
Reactive Key-Loss Protection in Blockchains

Sam Blackshear1, Konstantinos Chalkias1, Panagiotis Chatzigiannis2, Riyaz
Faizullabhoy1, Irakliy Khaburzaniya1, Eleftherios Kokoris Kogias1,3, Joshua

Lind1, David Wong1, and Tim Zakian1

1 Novi Financial / Facebook Research
2 George Mason University

3 IST Austria

Abstract. We present a novel approach for blockchain asset owners to
reclaim their funds in case of accidental private-key loss or transfer to a
mistyped address. Our solution can be deployed upon failure or absence
of proactively implemented backup mechanisms, such as secret sharing
and cold storage. The main advantages against previous proposals is it
does not require any prior action from users and works with both single-
key and multi-sig accounts. We achieve this by a 3-phase Commit() →
Reveal() → Claim() − or − Challenge() smart contract that enables
accessing funds of addresses for which the spending key is not available.
We provide an analysis of the threat and incentive models and formalize
the concept of reactive KEy-Loss Protection (KELP).

Keywords: blockchain · smart contracts · key-loss protection · front-
running · key management · commitment scheme.

1 Introduction

One of the main criticisms over the usability of cryptographic protocols is that of
key-management. This problem is further aggravated in the context of blockchain
systems and decentralized finance, where users need to frequently use their keys
to sign transactions. To add insult to injury, even users that manage to carefully
handle their keys are not fully protected since software bugs or simple human
errors can result in sending funds to the wrong address which might not have a
known associated key.

A side-effect of poor key-management is losing access to the signing key ma-
terial, without necessarily this being compromised. That can happen for various
reasons, the most common being accidentally deleting a key, forgetting a pass-
word and malfunctioned or even discarded hard disks [27] that make private keys
unrecoverable. Several solutions exist towards alleviating this problem, however
the vast majority, if not all, are proactive. The latter means that users should be
educated enough to setup a backup mechanism [6] or to secret-share their key
with trusted parties [19] or their social-circle [16]. Unfortunately, these solutions

Panagiotis Chatzigiannis did part of this work during an internship at Novi Financial
/ Facebook Research.

2 S. Blackshear et al.

have yet to gain traction, due to the extra steps required, as well as the need to
trust someone to hold custody of secret information without abusing them. Ad-
ditionally, they do not address the second problem of mistyped addresses since
such an error is by definition unexpected.

In this paper we address both problems with a single solution, the time-lock
based reactive KEy-Loss Protection (KELP). On a first glance, reactive recovery
looks impossible since by definition the recovering party does not hold a secret to
convince the blockchain of being the owner of some locked account. In essence,
the rightful owner of that account seems indistinguishable from the adversary.

In KELP, we circumvent this paradox by taking advantage of the fact that
there exists information asymmetry, between the account owner and everyone
else, on whether a key has actually been lost. Specifically, it is usually the account
owner who knows this information first. Based on this assumption, users can
claim ownership of any address, but the real owner of such an address has the
right within some time to cancel any claim by showing that the secret-key of
the address is still available via a proof-of-possession logic, i.e., by signing a new
transaction. Thus, a claim can succeed only when the key has indeed been lost,
which, the owner of the account is in unique position to know.

A naive protocol, however, is susceptible to two potential attack vectors that
should be addressed:

– Front-running: Given the lack of atomicity in blockchains, an adversary can
see the pending claim transaction and front-run it by invoking the claim
first.

– Random testing: Since a claim transaction does not need approval from the
account holder, the adversary can randomly try to claim funds from a large
number of accounts.

To address these challenges, KELP employs multiple defensive mechanisms.
To protect against front-running attacks, we (a) use a commit-then-reveal scheme
and (b) let parties produce cover traffic on their accounts [15], by periodically
transmitting “fake” lost-key claims, tricking the adversary to front-run them.
The cover traffic is then coupled with our protection from random testing, where
we automatically require a fee during the claim process which is given to the
owner of the challenged address. As a result, an adversary that falsely tries to
front-run will be penalized by paying these claim fees, which significantly reduces
the incentives and potential rewards of distributed or targeted attacks.

1.1 Background and Related Works

Mistyped addresses. Due to the irreversible nature of blockchains, transac-
tions can neither be cancelled nor reversed once put in a verified block. Addresses
are long enough that many accidental typos have been reported in the past [17],
where funds have been sent to accounts for which the private key is unknown.
When this happens, it is impossible to reclaim these coins and they are essen-
tially burnt forever. Until now, most of the proposed solutions can only offer
proactive defenses and include the following:

KELP - Reactive Key-Loss Protection 3

– append a checksum to the address format. For instance, Bitcoin addresses
have an embedded checksum code where mistyping a character would result
to another valid address with a very slim probability of about 1 to 4.3 billion.
However other blockchains, like Ethereum, do not officially apply checksum
protection; but there exist related proposals [11]. A 2018 analysis reported
that at least over 12,000 Ether have been lost forever due to typos up to
block height 5 million [26];

– use QR codes, which have an embedded Reed Solomon error correction to
demotivate unfriendly textual copy paste typos [20];

– address creation with a different script. Unlike other systems, the
account-based Diem blockchain natively supports two different transaction
types for (a) generating addresses and (b) sending funds to existing accounts
only, similarly to the traditional bank account system [1]. This reduces the
probability of accidentally sending coins to mistyped addresses, as the ac-
count should already exist to receive funds.

Key-loss. There exist several different ways to protect blockchain assets against
accidental key loss or compromise attacks, but until now there was not a generic
solution for users to regain access to accounts for which the key is unrecoverable.
Obviously, if the signing key is compromised (or if there is a protocol bug),
attackers can directly transfer assets to accounts they own. Pragmatically, there
are not a lot of things we can reactively do for the above, apart from initiating
a legal investigation or agreeing as a community on forking the blockchain [14].
However, just losing access to the key is a different scenario where although
funds remain in the account, nobody can use them. Our KELP approach is
probably the first generic reactive solution to cases where the key has not been
compromised yet. Before we explain how it works, we need to enlist the current
state of the art in key management and account recovering.

Usually, it is a “wallet” that provides the service for users to generate, store
and manage private keys of blockchain addresses. These are mainly categorized
as software, hardware, paper and website wallets and they provide different func-
tionalities and security threat assumptions. More demanding custodial wallets
have also implemented advanced key management and backup processes to a-
priori minimize the risk of key loss. On top of that, modern cryptographic and
blockchain protocols emerged, such as hierarchical deterministic key generation
and efficient secret sharing protocols. Briefly, a list of current key management
and recovery techniques is provided below:

– cold storage, where the key resides in a medium that is not connected to the
internet, thereby protecting the secret from unauthorized access and other
vulnerabilities. Examples include writing down the key on a paper and using
a safe or offline Hardware Security Module (HSM). Even these however are
susceptible to data or hardware degradation under extreme circumstances,
and require a secure (and sometimes expensive) process;

– custodial services, where one can delegate key management or backup to
a third party that safeguards a sealed copy of the signing key. Although,

4 S. Blackshear et al.

this is similar to the traditional method of using safes or notaries, it requires
an interactive (and sometimes slow) process to recover the key, while the
maintenance cost might be significant [12];

– distributed key, where using Shamir’s secret sharing [19], concrete thresh-
old elliptic curve signature schemes or secure multiparty computations (MPC),
the key material is distributed to multiple nodes [8]. Most of these solutions
are interactive per signing or they are complex in terms of implementation,
while some of them do not guarantee accountability on who (from these par-
ties) signed. In [12], a few reasonable enhancements are provided to improve
the practicality of these schemes;

– multi-signatures M-of-N . Some Blockchains like Bitcoin and Diem na-
tively support the so called multi-sig or M-of-N addresses, a type of sig-
nature that combines multiple unique key signatures into one concatenated
statement. Although they are easier to implement and solve the accountabil-
ity issues of other threshold schemes, these transactions are more expensive
as they require at least M signatures to be submitted on-chain. Moreover,
in blockchains where this functionality is not natively supported, such as
Ethereum, problematic smart contract implementations that simulate this
logic have caused loss of funds in the past [10];

– deterministic key generation, such as the BIP32 [21] protocol, which
requires to store or encrypt a single master seed that derives all of the other
account keys;

– social recovery, like EIP55 [16] where users select a list of Ethereum ad-
dresses, called “guardians”, which can authorize the recovery of a private
key. A similar approach is supported in Diem blockchain [2] via the rotation
capability, where an account can delegate the power of its key rotation to
another account or smart contract logic;

– password-derived keys, usually via the BIP39 protocol which uses a
mnemonic phrase, a group of at least 12 easy to remember words, to serve
as a back up to regenerate a private key or master seed. In practice though,
many wallets recommend writing down and safely store the phrase, and sim-
ilarly to common passwords, there have been reports of people forgetting
their mnemonics [13];

– biometrics-recovery. As a solution to weak memorability of passwords,
the work in [5] proposes recovery from secret loss by splitting a biometric-
encrypted key to multiple nodes. Apart from the limitation of requiring a
trusted third party, the recommendation of using fingerprints is questionable,
since they are relatively easy to be reconstructed from high resolution images;

– vault transactions, a special type of transaction which enforces its output
to be locked for a period of time [25]. During the time lock, the legitimate ac-
count owner has the option to abort the vault transaction using a secondary
recovery key, typically stored offline, providing some form of private key theft
protection. In case the recovery key also gets compromised, this effectively
blocks the funds from being spent (as both the attacker and the legitimate
owner would use the recovery key, aborting all transactions). Fraud proofs
[28] also share a similar concept;

KELP - Reactive Key-Loss Protection 5

– paralysis proofs are based on SGX enclaves and smart contracts and focus
on threshold or multi-sig keys only [32]. In short, they enable recovery of
funds when enough signers become provably unavailable, which results to
not being able to satisfy the threshold. To the best of our knowledge, this
is the only existing reactive key recovery solution in the literature, however
it focuses on a different problem and only works for M-of-N key-structures,
but not single keys.

1.2 Our Contributions

We have designed a novel 3-phase time-lock based smart contract that enables
key recovery in case of key loss or sending funds to unknown addresses. The
major benefits of our approach is that in the best of our knowledge it is the
first generic solution that requires no prior action from its legitimate holder.
Our contract’s basic parameters rely on time periods and fees, which need to be
carefully selected to mitigate and discourage potential abuse by attackers.

We present our protocol and discuss these considerations in Section 2. Section
3 discusses several considerations towards the contract’s practical deployment
that need to be taken into account for balancing the contract’s usability and its
attack surface. Finally, in Section 4 we show potential contract extensions that
are applicable to specific blockchains.

2 KELP Protocol

We provide a description of the time-lock KEy-Loss Protection (KELP) logic, a
three-phase smart contract that allows reclaiming funds from a locked blockchain
address after an account spending-key loss. KELP relies on on-chain time locked
commitments, similarly to HTLC smart contracts [29] used in atomic swaps (or
layer-2 channel opening/closing) to defend against front-running attacks.

We describe the protocol in two parts: first we present the protocol in terms
of generic parameters, and then, in a separate section, we discuss potential ap-
propriate choices for these parameters.

2.1 General protocol description

Assuming a hash function h and two time-lock periods t1 and t2, a key-loss
protection smart contract KELP = (KELP.Commit,KELP.Reveal,KELP.Claim,
KELP.Challenge) is a four function logic defined as follows:

KELP.Commit

KELP.Commit(addressc, addressr, nonce)→ com, fee1 is a transaction which
can be executed by any user who wants to claim ownership of addressc for
which they believe the spending key has been lost or forgotten. It outputs a

6 S. Blackshear et al.

Fig. 1. KELP Commit()→ Reveal()→ Claim() flow.

commitment value com = h(addressc||addressr||nonce), which is recorded in
the blockchain4.

The commitment indicates that, in case of a successful claim, the owner-
ship of addressc will be transferred to the owner of addressr. The mechanism
of this transfer is blockchain-specific. For example, in some blockchains, funds
of addressc can be simply moved to addressr. In other blockchains, addressr
may specify a new spending key to be associated with addressc. In cases when
addressr cannot be set to arbitrary values (e.g. when addressr must already
exist on chain), an extra nonce should be included in the commitment to make
guessing of addressc and addressr impractical via brute-force attacks.

For the commitment to be recorded in the blockchain, an extra fee1 must be
included with the Commit transaction. Unlike a regular transaction fee, fee1 is
not paid to miners/validators but to the user who successfully executes one of the
Claim or Challenge transactions. The purpose of this fee is to discourage random-
testing attacks where malicious actors try to issue claims against a large number
of accounts in hopes of randomly finding one for which the key has indeed been
lost. The magnitude of fee1 can be set using a variety of strategies, some of
which we discuss in section 2.2.

KELP.Reveal

KELP.Reveal(com) → addressc, addressr, nonce, fee2 is a transaction exe-
cuted by the user who previously executed a Commit transaction for the spec-
ified commitment. The purpose of this transaction is to reveal addressc in the
clear so that, in cases when the account’s key has not been lost, the legitimate
account owner has an opportunity to challenge the claim.

4 Note that com can be implemented with any reasonable and efficient commitment
scheme i.e., via HMACs, but typically a regular hash function is already available
as part of the underlying blockchain’s instruction set.

KELP - Reactive Key-Loss Protection 7

It is important that the user revealing the claim should wait until their
Commit transaction gets finalized to avoid front-running. Specifically, if the
Commit transaction has not been finalized, and since addressc is now exposed,
someone else (e.g. miner, block producer) could claim its ownership by executing
Commit and Reveal transactions of their own ahead of the original Commit.

Before accepting a revealed claim, a KELP contract checks that:

– h(addressc||addressr||nonce) is equal to the com value form the correspond-
ing Commit transaction;

– timeof(Reveal)− timeof(Commit) < t1, where timeof() is a function which
returns time (e.g. as block height) of when a transaction was included into
the blockchain;

– Sufficiently large fee2 was included with the transaction. The appropriate
magnitude of fee2 can be set using a variety of strategies, some of which we
discuss in section 2.2.

– There are no active claims against addressc, or if there are, the new claim
can override the currently active claim. We say that claim A can override
claim B if timeof(CommitA) < timeof(CommitB).

More informally, for a claim to be accepted by the contract, the Reveal trans-
action must be executed within t1 period of the corresponding Commit, it must
include a large enough fee2, and it must be able to override other active claims
against the account, if any. This way, only one revealed claim is possible against
an account at a given point in time.

If a revealed claim is accepted by the contract, both fee1 and fee2 are
immediately transferred to the account at addressc, however, account ownership
is not transferred until successful execution of Claim transaction.

KELP.Claim

KELP.Claim(addressc, addressr, nonce)→ com is a transaction which trans-
fers ownership of addressc to the owner of addressr. This transaction is accepted
by the contract only if:

– com commitment corresponds to a currently active claim against addressc;
– timeof(Claim)− timeof(Reveal) > t2. This ensures that the period allotted

for the account owner to challenge the claim has elapsed. For practical con-
siderations of choosing the value for t2 please refer to the following section,
but in general it should be on the order of months or even years.

Upon successful execution of a Claim transaction, the ownership of addressc is
transferred to the owner of addressr. As mentioned earlier, the exact mechanism
of ownership transfer is blockchain-specific. In some blockchains this may include
transferring balances between the accounts involved, while in other blockchains,
it might update spending keys associated with addressc.

It is important to note that the cost of a successful claim is negligible. This is
because both fee1 and fee2 are added to the balance of the account at addressc

8 S. Blackshear et al.

upon successful execution of the Reveal transaction. Thus, a successful Claim
execution has the effect of refunding these fees to the owner of addressr.

KELP.Challenge

KELP.Challenge(addressc, signaturec) → cancelclaim is a transaction exe-
cuted by the owner of addressc to protect the account from malicious claims.
This transaction must include a proof that the spending key associated with the
account has not been lost - e.g. a signaturec generated with the account’s spend-
ing key. However, the exact implementation of such transaction is blockchain-
specific. For example, in some blockchains, any regular transaction executed from
addressc may suffice, while in other blockchains, the Challenge may need to be
a special type of transaction.

Executing a Challenge immediately cancels any potential claim (up to that
moment) against the account, and, in effect, transfers fee1 and fee2 of the un-
successful claim to the owner of addressc. Assuming the value fee1 + fee2 is
significant, this mechanism makes unsuccessful claims very costly, and discour-
ages users from submitting claims unless they are confident that an account’s
spending key has indeed been lost or forgotten.

All in all, one can compare KELP to legal challenges, where any body can
mount a legal case against somebody else but a claim without merit will be
quickly rejected and the costs of doing so should be prohibitive.

2.2 Protocol parameters

This section analyzes the four parameters involved in the KELP protocol:

1. t1 - time period during which a committed claim must be revealed.
2. t2 - time period after which a revealed claim can be executed.
3. fee1 - extra fee included with Commit transaction.
4. fee2 - extra fee included with Reveal transaction.

Optimal values for these parameters are highly blockchain-specific and de-
pend on such properties as consensus algorithm (e.g. finality times), blockchain
structure (e.g. UTXO vs. account-based), degree of centralization etc. We, there-
fore, leave in-context analysis of these parameters to future research, and provide
only general guidelines and considerations as to how they can be chosen.

Parameter t1 The purpose of this parameter is to set an upper bound on the
time a committed claim can remain hidden. To prevent front-running attacks,
t1 should be no shorter than the time it takes for a transaction to be finalized.
However, setting t1 to higher values has an additional benefit as it provides more
opportunity for Reveal transactions to be included into the blockchain. This can
protect against censorship attacks where a powerful adversary can try to delay
block inclusion of Reveal transactions in hopes that t1 expires and they will be
able to execute Commit and Reveal transactions of their own.

KELP - Reactive Key-Loss Protection 9

At the same time, setting t1 to very large values (or even to infinity) is
not desirable because it would enable malicious actors to issue a large number of
Commit transactions against many (or even most) accounts. These commitments
will linger in the blockchain, bloating the state and potentially imposing signif-
icant burden on node operators. More importantly, a large number of lingering
claim commitments makes it risky for a legitimate users to initiate account re-
covery via the KELP protocol as it increases the probability that there exists a
claim commitment against a user’s account which predates the Commit transac-
tion which the user could issue.

Given the above considerations, setting t1 to a period between several hours
and several days may be appropriate in most cases.

Parameter t2 The purpose of this parameter is to provide sufficient time for a
legitimate account owner to challenge an adversarial claim. This period should
be long enough for the account owner to:

1. Detect a revealed claim against their account;
2. Execute Challenge transaction against the active claim.

Both of these may require significant time. Detecting a claim may be complicated
by a number of factors including physical unavailability of the account owner
for prolong periods of time. Similarly, executing Challenge transactions may be
delayed by the spending key being stored in cold storage or protected by a
complicated multi-sig recovery scheme. Moreover, a powerful adversary may try
to censor the network and prevent inclusion of Challenge transaction into the
blockchain until t2 elapses. Long t2 periods would reduce feasibility of such
attacks as maintaining complete censorship control over a decentralized network
for prolonged periods of time is increasingly difficult.

Thus, depending on the specifics of the underlying blockchain, it may be
appropriate to set t2 to a period of several months or even years.

Parameter fee1 The purpose of this parameter is to increase the cost of
opportunistic Commit transactions and discourage malicious actors from issuing
a large number of claim commitments. In this way, this parameter is similar to
relatively short t1 periods. However, whereas short t1 periods force such actors
to periodically renew their opportunistic claims, relatively large fee1 increases
the cost of every such claim.

An important consideration for fee1 parameter is that it should not reveal
any information about the account against which Commit transaction is exe-
cuted. Otherwise, malicious actors may de-anonymize the account for which the
spending key has been lost and attempt to front-run the Commit transaction of
the legitimate account owner. Thus, we are not making fee1 proportional to the
balance of the account in question.

However, it is desirable to make fee1 large enough to make random-testing
attacks impractical for the vast majority of accounts. One strategy to achieve
this could be to make fee1 proportional to the balance of an average account

10 S. Blackshear et al.

on the network. For example, if the average account holds a balance of $1,000,
fee1 could be set to $100. This will make opportunistic Commit transactions
against most accounts impractical. At the same time, since fee1 is returned to
the account owner upon successful execution of Claim transaction, such a high
fee has a negligible impact on the cost of a legitimate claim.

Parameter fee2 The purpose of this parameter is to increase the cost of
opportunistic Reveal transactions and discourage malicious actors from making
illegitimate claims. It is similar to fee1, however, while the magnitude of fee1
may provide sufficient protection for most accounts, it is disproportionately low
as compared to balances of high-value accounts. Thus, a malicious actor may
choose to periodically execute Commit transactions against a relatively small set
of high-value accounts (and pay the associated fees), in hopes that if a spending
key of one such account is lost, they will be able to override the legitimate Reveal
transaction and recoup their “investment”.

To mitigate this attack, we need to make the cost of an unsuccessful claim
unbearably high. However, since imposing outsized fees at Commit time will
make the protocol unsuitable for most users, we impose additional fees at Reveal
time, when the account becomes publicly known. This allows us to make fee2
proportional to the balance of the account in question. Such a proportion should
be significant, but its exact value could vary based on the specifics of the under-
lying network, and thus, we leave it to future economic incentives research and
analysis.

Assuming fee2 represents a significant portion of the claimed account’s bal-
ance (e.g. 10%), to reveal their claim, malicious actors would need to be very
confident that their Reveal transaction cannot be overridden by someone else’s
Reveal with an earlier corresponding Commit. Avoiding such situations would
require a very high degree of coordination between all potential adversaries, and
may not be feasible in practice.

Moreover, a legitimate account owner can exacerbate this uncertainty by pe-
riodically, at random intervals, issuing “fake” Commit and Reveal transactions
against their own account. To potential attackers, this would look like an initia-
tion of KELP protocol, implying that the account’s owner lost its spending key.
Thus, if there is an attacker with a preemptive Commit against the account, they
will execute a Reveal transaction of their own to override the Reveal transaction
of the legitimate owner. However, since the key is not lost, the legitimate owner
can immediately challenge the claims and receive fee1 + fee2 as a reward.

It is important to note that the cost of a “fake” claim is negligible to the
legitimate account owner. This follows from the fact that both fee1 and fee2
are returned to the account regardless of whether the claim is overridden by the
attacker’s claim or not. However, in cases when the original claim is overridden
by the attacker, the legitimate account owner will receive an additional reward
in the form of fee1 and fee2 from the attacker’s claim. This may provide a
sufficient incentive for owners of high-value accounts to periodically engage in
this “bluffing” behavior.

KELP - Reactive Key-Loss Protection 11

2.3 Considerations for practical deployments

Besides selecting values for the four parameters described above, a real-world
deployment of KELP protocol will need to address a number of issues which we
briefly discuss in this section.

Optionality and defaults. It is important to understand that the KELP
protocol does modify the trust model somewhat (see Section 3 for additional
discussion). Therefore, we do not recommend it as a mandatory feature for all
accounts of a blockchain. Instead, it could be an optional feature which users can
freely enable or disable on per-account basis. The exact mechanism of how to do
so is blockchain-specific. In some blockchains this could be done via an account-
level flag, in others, this would require a new address format. We, therefore, leave
a more detailed discussion of the exact mechanism to future in-context research.

Assuming KELP is adapted as an optional account-level feature, the question
arises as to whether it should be enabled by default. A conservative approach
would be to have it disabled by default, and require users to explicitly opt-in to
use the feature. However, this approach has two notable drawbacks:

1. Any funds sent to non-existent addresses become unrecoverable as non-
existent addresses would have KELP disabled by default.

2. It could lead to a relatively small number of KELP-enabled accounts, thereby
reducing the anonymity set of Commit transactions, and in general, making
random-testing attacks more viable.

Both of these drawbacks can be mitigated by a number of blockchain-specific
strategies. For example, in some blockchains, sending funds to a non-existent
address is impossible by design [1]. Similarly, attractiveness of random-testing
attacks can be reduced by higher fee1 and more aggressive “bluffing” strategies
as described in the previous section. We, therefore, make no recommendation
on whether KELP should be enabled by default, and leave this question to fu-
ture blockchain-specific analysis. Finally it is made clear that in the case where
KELP is optionally enabled, this contradicts to our original statement of offering
a completely reactive mechanism. However, even in such a scenario, the actions
required are more straightforward than existing proactive practices, mainly be-
cause there is no requirement of complex cryptography protocols, storing and/or
delegating secrets.

Wallet support Before KELP-enabled accounts can be supported by a block-
chain, care must be taken to ensure that there is enough support in the entire
ecosystem for this feature. Specifically, wallets which desire to support KELP-
enabled accounts should be able to provide the following functionality:

1. Implement a proactive claim notification system and detect revealed claims
submitted against accounts managed by the wallet;

12 S. Blackshear et al.

2. Issue challenge transactions against detected claims;5

3. Issue cover transactions by faking KELP commits periodically;

4. Execute full key recovery protocol for a user-provided address.

While implementing these may not be overly difficult in software wallets, many
custodial services implement their logic in specialized equipment such as HSMs
or with multi-signature keys, which may prove non-trivial to update in practice.
Thus, to enable KELP on a blockchain in a backward-compatible way, KELP
feature should be either disabled by default, or it should be introduced in a way
which would make it impossible for legacy wallets to generate KELP-enabled
accounts.

KELP.Challenge transaction Rather than having the KELP.Challenge trans-
action be a distinct transaction type, it is desirable to have any regular trans-
action issued from an account to have the effect of KELP.Challenge transaction,
in that it would cancel any revealed claim against the account. In blockchains
where this can be implemented, legacy wallets would still be able to defend
themselves against attackers attempting to falsely claim their keys, as long as
they can monitor the chain and detect adversarial Reveal transactions.

2.4 Reactive Recovery and Synchrony Assumptions

KELP is a construction that can be seen as a simulation of a special layer-
2 construction. The two abstract parties transacting are (a) the owner of the
account who lost access to the key and (b) the claimer. The goal of the protocol
is to securely communicate the knowledge that the secret key of (a) has been
lost, similarly to opening and closing a layer-2 channel on-chain, which can be
challenged. Obviously, in the happy scenario of KELP, the same user has the
role of both parties in this hypothetical channel.

Modelling KELP as such, we can investigate the impossibility result intro-
duced by Zyamatin et al. [31], which shows that recovery needs either a time-
synchrony assumption (as we do in KELP via periods t1 and t2) or some abstract,
potentially distributed, trusted third party (as done in proactive recovery mecha-
nisms [19, 25]). To the best of our knowledge, the only channel construction that
does not assume synchrony employs threshold security assumptions [4], a clas-
sic proactive recovery mechanism, which implies that KELP’s reactive recovery
approach and synchrony assumptions go hand-in-hand.

5 More proactive ways to issue challenges include for example an intelligent wallet that
learns its owner’s behaviour (frequency of use), so that it can distinguish between
the state in which a user simply hasn’t logged in for a while, and the state in which
they have misplaced their key, automatically issuing challenges in the former state.

KELP - Reactive Key-Loss Protection 13

3 Trust model and attack vectors

In this section we discuss the underlying trust model and potential attack vec-
tors against KELP. It is important to separate potential threats into two broad
categories:

1. Attacks against user accounts which are enabled by the KELP protocol. In
such cases, we assume that a user has not lost their keys, but an attacker is
trying to exploit some aspect of the KELP protocol to steal their funds.

2. Attacks against successful execution of the KELP protocol. For these attacks,
we assume that a user has lost their key, and the attacker is trying to interfere
with the user’s ability to reclaim their funds via the KELP protocol.

3.1 New attacks against user accounts

Long-range censorship attack. An adversary which can censor arbitrary
transactions on the network for prolonged periods may be able to steal funds
from any KELP-enabled account. Such an adversary can issue Commit and Reveal
transactions against a target account, and then censor any Challenge transactions
from the legitimate account owner. Once t2 period elapses, the adversary can
issue a Claim transaction, thereby completing the attack and taking control of
the user’s funds.

Therefore, our trust assumption for KELP protocol is that the ability to
censor transactions for prolonged periods of time is not feasible in the underlying
blockchain. The exact duration of such a period is defined by the t2 parameter,
which can be made excessively large (e.g., months or years). We would argue that
if there exists a party which can censor arbitrary transactions on the network
for a period of several years, then the network is not secure in the first place.

Key destruction attack. An adversary which can destroy a user’s key (or
delay the user’s ability to use their key for a long period of time), can attack
the user’s account as follows: the adversary destroys the key and immediately
executes a Commit transaction against the account with a now destroyed key.
Then, once t1 period elapses, the attacker executes a Reveal transaction, and
eventually, a Claim transaction. Since the key is lost, the legitimate account owner
has no way of challenging the claim. A potential defence against this threat is
presented in Section 4, via the so called dead man’s key. Also, such adversaries
might be disincentivised by the fact that they do not have knowledge on whether
the key owner makes use of offline backups, possibly handwritten.

3.2 Attacks against fund recovery

Short-range censorship attack. An adversary which can slow down inclusion
of transactions into the blockchain, may attempt to do the following: upon seeing
a Reveal transaction, the adversary may delay its inclusion into the blockchain,

14 S. Blackshear et al.

and instead execute their own Commit transaction against addressc specified
in the original Reveal transaction. If time t1 expires before the original Reveal
transaction can be included into the blockchain, the adversary will issue their
own Reveal transaction followed by a Claim transaction, thereby stealing the
funds.

Potential mitigating strategies against this attack are sufficiently long t1 pe-
riods, and periodic cover transaction “faking” KELP commits and reveals.

Random testing attack. Malicious actors can proactively issue Commit trans-
actions against a large number of accounts in hopes that owners of some of these
accounts will eventually lose their keys and try to reclaim their funds via the
KELP protocol. Then, upon seeing a Reveal transaction from one such account,
the attacker can issue a Reveal transaction of their own against the same ac-
count. Assuming that the attacker’s proactive Commit transaction predates a
Commit transaction of the legitimate account owner, the attacker will override
the original Reveal, and once t2 period elapses, will execute a Claim transaction,
thereby receiving control of the funds.

To further increase the effectiveness of this attack, an attacker might issue
proactive commits for accounts using heuristic techinques, e.g. focus on high-
value accounts which have been dormant for a while.

Potential mitigating strategies against this attack include:

– Relatively short t1 periods, which would force the attacker to periodically
renew their preemptive Commits thereby decreasing the probability that the
attacker’s Commit would predate the Commit of a legitimate user (or a com-
mit of another malicious actor).

– Relatively high fee1 and fee2 to make issuing preemptive Commits against
a large number of accounts costly, and to make the cost of an unsuccessful
claim unbearably high.

– Periodic cover transaction from legitimate account owners “faking” KELP
commits and reveals against their accounts, thereby increasing uncertainty
of whether a Reveal transaction can be indicative of a key loss.

Side-channel attack. Revealing a committer’s identity via spending account
and/or transactor’s IP disclosure will result in a reduced list of potential ad-
dresses that the Commit refers to. For instance, the account address that submit-
ted a Commit transaction might leak information about the committed address,
enabling bruteforce front-running attacks to be more targeted. Such information
can be extracted by analyzing the transaction graph.

There exist tools for hiding sender’s identity, here is a short list:

– ZCash [9] provides sender/receiver identity hiding, but unfortunately it does
not support arbitrary smart contracts yet;

– Monero [30] does partial identity mixing by creating smaller anonymity sets,
but again no custom smart contracts are supported;

KELP - Reactive Key-Loss Protection 15

– CoinJoin [22] type of mixers could work as intermediate services, but still
one needs to trust the mixing third party entity;

– similarly to CoinJoin, third party services can offer such a functionality
via non-disclosure agreements and business deals. For instance, associations
might undertake this role in permissioned systems like Algorand [24], Corda
[18], Hyperledger [3] and Diem [2];

– indistinguishable regular and commit transactions, as discussed in the Ex-
tensions section;

– using TOR and/or VPNs could help on obfuscating the committer’s IP ad-
dress;

– using pre-purchased anonymous tokens as shown in Section 4;
– using a brand new address, and ensuring this is totally independent from

previous transactions made by the same user.

4 Extensions

We already mentioned cover transactions and using a regular (transfer coins)
script to simulate a Challenge as potential features of KELP. Here we present
several useful extensions of the generic KELP protocol, some of them being ap-
plicable to specific blockchains only.

Indistinguishable transactions. As already mentioned, by de-anonymizing
a committer’s address, the set of address candidates who lost the key can be re-
duced by transaction graph analysis [23]. One way to circumvent this issue is by
making regular and commit transactions indistinguishable. This will make every
transaction in the system looking like a potential commit. A simple approach is
to expect all of the transactions to carry a 32-byte metadata value, which works
as a commitment (i.e., HMAC) to a referred script. Transactions not requiring
any commitment can just attach a random nonce, so that any transaction be-
comes a commit candidate and thus increasing the committers anonymity set.
This is not only applicable to KELP, but a generic obfuscation pattern for other
commit - reveal schemes where hiding committer’s identity is important.

Anonymous commit tokens. Another option to avoid revealing committer’s
identity is by using pre-purchased anonymous tokens [7]. In such a model, se-
lected entities can issue tokens which work as anonymous cashier checks. Then,
instead of spending from a UTXO or account address, one just submits a pur-
chased token which carries some value and an embedded gas/fee payment logic.

Dead man’s key. As a defense against key destruction attacks, one could
specify a secondary key for the account - a dead man’s key. This key can have
weaker storage restrictions and can be distributed more freely as its only role
is to issue Challenge transactions. To execute a successful attack, the adversary
would need to destroy both the signing key and all copies of this secondary key.

16 S. Blackshear et al.

Key Rotation vs. Claiming Funds. Interestingly, Diem blockchain offers
a feature where the address and spending key are decoupled. We can gain ad-
vantage of this property and upon a successful Claim, the committer gets a
permission to rotate the account’s key instead of transferring its funds to a dif-
ferent address. Among the others, this allows for fully controlling the account’s
state and not just the funds, which is ideal in cases where this address continues
to be advertised in QR codes or shared between friends and businesses, and thus
might keep receiving assets after the Claim.

Committing to sequence-ID. Both Ethereum and Diem use a sequence-
ID under an account state, which increments on each transaction as a defense
against replay attacks. It also works as an indicator on how many transactions
an account submitted until the most current block. If KELP was implemented
for these blockchains, we should include the current sequence-ID of the account
who lost the key as part of the commitment hash. That would allow for an easier
implementation logic to check if any transaction occurred after Commit, which
would imply that the key was not lost. Thus, regular transactions would inval-
idate any active Commit, which makes KELP compatible with already up and
running custodial wallets that haven’t implement the challenge logic yet.

Customizable KELP parameters. In Section 2.3 we discussed if KELP
should be an optional feature or the default logic. Going a step further, we
could allow custom values for all of the four KELP parameters (t1, t2, fee1, fee2)
at account level. That offers extra flexibility to custodial or unhosted users to
control how KELP works for their account in particular. For instance, custodial
wallets who can monitor the chain at real-time, might set high fees for important
accounts and smaller time periods for faster recovery.

Acknowledgements. The authors would like to thank all anonymous reviewers
of FC21 WTSC workshop for comments and suggestions that greatly improved
the quality of this paper.

References

1. Diem documentation - accounts (2020), https://developers.diem.com/docs/core
/accounts/#creating-accounts

2. Amsden, Z., et al : The Libra blockchain. Calibra corp p. 29 (2019)
3. Androulaki, E., et al : Hyperledger fabric: a distributed operating system for per-

missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, Eu-
roSys 2018, Porto, Portugal, April 23-26, 2018. pp. 30:1–30:15 (2018)

4. Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Brick: Asynchronous state
channels. CoRR (2019), http://arxiv.org/abs/1905.11360

5. Aydar, M., Cetin, S.C., Ayvaz, S., Aygun, B.: Private key encryption and recovery
in blockchain. arXiv preprint arXiv:1907.04156 (2019)

6. Baldimtsi, F., Camenisch, J., Hanzlik, L., Krenn, S., Lehmann, A., Neven, G.:
Recovering lost device-bound credentials. In: Applied Cryptography and Network
Security. pp. 307–327. Springer International Publishing, Cham (2015)

KELP - Reactive Key-Loss Protection 17

7. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security. pp.
1087–1098 (2013)

8. Battagliola, M., Longo, R., Meneghetti, A., Sala, M.: A provably-unforgeable
threshold eddsa with an offline recovery party (2020)

9. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014). https://doi.org/10.1109/SP.2014.36

10. Brenner, M.: How I snatched 153,037 ETH after a bad tinder date (2017),
https://eprint.iacr.org/2019/1128

11. Buterin, V., Van de Sande, A.: EIP-55: Mixed-case checksum address encoding
(2016), https://eips.ethereum.org/EIPS/eip-55

12. Di Nicola, V., Longo, R., Mazzone, F., Russo, G.: Resilient custody of crypto-
assets, and threshold multisignatures. Mathematics 8(10), 1773 (2020)

13. Duncan1949: Lost passphrase for extra account on trezor (2015),
https://www.reddit.com/r/TREZOR/comments/33i03g/lost passphrase for extra
account on trezor

14. Falkon, S.: The story of the DAO - its history and consequences (2017),
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-
71e6a8a551ee

15. Grube, T., Thummerer, M., Daubert, J., Mühlhäuser, M.: Cover traffic: A trade
of anonymity and efficiency. In: International Workshop on Security and Trust
Management. pp. 213–223. Springer (2017)

16. Guilherme Schmidt, R., Mota, M., Buterin, V., naxe: Secret multisig
recovery (2019), https://gitlab.com/status-im/docs/EIPs/blob/secret-multisig-
recovery/EIPS/eip-2429.md

17. Haig, S.: Eth community discuss DAO for reversing funds lost to wrong ad-
dresses (2020), https://cointelegraph.com/news/eth-community-discuss-dao-for-
reversing-funds-lost-to-wrong-addresses

18. Hearn, M.: Corda: A distributed ledger https://www.r3.com/wp-
content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf

19. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online).
In: 2016 IEEE European Symposium on Security and Privacy (EuroS P). pp. 276–
291 (2016). https://doi.org/10.1109/EuroSP.2016.30

20. Khan, A.G., Zahid, A.H., Hussain, M., Riaz, U.: Security of cryptocurrency us-
ing hardware wallet and qr code. In: 2019 International Conference on Innovative
Computing (ICIC). pp. 1–10. IEEE (2019)

21. Khovratovich, D., Law, J.: BIP32-Ed25519: Hierarchical deterministic keys over a
non-linear keyspace. In: 2017 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). pp. 27–31. IEEE (2017)

22. Maxwell, G.: Coinjoin: Bitcoin privacy for the real world. bitcointalk. org (2013)

23. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the 2013 conference on Internet measurement conference.
pp. 127–140 (2013)

24. Micali, S.: ALGORAND: the efficient and democratic ledger. CoRR (2016),
http://arxiv.org/abs/1607.01341

18 S. Blackshear et al.

25. Möser, M., Eyal, I., Sirer, E.G.: Bitcoin covenants. In: Financial Cryptography and
Data Security - FC 2016 International Workshops. LNCS, vol. 9604, pp. 126–141.
Springer (2016)

26. Pfeffer, J.: Over 12,000 ether are lost forever due to typos (2018),
https://media.consensys.net/over-12-000-ether-are-lost-forever-due-to-typos-
f6ccc35432f8

27. Pollock, D.: Infamous discarded hard drive holding 7,500 bitcoins would be worth
$80 million today (2017), https://cointelegraph.com/news/infamous-discarded-
hard-drive-holding-7500-bitcoins-would-be-worth-80-million-today

28. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire! penal-
izing equivocation by loss of bitcoins. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Se-
curity. p. 219–230. CCS ’15, Association for Computing Machinery,
New York, NY, USA (2015). https://doi.org/10.1145/2810103.2813686,
https://doi.org/10.1145/2810103.2813686

29. TierNolan: Bitcoin wiki: Atomic cross-chain trading (2013),
https://en.bitcoin.it/wiki/Atomic swap

30. Van Saberhagen, N.: Cryptonote v 2.0 (2013),
https://cryptonote.org/whitepaper.pdf

31. Zamyatin, A., Al-Bassam, M., Zindros, D., Kokoris-Kogias, E., Moreno-
Sanchez, P., Kiayias, A., Knottenbelt, W.J.: Sok: Communication across
distributed ledgers. Cryptology ePrint Archive, Report 2019/1128 (2019),
https://eprint.iacr.org/2019/1128

32. Zhang, F., Daian, P., Kaptchuk, G., Bentov, I., Miers, I., Juels, A.: Paralysis proofs:
Secure access-structure updates for cryptocurrencies and more. Cryptology ePrint
Archive, Report 2018/096 (2018), https://eprint.iacr.org/2018/096

A KELP implementation in Diem blockchain

In this appendix, we present an implementation of the KELP protocol for the
Diem Framework v1.2. The code is mostly a straightforward, but has a few
Diem-specific features that we will explain here:

Automatic challenges using sequence numbers. Like many other blockchains,
Diem accounts have sequence numbers that are incremented each time a trans-
action is sent from the account. Our implementation timestamps each reveal on
addressc with the sequence number of addressc. In the code for claim, we check
that no transactions have been sent from addressc since the reveal. This ensures
that any transaction sent from addressc is implicitly a challenge.

Reclaiming entire accounts with KeyRotationCapability. Diem accounts support
key rotation. Each account a has a unique KeyRotationCapability { a: address

} resource whose holder has the permission to rotate the authentication key for a.
An account that opts in to KELP recovery must give its KeyRotationCapability

to the KELP resource. KELP then uses this resource to rotate the key for a in
the logic for claim. This allows the claiming party to completely regain control
of the account, not just its funds.

KELP - Reactive Key-Loss Protection 19

Using the signer type to avoid some uses of addressr. The Move language has a
type called signer6 that represents an authenticated user with a specific address.
Our implementation leverages this type to omit some uses of addressr from the
protocol. For example: we don’t need to include addressr in the Commit message
because we use signer to ensure that a commit and reveal transaction originate
from the same address.

module 0x1::KELP {
use 0x1::BCS;
use 0x1::Errors;
use 0x1::Diem::{Self, Diem};
use 0x1::DiemAccount::{Self, KeyRotationCapability};
use 0x1::DiemTimestamp;
use 0x1::Hash;
use 0x1::Signer;
use 0x1::Vector;
use 0x1::XUS::XUS;

/// Published under an account that supports KELP recovery
struct KELP has key {

/// Key rotation capability for the account that has enabled KELP recovery
rotate_cap: KeyRotationCapability,
/// Size of the commit fee
fee1_amount: u64,
/// Size of the reveal fee
fee2_amount: u64,
/// pooled fees from commit and reveal transactions
fees: Diem<XUS>,
/// Length of challenge period between commit and reveal
t1: u64,
/// Length of challenge period between reveal and claim
t2: u64,

}

/// Published under an account that has performed a Commit operation to initiate recovery
struct Commit has key, store {

/// sha3(KELP address | nonce)
commit: vector<u8>,
/// Locked fee to be deposited upon reveal
fee1: Diem<XUS>,
/// Time when the commit occurred
commit_time: u64,

}

/// Published under an account that has performed a successful Reveal operation
struct Reveal has key, store {

/// Time when the reveal occurred
reveal_time: u64,
/// Sequence number of the KELP account at the time of the reveal
reveal_seq: u64,

}

const EBAD_REVEAL: u64 = 0;
const EBAD_CHALLENGE: u64 = 1;
const EBAD_CLAIM: u64 = 2;
const EREVEAL_TOO_SOON: u64 = 3;
const ECLAIM_TOO_SOON: u64 = 4;

/// Enable KELP recovery for ‘account‘
public(script) fun initialize(

account_r: &signer, fee1_amount: u64, fee2_amount: u64, t1: u64, t2: u64
) {

let rotate_cap = DiemAccount::extract_key_rotation_capability(account_r);
let fees = Diem::zero<XUS>();
move_to(

account_r,
KELP { rotate_cap, fee1_amount, fee2_amount, fees, t1, t2 }

)

6 https://developers.diem.com/docs/move/move-signer

20 S. Blackshear et al.

}

/// Commit to a future claim on a KELP account
public(script) fun commit(account_r: &signer, commit: vector<u8>, fee1: Diem<XUS>) {

let commit_time = DiemTimestamp::now_seconds();
move_to(account_r, Commit { commit, fee1, commit_time })

}

/// Reveal a previous claim on a KELP account
public(script) fun reveal(

account_r: &signer, address_c: address, nonce: vector<u8>, fee2: Diem<XUS>
) acquires Commit, KELP {

let address_r = Signer::address_of(account_r);
let Commit { commit, fee1, commit_time } = move_from<Commit>(address_r);
let message = BCS::to_bytes(&address_c);
Vector::append<u8>(&mut message, nonce);
assert(Hash::sha3_256(message) == commit, Errors::invalid_argument(EBAD_REVEAL));

let kelp = borrow_global_mut<KELP>(address_c);
let reveal_time = DiemTimestamp::now_seconds();
assert(reveal_time - commit_time > kelp.t1, Errors::limit_exceeded(EREVEAL_TOO_SOON));

let reveal_seq = DiemAccount::sequence_number(address_c);
move_to(account_r, Reveal { reveal_time, reveal_seq });

// sweep the commit and reveal fees into the KELP resource
Diem::deposit(&mut kelp.fees, fee1);
Diem::deposit(&mut kelp.fees, fee2)

}

/// Finalize a claim on a KELP account
public(script) fun claim(

account_r: &signer, new_key: vector<u8>, address_c: address
): Diem<XUS> acquires Reveal, KELP {

let address_r = Signer::address_of(account_r);
let Reveal { reveal_time, reveal_seq } = move_from<Reveal>(address_r);
let kelp = borrow_global_mut<KELP>(address_c);
let claim_time = DiemTimestamp::now_seconds();
// ensure the reveal was not invalidated by a subsequent "challenge" (i.e., a

transaction sent
// from address_c)
assert(reveal_seq < DiemAccount::sequence_number(address_c),

Errors::limit_exceeded(EBAD_CLAIM));
// ensure the reveal happened afer the conclusion of the challenge period
assert(claim_time - reveal_time > kelp.t2, Errors::limit_exceeded(ECLAIM_TOO_SOON));

// successful claim. allower claimer to reclaim account by rotating key
DiemAccount::rotate_authentication_key(&kelp.rotate_cap, new_key);

// return fees to the claimer
Diem::withdraw_all(&mut kelp.fees)

}

/// Collect all commit/reveal fees in the KELP resource under ‘account‘. This can be called
by

/// the owner of the KELP resource at any time. Note: a transaction that calls ‘collect_fees‘
/// will also (implicitly) issue a challenge by incrementing ‘account‘’s sequence number.
public(script) fun collect_fees(account_c: &signer): Diem<XUS> acquires KELP {

let address_c = Signer::address_of(account_c);
let kelp = borrow_global_mut<KELP>(address_c);
// return fees to the challenger
Diem::withdraw_all(&mut kelp.fees)

}
}

