfDoctor can collect data on-demand
by communicating directly to the collection daemons on the
hosts. In fact, this is the main mechanism used to collect GPU
timeline traces. PerfDoctor communicates with the Kineto li-
brary in the ML workload via a collection daemon on the host.
The traces are collected, compressed, and uploaded to a data
repository. From there they can be viewed in the PerfDoctor
UI and analyzed using Automated Trace Comprehension as
described below.

C. Automated Trace Comprehension (ATC)

We have found that effective use of timeline tracing requires
substantial experience, and in some cases, knowledge of HPC
concepts. While data aggregation tools as described in Sec-
tion V allow our performance engineers to directly address the
most pressing performance problems in the fleet, workflows
that are not near the top by resource use rarely get personalized
attention. Therefore, the question is whether we can have a
user-friendly and scalable way to enable non-GPU experts to
optimize their model training workloads.

Our answer is Automated Trace Comprehension (ATC), a
system which automatically analyzes traces for performance
issues and guides optimizations. ATC aims to extract useful
information from traces and assist users in these aspects:

• Hotspot Stats: The Hotspot Stats report contains high-level
stats including the frequency, duration and size distribution
of activities (e.g., operators, CUDA runtime, GPU kernels)
in collected traces. The top time-consuming operators and
kernels are highlighted as performance optimization targets.

• Anti-Pattern Detection: In practice, poor performance and
resource utilization in ML training workloads usually can
be correlated with anti-patterns found in their traces. Typical
anti-patterns we found in workloads include “Too little work
per CUDA kernel or memcpy”, “Bottlenecks at the CPU
causing high GPU idle time”, “Improper grain size per GPU
thread”, “Improper memory access patterns”, “Insufficient
concurrency”, and so on. ATC scans the traces and reports
any anti-patterns it detects. We give examples of these anti-
patterns in the next section.

VII. CASE STUDIES

Many GPU performance issues we find in the datacenter
result from blind spots about GPU concepts or constraints by
workflow authors, who write anti-pattern code that performs
poorly. Here are examples of common patterns that we have
identified using our tools.

A. Too little work per CUDA kernel or memcpy

Blind Spot: Overhead of kernel launches and cudaMemcpy
is relatively high (∼ 5µs). Anti-Pattern: An operator for
data transformation was implemented using CPU code exe-
cuting fine-grained cudaMemcpy calls in a loop. CUDA API
overhead dominated execution time as shown in Figure 4-
(a). Solution: Using a GPU kernel that transforms the data
in parallel using blocks of GPU threads, we improved the
performance of the operator by 200x and of the workflow by
3.5x.

B. Bottlenecks at the CPU Cause High GPU Idle Time

Blind Spot: Peak throughput is much higher on the GPU
than on the CPU. Anti-Pattern 1: Code that performs expen-
sive data transformations on the CPU, causing GPU to go idle
for extended time. Solution 1: Do as much as possible of the
expensive work on the GPU with kernels that take advantage
of the available concurrency. Solution 2: Run more threads on
the CPU to concurrently prepare work for GPU execution to
help feed the GPU more effectively. As shown in Figure 4-(b),
a workflow used 8 CPU threads to manage the 8 GPUs on the
server. Increasing the number of threads to 64 improved overall
throughput by 40% by allowing more concurrent operations to
run in parallel.

Anti-Pattern 2: Expensive file I/O operations on the CPU
causing large idle sections at the end of each iteration as
illustrated in Figure 4-(c). Solution: Reduce the I/O overhead
by decreasing the frequency of data logging.

C. Improper Grain Size per GPU Thread

Blind Spot: On the CPU, the work per thread should be
substantial (e.g. to absorb context-switch overhead), but GPUs
switch between warps of threads very efficiently, so keeping

7

Authorized licensed use limited to: Facebook Inc.. Downloaded on July 20,2021 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2021.3097287, IEEE Micro

(a) Tiny memory copy operations causing overhead.

(b) 8 CPU threads are used to manage 8 GPUS.

(c) Data logging overhead on CPU causing idle time on GPU.

(d) It takes longer to launch a kernel than to run it.

Fig. 4: Case Studies: Timeline profiles

thread grain size very low is fine. Anti-Pattern: GPU code
with too much work per thread artificially limits concurrency,
yielding low block count and SM efficiency. Solution: Rewrite
kernels to expose more concurrency and increase blocks per
kernel.

D. Insufficient Concurrency

Blind Spot: GPUs contain thousands of compute units, so
code must expose that much concurrency for proper utilization.
Anti-Pattern: Kernels with low parallelism that utilize a small
fraction of SMs, as shown in Figure 4-(d). Solution: If the
problem inherently has low concurrency, consider running on
a CPU instead.

VIII. CONCLUSION

Performance analysis and optimization of massively par-
allel workloads is a hard problem, and scaling that across
hundreds of workloads running in a heterogeneous GPU fleet
is significantly harder, especially when performance experts
are in short supply. To our knowledge we presented the first
complete fleet-wide GPU performance introspection system
for deep-learning training, starting with telemetry enabling
deep visibility into the utilization of the massively parallel
GPU resources. Tracking key metrics for workflows across
the fleet enables us to focus our limited expert resources on
the highest-impact areas at any point in time. Powerful and
easy to use tools for top-down on-demand analysis allow us to
easily spot performance bottlenecks in workloads running on
a large number of nodes, from GPU kernels to communication
patterns at multiple levels. Approaches such as automated
trace comprehension, anti-pattern detection, and actionable
recommendations allow us to scale GPU performance work
beyond the core experts, and ease the learning curve for
newcomers. They also form the foundation for future semi-
and fully-automated mechanisms.

REFERENCES

[1] Matthew D. Jones et al. Workload analysis of blue waters. CoRR,
abs/1703.00924, 2017.

[2] Myeongjae Jeon et al. Analysis of large-scale multi-tenant gpu clusters
for dnn training workloads. In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference, USENIX ATC ’19,
page 947–960, USA, 2019. USENIX Association.

[3] Google. Using cloud tpu tools. https://cloud.google.com/tpu/docs/
cloud-tpu-tools#top of page, 2020.

[4] Norman P. Jouppi et al. In-datacenter performance analysis of a tensor
processing unit. 2017.

[5] Mathew Salvaris and Miguel Fierro. Gpu monitor. https://github.com/
msalvaris/gpu monitor, 2018.

[6] Keji Xu. Monitoring gpu utilization with amazon
cloudwatch. https://aws.amazon.com/blogs/machine-learning/
monitoring-gpu-utilization-with-amazon-cloudwatch/, 2017.

[7] Amazon. Monitor gpus with cloudwatch. https://docs.aws.amazon.com/
dlami/latest/devguide/tutorial-gpu-monitoring-gpumon.html, 2020.

[8] NVIDIA. Cuda profiling tools interface (cupti). https://docs.nvidia.com/
cuda/cupti/index.html, 2020.

[9] Kevin Lee. Introducing big basin: Our next-generation ai hardware.
https://fb.me/lee 2017, 2017.

[10] Denis Foley and John Danskin. Ultra-performance pascal gpu and nvlink
interconnect. IEEE Micro, 37(2):7–17, March 2017.

[11] Adam Paszke et al. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[12] Facebook. Kineto profiling library. https://github.com/pytorch/kineto,
2020.

8

Authorized licensed use limited to: Facebook Inc.. Downloaded on July 20,2021 at 17:49:03 UTC from IEEE Xplore. Restrictions apply.

https://cloud.google.com/tpu/docs/cloud-tpu-tools#top_of_page
https://cloud.google.com/tpu/docs/cloud-tpu-tools#top_of_page
https://github.com/msalvaris/gpu_monitor
https://github.com/msalvaris/gpu_monitor
https://aws.amazon.com/blogs/machine-learning/monitoring-gpu-utilization-with-amazon-cloudwatch/
https://aws.amazon.com/blogs/machine-learning/monitoring-gpu-utilization-with-amazon-cloudwatch/
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-gpu-monitoring-gpumon.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-gpu-monitoring-gpumon.html
https://docs.nvidia.com/cuda/cupti/index.html
https://docs.nvidia.com/cuda/cupti/index.html
https://fb.me/lee_2017
https://github.com/pytorch/kineto

