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A polarization transformation can be fully described by
a 4× 4 matrix, known as the Mueller matrix. To fully im-
age an object’s polarization response, one needs to com-
pute the Mueller matrix at each pixel of the image. Stan-
dard divison-of-time Mueller matrix imaging, because
of its sequential nature, is ill-suited to applications re-
quiring immediate and real-time imaging, and is also
bulky due to multiple moving parts. In this work, we
propose a new method for compact, snapshot Mueller
matrix imaging, based on structured polarization illu-
mination, and division-of-focal plane imaging, which
can, in a single-shot, fully capture the Mueller matrix
information of a band-limited signal. © 2021 Optical Society

of America
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Mueller matrix imaging (MMI) has long been a technique of4

interest in science and technology, because of its potential to re-5

veal rich information about an object or material of interest [1]. A6

Mueller matrix encapsulates the entire polarization transforming7

property of an object, and can be used to extract out important8

physical parameters such as the depolarization index, diattenu-9

tation and retardance, to name a few [2]. There are two parts10

to MMI: the polarization state generator (PSG), and the polar-11

ization state analyzer (PSA). In the most common type of MMI12

technique – division-of-time (DoT) MMI – the object is sequen-13

tially illuminated with different polarization states generated by14

the PSG, and then sequentially analyzed by the PSA [3, 4]. If the15

PSA consists of an imaging system, then the Mueller matrix can16

be computed over the entire image, pixel by pixel, resulting in a17

Mueller matrix image. Even though, compared with other meth-18

ods, DoT MMI systems are simpler to conceive and implement,19

they are ill-suited for applications requiring fast and/or real time20

response. Furthermore, DoT MMI systems often comprise of21

multiple moving parts, resulting in unwanted bulk. Some meth-22

ods exist in which, the sequential PSA is replaced by a snapshot23

PSA, resulting in a hybrid MMI system that can improve the24

overall time resolution of the system [5, 6]. As opposed to DoT25

and hybrid MMI systems, a snapshot MMI system can retrieve26

all 16 spatially varying Mueller matrix components of a target27

at a single point in time, and is thus suitable for time sensitive28

applications. Solutions to designing a completely snapshot MMI29

Fig. 1. DoFP Stokes Imaging Analysis. (a) A schematic of
the 7 different spatial-frequency channels in k-space, labeled
{A, B, C, D, X, Y, Z}. (b) I(m, n) obtained when S⃗(m, n) =

[1 1 1 1]T is analyzed by S⃗A in Eq.1, with (aA, bA) = (0.7, 0.7).
(c) The real part of the spatial spectrum of I(m, n). (d) The
imaginary part of the spatial spectrum of I(m, n).

system, however, have been few and far between, in compari-30

son to DoT and hybrid MMI solutions. Furthermore, existing31

solutions to snapshot Mueller matrix imaging [7, 8] require mul-32

tiple polarization gratings, waveplates and polarizers, adding33

to the bulk of the device and getting in the way of a compact34

implementation; apart from compactness, it is also desirable35

to reduce the number of components in an optical system to36

reduce complexity, avoid misalignment, and minimize aberra-37

tions. In this work, we propose a novel method to do snapshot38

Mueller matrix imaging, that can result in compact snapshot39

MMI systems, suitable for time-sensitive applications.40

Let’s first consider one-half of the MMI system: an imaging41

PSA. An imaging PSA is also known as a Stokes-camera. One of42

the most readily available type of compact Stokes-cameras, both43

in the lab and commercially, is the division-of-focal-plane (DoFP)44

Stokes-camera, in which grid polarizers are patterned directly45

on top of the sensor [9–11]. DoFP cameras are compact, snap-46

shot, and thus suitable for compact time-sensitive applications.47

Another class of snapshot Stokes-cameras, known as division-of-48

amplitude (DoA) Stokes cameras also exist but, in comparison49
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Fig. 2. Channels and Filtering in the Frequency Domain.
The schematic shows the different spatial frequency channels
plotted in k-space. Both the ‘main channels’ (green) introduced
by the analyzer and the ‘sub-channels’ (orange) introduced
by the illumination follow the same labeling convention as in
Fig.1(a). Each channel is thus referred to by two letters, the
capital letter referring to analyzer modulation and small letter
referring to illumination modulation. Some examples have
been labeled on the figure. An example of a possible low-pass
filter (dotted line) is also shown in the figure.

to DoFP cameras, are less compact as they work by splitting the50

field into a minimum of four different channels or paths, which51

are then separately analyzed by polarizers [12]. Even though52

common DoFP Stokes-cameras usually only analyze for linear53

polarization states, recent advances in lithography techniques54

now allow for the direct patterning of waveplates on top of55

pixels, to analyze for arbitrary elliptical polarizations, resulting56

in compact full-Stokes imaging [13]. Now consider a custom57

designed DoFP full-Stokes camera whose analyzer Stokes vector58

S⃗A is a periodic function of discrete pixel coordinates (m, n):59

S⃗A(m, n) =


1

cos(aAmπ)cos(bAnπ)

sin(aAmπ)cos(bAnπ)

sin(bAnπ)

 , (1)

where aA, bA control the spatial periodicity of the an-
alyzer Stokes vector S⃗A(m, n). Let’s consider a gen-
eral spatially varying incident Stokes vector: S⃗(m, n) =
[ s0(m, n) s1(m, n) s2(m, n) s3(m, n) ]T . Then, following analy-
sis, the intensity pattern I(m, n) = S⃗A · S⃗ can be written as:

I(m, n) = s0(m, n) + s1(m, n)cos(aAmπ)cos(bAnπ)

+ s2(m, n)sin(aAmπ)cos(bAnπ) + s3(m, n)sin(bAnπ). (2)

As we see in Eq.2, different Stokes components of the inci-60

dent field are being modulated with different 2D spatial har-61

monics. This maps the Stokes components of the incident field62

onto separate spatial-frequency channels in k-space, as shown63

in Fig1(a). The Stokes components can then be filtered in the64

Fourier domain, and retrieved by using a single snapshot in-65

tensity image I(m, n). To visualize these channels in k-space,66

we consider the (unphysical) numerical example Stokes image67

S⃗(m, n) = [1 1 1 1]T to analyze, resulting in the intensity image68

I(m, n) shown in Fig.1(b). As shown in Fig.1(c) and Fig.1(d), the69

discrete spatial frequency channels, illustrated in Fig1(a), are70

clearly visible, distributed across the real and imaginary parts71

of the spectra. Such methods have been explored previously72

in DoFP Stokes imaging, for both linear and full Stokes imag-73

ing [14]. In our work, we generalize such an approach to include74

both illumination and analysis, to allow the retrieval of all 1675

spatially varying elements of a Mueller matrix in a snapshot76

way.77

Now we consider the remaining half of an MMI system: PSG.
To illuminate the object of interest, with multiple states of po-
larization at the same time, the PSG needs to generate a spa-
tially varying Stokes illumination. Given recent advances, phase
change platforms like liquid crystals and metasurfaces can be
used to create desired patterns of structured polarization illumi-
nation with unprecedented resolution, using a compact, single
element device [15, 16]. Now imagine we implement structured
polarization illumination such that the Stokes vector of the 2D
illumination varies periodically as:

S⃗I(m, n) =


1

cos(aImπ)cos(bInπ)

sin(aImπ)cos(bInπ)

sin(bInπ)

 , (3)

where aI , bI control the spatial periodicity of the illumination78

Stokes vector S⃗I(m, n). Now let’s consider an object with polar-79

ization properties encapsulated by its spatially varying Mueller80

matrix:81

Mobj(m, n) =


M00(m, n) M01(m, n) M02(m, n) M03(m, n)

M10(m, n) M11(m, n) M12(m, n) M13(m, n)

M20(m, n) M21(m, n) M22(m, n) M23(m, n)

M30(m, n) M31(m, n) M32(m, n) M33(m, n)

. (4)

As the object (Eq.4) is illuminated with structured polarization82

(Eq.3), the spatially varying output Stokes vector, S⃗out(m, n) is83

given as:84

S⃗out(m, n) =


M00 + M01cos(aImπ)cos(bInπ) + M02sin(aImπ)cos(bInπ) + M03sin(bInπ)

M10 + M11cos(aImπ)cos(bInπ) + M12sin(aImπ)cos(bInπ) + M13sin(bInπ)

M20 + M21cos(aImπ)cos(bInπ) + M22sin(aImπ)cos(bInπ) + M23sin(bInπ)

M30 + M31cos(aImπ)cos(bInπ) + M32sin(aImπ)cos(bInπ) + M33sin(bInπ)

. (5)

(Note that in Eq.5, for Mueller components M00, M01 etc, we85

have omitted the (m, n) dependence for brevity, even though86

they are, in general, spatially varying.) S⃗out(m, n) consists of87

four intensity images (as it is a 4 element/row spatially varying88

Stokes vector), where each intensity image has a form identical to89

Eq.2. We see in Eq.5 that the Mueller components of Mobj(m, n)90

are being mapped onto discrete spatial frequency channels due91

to the modulation introduced by the periodically structured po-92

larization illumination. Now S⃗out needs to be analyzed in order93

to recover information about the Mueller matrix components.94

When S⃗out is analyzed by the DoFP Stokes camera of the form95

in Eq.1, the resulting, single intensity image I(m, n) can be com-96

puted following Eq.2. It is intuitive to see what happens when97

a DoFP Stokes camera of the form in Eq.1 is used to analyze a98

signal S⃗out following structured illumination of the form in Eq.3:99

the analyzer places the resulting Stokes components of S⃗out in100

the 7 different frequency channels shown in Fig.1(a), where each101

of the 7 channels have been further split into 7 more channels102

(for a total of 49) due to the structured illumination. This is103

schematically shown in Fig.2. Thus, different components of104

the Mueller matrix get mapped onto different spatial frequency105

channels. Using simple linear equations shown in Table.1, we106

can filter and extract out the Mueller matrix components, and107
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Fig. 3. A Numerical Example. We numerically test our
method on the band-limited signal presented in Eq.6. (a) The
resulting single-shot intensity image I(m, n) used for process-
ing. (b) The overall error (Eq.7) between the original and
recovered Mueller matrix elements, as a function of lattice
coordinates (m, n). (c) The real part of the spatial spectrum
of I(m, n). (d) The imaginary part of the spatial spectrum of
I(m, n).

can, theoretically, exactly recreate the original Mobj(m, n) if all108

the components of Mobj(m, n) are band limited, and their spatial109

spectra lie inside the radius of the filter.110

As proof of concept, we numerically test our method on a111

band limited Mueller matrix signal. We use the parameters112

(aI , bI) = (0.2, 0.2) for illumination, and (aA, bA) = (0.6, 0.6) for113

analysis and a filter radius of 0.1 (in k-space). (The illumination114

parameters, in relation to analysis parameters, are chosen to be115

within the bound of the Nyquist criterion) .The Mueller matrix116

signal is defined on a 100 × 100, two-dimensional lattice as:117

Mobj(m, n) =


cos( f mπ) 2cos( f mπ) sin( f mπ) 2sin( f mπ)

cos( f nπ) 2cos( f nπ) sin( f nπ) 2sin( f nπ)

1 sin(0.2 f nπ)cos(0.2 f mπ) sin(0.2 f nπ)sin(0.2 f mπ) cos(0.5 f mπ)sin(0.5 f mπ)

cos(0.2 f nπ)cos(0.2 f mπ) 1 2 sin(0.2 f nπ)sin(0.2 f mπ)

. (6)

In Eq.6, f = 0.08, is chosen such that the band limits of all the118

Mueller components fall within the radius = 0.1, of the Fourier119

domain filter. Processing the resulting single-shot intensity im-120

age I(m, n) (Fig.3a), and using our equations defined in Table.1,121

we seamlessly recover all 16 Mueller matrix components. We122

compare the recovered Mueller matrix components with the123

original Mueller matrix components, pixel by pixel, by defining124

the error-metric as:125

Error(m, n) =
4

∑
i=1

4

∑
j=1

|Mobj,ij(m, n)− Mrecov,ij(m, n)|. (7)

As seen in Fig.3(b), the error is on the order of machine error126

(1e−14), which means the recovered Mueller matrices exactly127

match the orginal Mueller matrices in the band-limited signal,128

as expected.129

We also numerically test our method on an experimentally ob-130

tained Mueller matrix image. This particular example provides131

us with an interesting test case to simulate the performance of132

our method in a more practical setting. In this example, we im-133

age the Mueller matrix of a linear polarizer, which is experimen-134

tally obtained using DoT Mueller matrix imaging, by sequen-135

tially illuminating the linear polarizer with known polarization136

Fig. 4. Experimental Mueller Matrix Simulation Results. We
numerically test our method on an experimentally obtained
Mueller matrix image of a transmissive linear polarizer. (a)
The diattenuation of the experimentally obtained Mueller
matrix Moriginal, as a function of spatial coordinates (m, n).
(b) The diattenuation of the numerically recovered Mueller
matrix Moriginal, as a function of spatial coordinates (m, n). (c)

Expectation values
〈

S⃗α

∣∣∣M(m, n)
∣∣∣S⃗β

〉
of both Moriginal and

Mrecovered, calculated for different pairs of polarizations, and
juxtaposed for comparison.

states, and then sequentially analyzing the fields by using polar-137

ization optics in front of a CCD sensor. We summarize the results138

in Fig.4. We plot the diattenuation [2] of the experimentally ob-139

tained Mueller matrix Moriginal in Fig.4(a), which, given we are140

imaging a linear polarizer, should ideally be exactly 1. Instead,141

we see it ranges from 0.7 - 1, with variation that can mainly be142

attributed to speckle. There are also some higher order spatial143

variations in Fig.4(a), that originate from the use of finite aper-144

tures in the beam path. After running a simulation of our tech-145

nique on the experimentally obtained Mueller matrix image, we146

recover a Mueller matrix image Mrecovered and plot its diattenu-147

tation as showed in Fig.4(b). We see that Fig.4(b) matches well148

with Fig.4(a), and faithfully recreates the low spatial frequency149

features seen in Fig.4(a), such as speckle. The much higher150

frequency features in Fig.4(a) are indeed missing in Fig.4(b),151

but that is to be expected given the low-pass filters applied in152

our technique around spatial frequency channels. We also plot153

the expectation values [2], as a function of spatial coordinates154

(m, n) of the Mueller matrices, defined as
〈

S⃗α

∣∣∣M(m, n)
∣∣∣S⃗β

〉
, for155

a range of different polarization pairs, as shown in Fig.4(c). The156

expectation values for Moriginal and Mrecovered are juxtaposed157

in Fig.4(c) for comparison. We see good correspondence be-158

tween the original and recovered Mueller matrix images, and as159

expected, the lower frequency features are maintained. These160

images tell us that the Mueller matrix components themselves161

have been correctly recovered up to a certain error, introduced162



Letter Optics Letters 4

by the higher frequency terms.163

In the experimental Mueller matrix image example, the pre-164

dominant contribution to the spectrum is from the lower spatial165

frequencies, however, since the signal is not band-limited within166

the radius of our filters, it still presents an interesting test case167

example. Of course the viability of our technique would then168

depend upon application requirements, as imaging relatively169

high spatial frequency components could introduce significant170

aliasing, resulting in erroneous values for the recovered Mueller171

matrix image. Flexibility in the choice of filters used in the172

Fourier domain, could be one way to mitigate this shortcoming,173

based on the application. For instance, there may be applica-174

tions in which the M00 component is swiftly varying in com-175

parison to other components, and so then the Fourier filter at176

channel Xx can be chosen to be much larger in size, compared177

to neighboring filters. Thus, our design provides a practical178

pathway to implementing a simple, compact, snapshot Mueller179

matrix imaging system, especially in the context of low-spatial180

frequency imaging. The practical aspect of our design choices is181

also apparent in the form of our analyzer (1) and illumination182

(3) Stokes vectors. Both the analyzer and illumination vectors183

always maintain a degree of polarization (DOP) of 1, for any184

and all values of spatial frequency parameters aA, bA, aI , bI , and185

spatial coordinates (m, n). Creating precise structured illumina-186

tion with spatially varying DOP is impractical at the moment,187

and similarly analyzing for a different DOP at each pixel of a188

Stokes-camera is also impractical. Our approach eliminates the189

concern of varying DOP, thus making a possible implementation190

with current technology, practically viable.191

The main advantage of designing a compact, snapshot MMI192

device, is in MMI applications requiring real-time feedback and193

response. There are important biological and chemical sensing194

applications, that require compact, fast and real-time response195

in target detection, of certain cells or molecules, e.g. in the196

optical biopsy and functional characterization of biological tis-197

sues [17], identifying cancerous tissues from healthy tissues [18],198

and detection of chiral enantiomer molecules [19]. Additionally,199

there are emerging applications in computer vision, as well as200

material reconstruction, which could benefit from a compact201

snapshot MMI system. Compared to exisiting MMI methods,202

a system based on our design could be made to be compact203

by using only a single component (like a phase mask or meta-204

surface [15, 16]) for illumination, and a DoFP sensor with an205

imaging optic. Furthermore, a compact, snapshot MMI system,206

given its short operation time and flexibility, could be useful in207

generating large MMI datasets for machine learning applications.208

This could possibly open up exciting new areas of investigation.209
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