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ABSTRACT
The ad-hoc development of new specialized computation engines
targeted to very specific data workloads has created a siloed data
landscape. Commonly, these engines share little to nothing with
each other and are hard to maintain, evolve, and optimize, and
ultimately provide an inconsistent experience to data users. In or-
der to address these issues, Meta has created Velox, a novel open
source C++ database acceleration library. Velox provides reusable,
extensible, high-performance, and dialect-agnostic data processing
components for building execution engines, and enhancing data
management systems. The library heavily relies on vectorization
and adaptivity, and is designed from the ground up to support effi-
cient computation over complex data types due to their ubiquity in
modern workloads. Velox is currently integrated or being integrated
with more than a dozen data systems at Meta, including analyt-
ical query engines such as Presto and Spark, stream processing
platforms, message buses and data warehouse ingestion infrastruc-
ture, machine learning systems for feature engineering and data
preprocessing (PyTorch), and more. It provides benefits in terms
of (a) efficiency wins by democratizing optimizations previously
only found in individual engines, (b) increased consistency for data
users, and (c) engineering efficiency by promoting reusability.
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1 INTRODUCTION
The increasing workload diversity in modern data use cases coupled
with exponential dataset growth have led to the proliferation of
specialized query and computation engines, each targeted to a
very specific type of workload. Data processing requirements have
grown from simple transaction processing and analytics (both batch
and interactive), to ETL and bulk data movement, to realtime stream
processing, to log and timeseries processing for monitoring use
cases, to more recently, a plethora of artificial intelligence (AI) and
machine learning (ML) use cases including data preprocessing and
feature engineering.
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This evolution has created a siloed data ecosystem composed of
dozens of specialized engines that are built using different frame-
works and libraries and share little to nothing with each other,
are written in different languages, and are maintained by differ-
ent engineering teams. Moreover, evolving and optimizing these
engines as hardware and use cases evolve, is cost prohibitive if
done on a per-engine basis. For example, extending every engine to
better leverage novel hardware advancements, like cache-coherent
accelerators and NVRAM, supporting features like Tensor data
types for ML workloads, and leveraging future innovations made
by the research community are impractical and invariably lead to
engines with disparate sets of optimizations and features. More
importantly, this fragmentation ultimately impacts the productivity
of data users, who are commonly required to interact with sev-
eral different engines to finish a particular task. The available data
types, functions, and aggregates vary across these systems, and
the behavior of those functions, null handling, and casting can be
vastly inconsistent across engines. For instance, an informal survey
conducted at Meta identified at least 12 different implementations
of the simple string manipulation function 𝑠𝑢𝑏𝑠𝑡𝑟 (), presenting dif-
ferent parameter semantics (0- vs. 1-based indices), null handling,
and exception behavior.

Although specialized engines, by definition, provide specialized
behavior that justifies their existence, the main differences are com-
monly in the language frontend (SQL, dataframes, and other DSLs),
the optimizer, the way tasks are distributed among worker nodes
(also referred to as the runtime), and the IO layer. The execution en-
gines at the core of these systems are all rather similar. All engines
need a type system to represent scalar and complex data types, an
in memory representation of these (often columnar) datasets, an
expression evaluation system, operators (such as joins, aggregation,
and sort), in addition to storage and network serialization, encoding
formats, and resource management primitives.

In order to address these issues, Meta has developed Velox, a
novel C++ database acceleration library that provides reusable, ex-
tensible, and high-performance data processing components which
can be used to build, enhance, or replace execution engines in exist-
ing data management systems. Velox is designed from the ground
up to efficiently support complex types due to their ubiquity in mod-
ernworkloads, and heavily relies on vectorization [4] and adaptivity.
Velox components are language, dialect, and engine-agnostic, and
provide many extensibility points where developers can specialize
the library behavior and match a particular engine’s requirements.
In common usage scenarios, Velox takes a fully optimized query
plan as input and performs the described computation using the
resources available in the local node. As such, Velox does not pro-
vide a SQL parser, a dataframe layer, other DSLs, or a global query
optimizer, and it is usually not meant to be used directly by data
users.
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Velox’s value proposition is three-fold:
• Efficiency: Velox democratizes runtime optimizations pre-
viously only implemented in individual engines, such as
fully leveraging SIMD, lazy evaluation, adaptive predicate
re-ordering and pushdown, common subexpression elimi-
nation, execution over encoded data, code generation, and
more.

• Consistency: by leveraging the same execution library, com-
pute engines can expose the exact same data types and
scalar/aggregate function packages, and thus provide a more
consistent experience to data users due to their unified be-
havior.

• Engineering Efficiency: all features and runtime optimiza-
tions available in Velox are developed and maintained once,
thus reducing engineering duplication and promoting reusabil-
ity.

Velox is under active development and is already integrated or
being integrated with more than a dozen data systems at Meta
(and beyond), such as Presto, Spark, PyTorch, XStream (stream pro-
cessing), F3 (feature engineering), FBETL (data ingestion), XSQL
(distributed transaction processing), Scribe (message bus infrastruc-
ture), Saber (high QPS external serving), and others.

We believe Velox to be a major step towards making data systems
moremodular and interoperable, with the ultimate goal of providing
a more responsible implementation of the “one size does not fit
all” mantra. Considering the potential impact in the community,
Velox is open-source1 and backed by a fast growing community,
including members such as Ahana, Intel, Voltron Data, and many
other major technology companies and academic partners. Lastly,
we also believe that, strategically, Velox will allow Meta to partner
with hardware vendors and proactively prepare our data systems
for tomorrow’s hardware, in addition to streamlining collaborations
with researchers and research labs.

In this paper, we make the following contributions:
• We detail the Velox library, its components, extensibility
points, and main optimizations.

• We describe how Velox is being integrated with compute
engines targeted at very diverse workloads, such as batch
and interactive analytics, stream processing, data warehouse
ingestion, ML, and more.

• We highlight how Velox is transforming Meta’s data land-
scape, which has traditionally been composed of siloed and
specialized engines providing inconsistent semantics for data
users.

• We present micro-benchmarks to motivate Velox’s main op-
timizations, in addition to experimental results with Velox’s
integration with Presto.

• We discuss lessons learned during this journey, future work,
and open questions with the hope of motivating further
research and fostering collaboration.

2 LIBRARY OVERVIEW
Velox is an open source C++ database acceleration library that pro-
vides high-performance, reusable, and extensible data processing

1Velox is available at https://github.com/facebookincubator/velox

components, which can be used to accelerate, extend, and enhance
data computation engines. Velox does not provide a language fron-
tend, such as a SQL parser, dataframe layer, or other DSLs; instead,
it expects a fully optimized query plan as input describing the com-
putation to be performed, and executes it locally using the resources
available in the local host.

Furthermore, Velox does not provide a global query optimizer,
but at execution time leverages numerous adaptivity techniques,
such as filter and conjunct reordering, dynamic filter pushdown,
and adaptive column prefetching. In other words, the components
provided by Velox usually sit on the data-plane, while individual
engines are responsible for providing the control-plane. The high-
level components provided by Velox are:

• Type: a generic type system that allows users to represent
scalar, complex, and nested data types, including structs,
maps, arrays, tensors, and more.

• Vector: anArrow-compatible2 columnarmemory layoutmod-
ule, supporting multiple encodings, such as Flat, Dictionary,
Constant, Sequence/RLE, and Bias (frame of reference), in
addition to a lazy materialization pattern and support for
out-of-order result buffer population.

• Expression Eval: a fully vectorized expression evaluation
engine built based on Vector-encoded data, leveraging tech-
niques such as common subexpression elimination, constant
folding, efficient null propagation, encoding-aware evalua-
tion, and dictionary memoization.

• Functions: APIs that can be used by developers to build
custom functions, providing a simple (row-by-row) and vec-
torized (batch-by-batch) interface for scalar functions, and
APIs for aggregate functions. Function packages compatible
with popular SQL dialects are also provided by the library
(currently, for Presto and Spark).

• Operators: implementation of common data processing op-
erators such as TableScan, Project, Filter, Aggregation, Ex-
change/Merge, OrderBy, HashJoin, MergeJoin, Unnest, and
more.

• I/O: a generic connector interface that allows for pluggable
file format encoders/decoders and storage adapters. Support
for popular formats such as ORC and Parquet, and S3 and
HDFS storage systems are included in the library.

• Serializers: a serialization interface targeting network com-
munication where different wire protocols can be imple-
mented, supporting PrestoPage and Spark’s UnsafeRow for-
mats.

• Resource Management: a collection of primitives for han-
dling computational resources, such as memory arenas and
buffer management, tasks, drivers, and thread pools for CPU
and thread execution, spilling, and caching.

Engines integrating with Velox can choose which components
to use based on the functionality required. For instance, engines
with simple data representation and serialization requirements can
leverage Type, Vector, and Serializer only, while a complete SQL
analytical query engine would require the full extent of operators
and resource management primitives available.

2The format differences between Velox Vectors and Apache Arrow are discussed in
Section 4.2.1.



In addition to being modular, Velox also provides extensibility
APIs that can be used to customize the library. Developers can use
these APIs to add plugins to support custom data types, scalar and
aggregate functions, engine-specific operators, new serialization
formats, file encodings, and storage adapters. The decision about
whether a particular plugin will be provided as part of the main
library or not is based on its genericity: if it is used by multiple
engines (e.g. Parquet and ORC file encoders, and common operators
such as Aggregate, OrderBy, and HashJoin), they are included in
the main library; otherwise, they are provided as part of the client’s
engine codebase (e.g. ML-specific functions and stream processing
operators).

3 USE CASES
This Section describes the main use cases for Velox at Meta, and
how different specialized engines are leveraging Velox to accelerate,
unify, and consolidate user workloads. We start by describing inter-
active SQL analytics use cases in Presto [17] (Subsection 3.1), and
large batch/ETL SQL analytics workloads in Spark [18] (Subsection
3.2). Next, we outline the realtime data infrastructure integration by
describing how Velox is being used in a stream processing platform
called XStream (Subsection 3.3.1), in a messaging bus called Scribe
(Subsection 3.3.2), and in a data ingestion system called FBETL
(Subsection 3.3.3). Finally, we describe Velox integrations with ML
platforms focused on data preprocessing and feature engineering
in Subsection 3.4.

3.1 Presto
Presto is an open-source distributed query engine created by Meta
circa 2013, which allows users to run SQL queries over data stored in
Hive and other environments. It currently powers most of the inter-
active (low-latency) SQL analytic workloads at Meta and part of the
batchworkloads, thoughmost of the heavy-lifting ETL processing is
done in Spark. Presto is organized in a two-tiered architecture com-
posed of a coordinator node, responsible for receiving user queries,
SQL parsing, metadata resolution, global query optimization, and
resource management; and worker nodes, which are responsible for
the actual execution of a query given a query plan fragment. Both
coordinator and worker processes share the same Java codebase
and communicate via a HTTP REST interface. Considering that all
data processing and shuffling happens within or between worker
nodes, there is usually a 100-1000 to 1 ratio between the number of
workers and coordinators, and thus the vast majority of cpu time
is spent on worker nodes.

Prestissimo3 is the codename of the project aimed to replace
Java workers by a C++ process based on Velox, targeting efficiency
gains. Prestissimo provides a C++ implementation of Presto’s HTTP
REST interface, including worker-to-worker exchange wire proto-
col and coordinator-to-worker orchestration, and status reporting
endpoints, thereby providing a drop-in replacement for Presto work-
ers. The main query workflow consists in receiving a Presto plan
fragment from a Java coordinator, translating it into a Velox query
plan, and handing it off to Velox for execution. In this manner, no
Java processes, JVM, or expensive garbage collection procedures are

3From music theory: “the fastest possible tempo; faster than Presto”.

needed on worker nodes, which used to be a source of operational
issues.

Unification. Prestissimo leverages the full extent of the Velox
library: types, Vectors, expression eval, functions, operators, seri-
alizers, I/O, and resource management primitives. Being the first
Velox implementation to provide end-to-end functionality, many
of the components implemented to support Prestissimo, such as
Presto wire protocol and Presto function/aggregate packages, today
constitute the core of Velox and are, in fact, reused in other engines.
Examples are the use of Presto wire protocol in the realtime data
infrastructure (described in Subsection 3.3), and use of Presto func-
tion packages in Stream Processing and ML platforms (discussed in
Subsection 3.4).

3.2 Spark
Spark is an open-source unified computation engine for large-scale
data processing, which manages and coordinates the execution of
tasks on data across a cluster of servers. Spark applications consist
of a driver process and a set of executor processes: the driver is
responsible for task planning, scheduling, and communicating with
an external resource manager, while executors are responsible for
performing the actual computation and communication with the
remote storage system. At Meta, Spark is commonly used for the
execution of batch and ETL SQL queries, expressed using Spark-
SQL or the Dataframe API, due to Spark’s superior fault-tolerance
characteristics for long-running queries/applications.

Spruce is the codename for the Velox implementation for Spark.
Spruce leverages a pre-existing interface that allows users to ex-
ecute arbitrary binaries in Spark, called Spark script transform, to
offload execution to an external C++ process in which Velox is
executed. At query time, a Spark executor receives a query plan
fragment, serializes it, and forwards it to the external C++ pro-
cess using the transform interface. The external process (called
SparkCpp), deserializes the plan, converts it to a Velox plan, and
executes it using Velox.

The SparkCpp process uses Velox’s extensibility APIs to add
operators, scalar, and aggregate functions that make the new C++
code fully compatible with the existing Spark Scala execution en-
gine. SparkCpp also adds an UnsafeRow serializer to Velox, which is
the format used for data shuffling in Spark and to return data back
to clients. Even though Velox is being customized differently when
integrating with Presto and Spark in order to maintain backwards
compatibility for existing queries, having a shared execution engine
paves the way for achieving semantic equivalence between engines
in the future, along with providing immediate efficiency gains.

3.3 Realtime Data Infrastructure
Velox is also being used by Meta’s realtime data infrastructure in
three different, but related, use cases: (a) stream processing, (b)
distributed messaging infrastructure, and (c) data ingestion. These
three use cases are described in the next subsections.

3.3.1 Stream Processing. XStream is Meta’s stream processing plat-
form which allows users to create stream processing applications,
expressed either using SQL or a dataframe-like fluent API. XStream
applications commonly read data continuously from Meta’s mes-
saging infrastructure, a system called Scribe, and after applying



business logic, write results back to Scribe or other data sinks, such
as log analytics platform (Scuba) or key-value store systems for
online serving. Although the abstraction provided by stream pro-
cessing is to operate over a single row at a time, in practice reads
and writes are batched to optimize IO, and thus benefit from Velox’s
vectorized execution model. In production deployments, data is usu-
ally batched in chunks of up to 500kb, buffered over a window of
at most 20 seconds.

Most data processing operations available in XStream map di-
rectly to Velox operators and hence are directly reused, e.g, projec-
tions, filters, and, as ongoing work, lookup joins. The use of Velox
also allows XStream to expose the same function package used in
Presto, increasing consistency and reducing friction for users who
are already familiar with Presto SQL.

Because stream processing aggregations require engine-specific
logic related to temporal windows, namely tumbling, hopping and
session windows, aggregations are implemented as an extension to
Velox in XStream. Even though these special aggregations are most
commonly required in stream processing applications, there are
plans to provide this operation as part of the core Velox library and
expose it to Presto and Spark users as temporal extensions. This
work is only possible without substantial duplication of effort due
to the unified execution engine provided by Velox.

3.3.2 Messaging Bus. Scribe is a distributed messaging system
for collecting, aggregating, and delivering high volumes of data
with low latency, serving as the main entry point to data ingestion
pipelines at Meta. In common usage scenarios, data is generated in
the web tier and written to Scribe, and subsequently read by stream
processing applications (which might write the processed data back
to a new Scribe pipe), or delivered to a system called FBETL for
data warehouse ingestion.

Data is written to Scribe on a row-by-row basis (log production)
and was traditionally read in the same manner. Today, Scribe Read
Service (the service responsible for serving read requests from
Scribe) is able to leverage the full extent of wire serialization formats
available in Velox, which are more efficient due to column-oriented
encoding, and can be easily deserialized to Velox Vectors by data
consumers. In addition, Velox usage in Scribe Read Service allows
data consumers to pushdown operations such as projections (read
a subset of columns) and filtering closer to the storage, e.g. for
stream processing applications, reducing the amount of data read
from Scribe, and in many cases resulting in cross data center traffic
reduction. Furthermore, the filters and projections pushed down
to Scribe provide the same semantics as in other compute engines,
promoting a more consistent data user experience.

3.3.3 Data Ingestion. FBETL is Meta’s data ingestion engine, re-
sponsible for two main use cases: data warehouse ingestion, and
database ingestion. Data warehouse ingestion is the process of con-
verting data read from Scribe pipes into warehouse files (commonly
encoded using the ORC format, or an internal variant called DWRF)
for longer retention and further processing. Other than reusing the
same ORC file encoder codebase as other SQL engines that generate
ORC files (such as Spark and Presto), thus promoting consistency,
using Velox in FBETL allows users to specify data transformations
(projections) including expressions, UDFs, and filtering applied to
the data at ingestion time. This frees users from having to create

a full stream processing application to achieve the same result,
which would incur the overhead of writing to a new Scribe pipe,
and reading it again for ingestion. Once again, Velox provides a
consistent user experience by exposing the same set of functions
and semantics available in other engines; e.g, an end-user could
reuse any function available in Presto to specify the transformation
applied to the data at ingestion time, in addition to reducing code
duplication.

Another ingestion use case is database ingestion, which is the
process of scraping operational database logs and saving snapshots
to the data warehouse. Besides the benefits aforementioned, Velox
also aids the implementation of snapshotting, which is a standalone
periodic process that consists of reading the previous snapshot
from a warehouse table partition, applying the modifications read
from database redo logs (an operation similar to a merge-join), and
writing the results back to a new table partition.

3.4 Machine Learning
Almost every machine learning (ML) pipeline contains a pre-pro-
cessing step that wrangles the data into the right form before it
can be fed into the models. These transformations usually sit be-
tween offline processing done by Data Analytics systems, such as
large scale joins, aggregations and filtering, and neural networks,
which are operations on tensors like matrix multiplications and
convolutions, powered by machine learning frameworks such as
PyTorch. This process, also referred to as data preprocessing, is
usually limited to row-wise transformations such as normalization,
embedding lookups, and image cropping, and can usually be ex-
pressed using expression evaluation and user-defined functions, as
provided by traditional computation engines.

Despite the undeniable similarities, Data Analytics and ML in-
frastructure have largely evolved independently at Meta. The expo-
nential growth in the demand for ML systems along with the lack of
proper reusable components, resulted in a highly fragmented space
composed of data preprocessing libraries providing incomplete data
type support, incompatible memory representations, and inconsis-
tent function packages. An internal survey discovered about 14
libraries being used for data preprocessing at Meta, providing dis-
parate functionality, suboptimal efficiency, and inconsistent user
experience. Moreover, although these transformations only encom-
pass the processing needed before the training process starts, it has
been estimated that preprocessing computation can consume up to
50% of the resources used for ML workloads [20].

3.4.1 Data Preprocessing. TorchArrow is a new project from Py-
Torch aimed at unifying and providing first-class structured data
preprocessing capabilities for ML users. It provides a Python data-
frame layer similar to Pandas, deeply integrated into the PyTorch
ecosystem. TorchArrow internally translates the dataframe repre-
sentation into a Velox plan and delegates it to Velox for execution;
this integration, besides helping converge the fragmented space of
ML data preprocessing libraries, also allows Meta to consolidate ex-
ecution engine code between Data Analytics and ML infrastructure
- an initiative loosely referred to as “DI for AI” (Data Infrastructure
for Artificial Intelligence). It also provides a more consistent experi-
ence for ML end users, who are commonly required to interact with
different computation engines to complete a particular task, such



as large scale SQL queries for data preparation, interactive SQL
analytics for debugging, and stream processing, by exposing the
same functions and ensuring consistent behavior across engines.

3.4.2 Feature Engineering. Another use case for such transforma-
tions are feature engineering workflows, which are the process of
using domain knowledge to extract useful information in the form
of features that can be consumed by ML algorithms. Meta’s feature
engineering framework, a system called F34, allows users to pro-
grammatically create features by defining a F3 DSL file that specifies
the transformations required to generate a particular feature, e.g,
transforming birthdate into a numeric age value. Based on the DSL
definition, F3 manages both offline and realtime data generation by
integrating the feature generation transformations into Spark (for
batch processing) and XStream (for realtime datasets). Lastly, the
same DSL definition is also used during online serving to generate
the feature values fed into the models during inference, providing
consistency between training and serving/inference.

F3 is currently in the process of unifying its execution engine
with Velox. Considering that both Spark and XStream already use
Velox for execution, both offline and realtime F3 data generation
pipelines can natively run in these computation engines. However,
the integration with F3’s online serving path is a work in progress
and poses an interesting challenge: considering that many of these
transformations are called from applications in the user serving
path, with very high QPS and low latency requirements, and exe-
cuted against small batches of data (often a single record), Velox’s
vectorized execution engine is not the optimal fit due to the inter-
pretation overhead. For this use case, considering that the DAG
itself is mostly static, the team is investing in adding codegen based
execution to Velox - more about codegen is discussed in Subsection
4.3.3.

4 DEEP DIVE
The following subsections detail the main components provided by
Velox, and present experimental micro-benchmark results.

4.1 Type System
At its core, Velox provides a type system that allows users to rep-
resent primitive types, including integers and floats of different
precision, strings (both varchar and varbinary types), dates, times-
tamps, and functions (lambdas). It also supports complex types
such as arrays, fixed-size arrays (used to implement ML tensors),
maps, and rows/structs; all these types can be arbitrarily nested
and provide serialization/deserialization methods. Finally, Velox
provides an opaque data type that developers can use to easily wrap
arbitrary C++ data structures.

The type system is extensible to allow developers to add engine-
specific types without having to modify the main library. Examples
are Presto’s HyperLogLog5 type for cardinality estimation, and
other Presto date/time specific data types such as timestamp with
timezone. The types added through type extensibility can then be
used when building custom scalar and aggregate functions.

4Historically, Facebook Feature Framework - F3.
5Although the current HLL implementation is Presto-specific, we have plans to gener-
alize and provide it as part of the core library.

4.2 Vectors
Velox Vectors allow developers to represent columnar datasets in
memory leveraging a variety of encoding formats, and are used as
input and output to most other components, The basic memory
layout extends the Apache Arrow format [2], and is composed of
a size variable (denoting the number of rows represented in the
Vector), the data type (as described in the previous subsection), and
an optional nullability bitmap to represent null values. The base
Vector class also provides a collection of methods to help users
copy, resize, hash, compare, and print Vectors.

Vectors can represent fixed-size (e.g. primitive types like integers
and floats) or variable-size elements (e.g. strings, arrays, maps, and
structs/rows). Vectors can also be nested in arbitrary ways (e.g.
arrays of arrays of structs containing strings and other primitive
types), and can leverage different encoding formats such as flat,
dictionary, constant, sequence/RLE, and bias (frame of reference),
though the system or component generating a particular vector is
responsible for choosing the appropriate encoding. All Vector data
is stored using Velox Buffers, which are contiguous pieces of mem-
ory allocated from a memory pool, and that can be subclassed to
support different ownership modes (e.g. owned and buffer view). All
Vectors and Buffers are reference counted, and a single Buffer can
be referenced by multiple Vectors; naturally, only singly-referenced
data is mutable, but any Vector and Buffer can be made writable
via copy-on-write.

Moreover, Velox provides the concept of Lazy Vectors, which
are Vectors that only get populated upon first use. Lazy Vectors
are useful in cardinality reduction operations such as joins and
conditionals in projections, where, depending on the operation’s
selectivity, one can entirely avoid materialization, or scope it to a
few surviving rows. This feature is particularly useful when reading
Vector data from remote storage (such as S3 or HDFS), as it can
optimize away entire IO operations for sparsely accessed columns.
Lazy vectors also provide support for running a callback over the
loaded data, which can be used to pushdown computation (such
as aggregations) without having to materialize an intermediate
Vector.

Frequently, developers have no control about how a particular
Vector was created, e.g. when implementing a scalar function or
operator, and therefore need to deal with input data that can be
arbitrarily encoded. While on the one hand this gives developers
the flexibility to leverage the input data encoding for efficient pro-
cessing (e.g. only running a particular operation over the distinct
values on dictionary-encoded input), on the other hand this adds
complexity and increases the cognitive burden on developers. To
address this issue, Velox also provides the Decoded Vector abstrac-
tion, which transforms an arbitrarily-encoded Vector into a flat
vector and a set of indices for all or parts of its elements, and ex-
poses a logically consistent API. Decoded Vectors are zero-copy
for flat, constant, and single-level dictionary encoded inputs (the
most common cases), but need to materialize a new array of dictio-
nary indices to cover nestings of multiple dictionaries/run length
encodings.

4.2.1 Arrow Comparison. Although Velox Vectors are based and
compatible with the Apache Arrow format, we deliberately decided
to extend the standard to accelerate data processing operations



commonly found in Velox. The three areas where the Velox Vectors
and Apache Arrow formats diverge are discussed below.

1. Strings.While Arrow represents strings using the traditional
layout for variable-sized elements, consisting of one buffer con-
taining the string contents, and either one lengths buffer denoting
string sizes or one offsets buffer marking where strings start, Velox
follows the StringView representation described in [11]. In this
layout, string vectors are also composed of two buffers, one for
metadata, containing 16 bytes per string element, and one storing
the strings’ data. The string metadata class, called StringView, is
defined as:

s t ruc t S t r ingV iew {
u i n t 3 2 _ t s i z e _ ;
char p r e f i x _ [ 4 ] ;
union {

char i n l i n e d [ 8 ] ;
const char ∗ da t a ;

} v a lue_ ;
}

StringViews always store a small (4 bytes) prefix inline, focusing
on short-circuiting failed comparisons to speed up operations such
as filtering and ordering. In addition, small strings up to 12 bytes
are fully inlined, and do not require access to the secondary buffer.
This layout also allows certain string operations, such as 𝑡𝑟𝑖𝑚() and
𝑠𝑢𝑏𝑠𝑡𝑟 (), to be executed zero-copy by only updating the metadata
pointers.

2. Out-of-order Write Support. In order to efficiently support
execution of conditionals, such as IF and SWITCH operations, Velox
extends the Apache Arrow format to support out-of-order writes. In
these transformations, the condition is first evaluated to generate
a bitmask describing which branch to take for each row. Subse-
quently, based on the generated bitmask, each branch is processed
individually in a vectorized manner, writing the calculated values
to the single output vector. Primitive types can always be written
out-of-order since the element size is constant. Moreover, using the
representation described above, strings can also be written out-of-
order because the string metadata objects have a constant size (16
bytes). In order to support out-of-order writes for the remaining
variable-sized types (such as arrays and maps), Velox maintains
both lengths and offsets buffers. Besides speeding up the execution
of conditionals, this layout gives the engine more flexibility to slice
and rearrange elements without copying, since the lengths and
offset of each array/map can be updated independently, other than
allowing arrays/maps with overlapping elements.

3. More Encodings. Velox Vectors also add two other encoding
formats commonly found in data warehouse workloads: run-length
encoding (RLE), and constant encoding. The latter is used to rep-
resent that all values in a column are the same, for instance, to
represent literals and partition keys.

Despite the divergence, Velox provides a conversion API for en-
gines that need to be interoperable with Apache Arrow, performing
zero-copy format conversion when possible, and re-arranging the
data when needed. Lastly, these optimizations have recently been
proposed to the Apache Arrow community [10]. Although the com-
munity was receptive to the idea, the possibility of incorporating
these ideas to the Apache Arrow format is still under discussion.

4.3 Expression Eval
Velox provides a vectorized expression evaluation engine that can be
used in a few situations: first, it is used by the FilterProject operator,
to evaluate filter and projection expressions; second, it is used by
TableScan and IO connectors to consistently evaluate predicate
pushdown; and third, it can be used as a standalone component for
engines that only require expression evaluation capabilities, such
as realtime infrastructure and most data preprocessing operations
for ML use cases.

Expression evaluation takes expression trees as input. Each node
in the tree represents one of the following: (a) a reference to an
input column, (b) a constant (or literal), (c) a function call, rep-
resented by a function name and a list of input expressions, (d) a
CAST expression, or (e) a lambda function. In addition to traditional
functions, function call nodes are also used to express conjunctions
(AND/OR), conditionals (IF/SWITCH), and try expressions. Tree
nodes also contain metadata regarding determinism (whether the
subexpression deterministically produces the same results for the
same inputs), and null propagation (if a null value in any of the
input columns causes this expression to always return null). Ex-
pression evaluation is broken down into two steps, compilation and
evaluation, which are detailed in the next subsections.

4.3.1 Compilation. The compilation step takes a list of one or
more input expression trees, and produces a compiled (executable)
expression. The main runtime optimizations applied during this
process are described below.

Common Subexpression Elimination. The expression com-
pilation process is responsible for identifying common subexpres-
sions, which are optimized and calculated only once during evalu-
ation. For example, consider the following expression expression:
strpos(upper(a), ‘FOO’) > 0 OR strpos(upper(a), ‘BAR’) > 0. In this
example, 𝑢𝑝𝑝𝑒𝑟 (𝑎) is a common subexpression and therefore will
be calculated only once. FilterProject operator also benefits from
this capability by creating a single compiled expression object for
all of the filter and project expressions, allowing subexpressions to
be shared between projection and filter expressions.

Constant Folding. The compilation step is also responsible for
applying constant folding, which is the process of evaluating deter-
ministic subexpressions that do not depend on any input columns,
and replacing it by a constant/literal expression node. For example,
the expression 𝑢𝑝𝑝𝑒𝑟 (𝑎) = 𝑢𝑝𝑝𝑒𝑟 (‘𝐹𝑜𝑜‘) would be transformed
into 𝑢𝑝𝑝𝑒𝑟 (𝑎) = ‘𝐹𝑂𝑂‘ during compilation.

AdaptiveConjunctReordering. Lastly, when evaluatingAND
or OR expressions, the engine dynamically tracks the performance
of individual conjunts and chooses to evaluate the most effective
conjunct first, i.e. the one which drops the most values in least
time, as per 𝑡𝑖𝑚𝑒/(1 + 𝑛_𝑖𝑛 − 𝑛_𝑜𝑢𝑡); the least score is the best. In
order to maximize the effect of adaptive conjunct reordering during
execution, expression compilation also flattens adjacent AND/OR
expressions. For instance, the input expression AND(AND(AND(a,
b), c), AND(d, e)) is flattened to a single AND(a, b, c, d, e) node
during compilation.

4.3.2 Evaluation. The evaluation process takes a compiled expres-
sion and an input dataset (represented using Velox Vectors), and
after calculating the results returns an output dataset. The process



consists of a recursive descent of the expression tree, passing down
a row mask identifying the active (non-null and not masked out
by conditionals) elements. On each step, evaluation can be avoided
in two cases (a) if the current node is a common subexpression
and the result was already calculated, or (b) if the expression is
marked as propagating nulls, and any of its inputs are null. The
latter step can efficiently be implemented by simply combining the
nullability bitmask of all inputs and updating the active rows mask,
using SIMD operations.

Peeling. When inputs are dictionary-encoded, deterministic
expressions can be efficiently computed by only considering distinct
values. This is achieved by first validating that all input columns
share the same dictionary wrappings, and if so, peeling off these
wrappings to extract the set of inner vectors (the distinct values),
evaluating the expression on these inner vectors, and wrapping the
results back into dictionary vectors using the original wrappings.
For example, consider a dictionary-encoded vector representing
a 1k row dataset for a color column, encoded using a dictionary
consisting of 3 values: 0 - red, 1 - green, 2 - blue. The memory layout
consists of an indices buffer of 1k values in the range of [0, 2], and
an inner vector of size 3, containing the following values: [red,
green, blue]. When evaluating an expression such as 𝑢𝑝𝑝𝑒𝑟 (𝑐𝑜𝑙𝑜𝑟 ),
for instance, after peeling off the dictionary wrappings, the upper
function is only applied to the 3 distinct values - [red, green, blue]
- to produce another vector of size 3: [RED, GREEN, BLUE]. As
the last step, the result is wrapped in a dictionary vector using
the original indices, producing a dictionary-encoded vector that
represents 1k color values in upper case.

Memoization. The evaluation step can be repeated as needed
to process multiple batches of data reusing the same compiled
expression object. When multiple batches of data are read from
the TableScan operator, for instance, it is common for batches to
be dictionary-encoded and reference the same base vector. In the
example described above, a color column may have millions of
rows that refer to the same base set of distinct values, [red, green,
blue], represented by dictionary-encoded vectors having the same
base vector, but different indices buffers. The evaluation engine
leverages this property and remembers the calculated expression
evaluation results over the underlying inner vector, reusing these
results for subsequent batches. For each new batch, it just wraps
the existing calculated results using the indices buffer of the input
vector.

In conclusion,many of the techniques describedmight not present
considerable improvements for simple arithmetic operations over
primitive types, but they do provide substantial speed up for com-
plex expressions such as string operations, regular expressions,
array/map manipulation, and other operations over nested data
types. Velox makes a conscious decision of optimizing for these
workloads, considering empirical data indicating these operations
as being top cpu time consumers, while still providing fast paths
for the base cases.

4.3.3 Code Generation. Velox also provides experimental support
for expression evaluation through code generation (codegen).When
enabled, at execution time the entire expression tree is rewritten
as a C++ function’s source code, which is written to a source file
and compiled into a shared library using a regular compiler such

as gcc or clang. The shared library is then dynamically linked to
the main process and used for evaluation instead of the vectorized
interpreted path. Considering that the codegen process involves
a full compiler invocation, compilation times are usually high (up
to 10s in some cases), and are not meant to be used in short lived
queries or interactive workloads. Rather, our initial evaluation is
focused on large ETL queries (many hours to days of execution),
and usages where the expression tree is fixed, such as the feature
engineering use case described in Section 3.4.2.

As of today, codegen support in Velox is still experimental. Use
cases where codegen provides clear benefits, outweighting compila-
tion delays, decreased developer productivity, and debuggability are
under investigation. Furthermore, a full evaluation of the trade-offs
between the codegen approach versus traditional JIT LLVM-based
compilation, in addition to the exploration of runtime adaptivity
between the vectorized and codegen-based evaluation paths, build-
ing on the work described in [9], are open questions and avenues
for future research.

4.4 Functions
Velox provides APIs that allows developers to build custom scalar
and aggregate functions. These APIs are described in the next sub-
sections.

4.4.1 Scalar Functions. Scalar functions are functions that take val-
ues from a single row as parameters, and produce a single output
row. As a vectorized engine, Velox scalar function API is also vec-
torized and provides input parameters as Vectors (batch-by-batch),
along with their nullability buffers, and a bitmap describing the
set of active rows. In many cases, vectorized scalar functions can
leverage the columnar data layout to produce results in constant
time. For example, 𝑖𝑠_𝑛𝑢𝑙𝑙 () can be implemented in constant time
by just returning the internal nullability buffer, 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 () can
leverage the internal lengths buffer that represents the size of each
array in a vector, and𝑚𝑎𝑝_𝑘𝑒𝑦𝑠 ()/𝑚𝑎𝑝_𝑣𝑎𝑙𝑢𝑒𝑠 () can return either
the keys or values internal buffer of the input MapVector.

However, for the remaining functions that cannot leverage the
columnar format, requiring developers to manually iterate over
each input row, correctly handle the nullability buffers, different
input (and output) encoding formats, complex nested types, and
allocating or reusing output buffers, turned out to be too cumber-
some (and error-prone), particularly considering that the number
of developers implementing these functions is constantly growing.
Moreover, due to the diversity in modern workloads’ needs, such
as advanced string and json processing, date and time conversions,
array/map/struct manipulation, regular expressions, mathemati-
cal functions for data science, and more, scalar functions quickly
became the largest portion of Velox’s codebase.

Simple Functions.With the developer productivity (and relia-
bility) issue described above in mind, Velox also provides a simple
scalar function API that strives for simplicity, ease-of-use, and hides
as many details of the underlying engine and data layout as possible,
while still providing the same level of performance as vectorized
functions. The simple scalar function API allows developers to ex-
press their business logic by providing a C++ function that takes
a single row of values at a time (as opposed to full Vectors), for
example:



c l a s s Mu l t i p l y Fun c t i o n {
void c a l l (

i n t 6 4 _ t& r e s u l t ,
const i n t 6 4 _ t& a ,
const i n t 6 4 _ t& b ) {

r e s u l t = a ∗ b ;
}

} ;
r e g i s t e r F u n c t i o n <

Mu l t i p l yFunc t i on ,
i n t 6 4 _ t ,
i n t 6 4 _ t ,
i n t 6 4 _ t > ( { " mu l t i p l y " } ) ;

The class implementing the scalar function is required to provide
a 𝑐𝑎𝑙𝑙 () method, where the first parameter is the function’s return
value, passed as a reference, followed by the function parameters,
taken as const references. The method might return bool, denoting
the nullability of the return value (true means not-null), or void,
signaling the function never produces nulls. By default, it is as-
sumed the function presents default null behavior, whereby any
nulls detected on inputs automatically produce a null output with-
out calling the function above. Functions which require a different
null behavior can provide a 𝑐𝑎𝑙𝑙𝑁𝑢𝑙𝑙𝑎𝑏𝑙𝑒 () method that takes the
input parameters as a C++ pointer instead of a reference.

The simple function framework hides the input data encoding for-
mat from developers by leveraging the DecodedVectors abstraction
described in Subsection 4.2, and leverages C++ template metapro-
gramming to efficiently apply the provided method against batches
of rows (Vectors), without incurring dispatching costs per row. In
fact, the framework is optimized and provides hints to the C++
compiler to ensure that in most cases all logic within the execution
loop is inlined (thus preventing function calls and cache misses in
the hot loop), and allowing compilers to apply auto-vectorization.
For example, major compilers such as clang and gcc are able to
automatically generate SIMD code for arithmetic functions solely
based on the function definition above, when compiling Velox’s
engine.

The simple function framework directly maps all primitive types
to their corresponding C++ types. Non-primitive types, such as
strings, arrays, maps, and rows/structs, are implemented by using
proxy objects to prevent the overhead of materializing and copying
data into temporary objects, such as std::string or std::vector. The
proxy objects present a similar API to their std counterparts (for
instance ArrayReader/ArrayWriter’s API is similar to std::vector),
but operate directly over the underlying data represented using
Velox Vectors, and do not incur in extra allocation or copies.

Figure 1 illustrates the performance comparison of three different
functions that were initially implemented using the vectorized API
by a developer integrating with Velox, versus its implementation
using the simple API. In the first function, plus(), we show that
operations like arithmetics over primitive types can be implemented
using the simple framework at no cost, despite the substantial
developer productivity gains. For the remaining functions using
complex types, we have observed a curious fact: the simple function
implementation, besides being considerably easier to read and write,
was also more efficient. After investigation, we discovered that the
performance gap was due to missed optimization opportunities
in the implementation of these vectorized functions, such as flat

Figure 1: Comparison of three different functions imple-
mented using the vectorized and simple APIs.

encoding and null-free fast-paths, which are automatically applied
by the simple function framework. Although this gap can be easily
overcome by optimizing the vectorized function’s implementation,
the framework encapsulates this complexity and automatically
takes the burden off of developers.

Furthermore, functions implemented in this framework can also
specify their determinism and null behavior, to allow or disallow
some of the optimizations described in Subsection 4.3 from being
applied by the expression evaluation engine. Most of the optimiza-
tions only apply to deterministic functions (always produces the
same results for the same inputs) with default null behavior (always
produces null if any of the inputs are null). Fortunately, the vast
majority of functions present these behaviors, and thus are eligible
for the full extent of optimizations described in Subsection 4.3, with
very few exceptions, such as 𝑟𝑎𝑛𝑑 () and shuffle().

Advanced String Processing. Most string manipulation func-
tions need to correctly handle UTF-8 characters, posing unnec-
essary overhead when inputs happen to be composed of ASCII
characters only. To address this issue, the simple function frame-
work allows developers to provide a specialized version of the 𝑐𝑎𝑙𝑙 ()
function, 𝑐𝑎𝑙𝑙𝐴𝑠𝑐𝑖𝑖 (), which is automatically called when string in-
puts are ASCII-only. This feature is based on the observation that
the vast majority of strings in Meta’s data warehouse tables are
composed of ASCII characters only. Furthermore, simple functions
can also declare their ASCII behavior, i.e, whether the evaluation
engine is allowed to assume that string outputs generated by this
function are ASCII-only if all string inputs were ASCII-only. This
flag allows the expression evaluation engine to skip ASCII detection
routines on data generated by these functions. Figure 2 compares
results of common string manipulation functions over ASCII-only
inputs, with and without the optimization enabled.

Many string operations, such as 𝑠𝑢𝑏𝑠𝑡𝑟 (), 𝑡𝑟𝑖𝑚(), and other
string tokenization functions, can produce zero-copy results by
referencing input strings in the generated output strings. In order
to achieve this, the function developer needs to set a flag in the
function class, advising the engine to carry a reference to a specific
input string buffer on the generated output string Vector. The same
feature is also applicable for functions generating arrays of strings,
such as 𝑠𝑝𝑙𝑖𝑡 (). Figure 3 shows micro-benchmarks comparing three
different implementations of 𝑠𝑢𝑏𝑠𝑡𝑟 (): no assumptions over input
encoding and no buffer reuse (NoOpts), ASCII-only, and ASCII-only
with buffer reuse.



Figure 2: Effect of ASCII fast path optimization in different
functions.

Figure 3: Different implementations of substr(): base-
line, ASCII-only, and ASCII-only and buffer reuse.

4.4.2 Aggregate Functions. Aggregates are functions that summa-
rize multiple rows from a particular group into a single output
row. Aggregate functions in Velox are typically calculated in two
steps: (a) partial aggregation takes raw input data and produces
intermediate results, and (b) final aggregation takes intermediate
results and produces the final result. Velox also allows developers
to specify two additional steps: (c) single aggregation, used when
data is already partitioned on the grouping keys, and therefore no
shuffle or intermediate results are necessary, and (d) intermediate
aggregation, which are used to combine the results of partial ag-
gregations, e.g, when computed by multiple threads in parallel to
reduce the amount of data sent to the final aggregation stage.

Aggregate functions can be classified based on the character-
istics of their intermediate results (also called accumulators), into
fixed-size and variable-size. Functions like 𝑐𝑜𝑢𝑛𝑡 (), 𝑠𝑢𝑚(), 𝑎𝑣𝑔(),
𝑚𝑖𝑛(), and𝑚𝑎𝑥 () use fixed-size accumulators, while functions such
as 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 (), 𝑝𝑐𝑡 () and their approximate counterparts require
variable-sized accumulators. Considering that during aggregation
data is stored in rows, where each row corresponds to a single
group or unique combination of grouping key values, fixed-size
accumulators are stored inline within the row itself, and variable-
sized accumulators are stored in a separate buffer, and a pointer is
stored in the row. More details about the hashing adaptivity and
hash table layout are discussed in Subsection 4.5.2.

4.5 Operators
Velox query plans are composed of a tree of PlanNodes, such as
Filter, Project, TableScan, Aggregation, HashJoin, Exchange, etc,
that describe the computation to be performed. To execute a query
plan, plan nodes are first converted into Operators. The conversion
is mostly one-to-one, with a few exceptions, such as (a) Filter node
followed by Project node is merged into a single FilterProject Oper-
ator, and (b) plan nodes with two or more children are converted
into multiple Operators, e.g, HashJoin node is converted into a pair
of operators, HashProbe and HashBuild.

The top level Velox execution concept is the Task, which is the
unit of function shipping in distributed execution and corresponds
to a query plan fragment along with its Operator tree. A Task starts
with a TableScan or an Exchange (shuffle) source as input, and ends
in another Exchange. The Operator tree of a Task is decomposed
into one or more linear sub-trees called Pipelines: for instance,
HashProbe and HashBuild are mapped to one Pipeline each. Each
Pipeline has one or more threads of execution, called Drivers, each
with its own state. Drivers can be running on a thread or not,
depending on whether they have work to perform. A Driver can go
off-thread for many reasons, for example, because its consumer has
not consumed data yet, its source exchange hasn’t produced data,
or a scan is waiting for files to scan. This model is more convenient
for going on or off-thread than the traditional Volcano iterator tree
model [8], since the state is resumable without having to construct
a control flow on the stack. Lastly, Tasks can be canceled or paused
by other Velox actors at any time. Being able to pause tasks is
convenient in situations such as enforcing priorities, checkpointing
state, forcing another Task to spill, or other coordination activities.

All operators implement the same base API, consisting of meth-
ods such as adding a batch of vectors as input, getting a batch
of vectors as output, checking if the operator is ready to accept
more input data, and notifying that no more data will be added;
the latter can be used, for instance, to inform a blocking sort or
aggregation to flush its internal state and start producing output.
Although Velox already provides an extensive set of commonly
used Operators, the library also allows engine developers to add
custom operators containing engine-specific business logic, such as
stream-based aggregations for stream processing. Some important
characteristics and optimizations present in common operators are
described in the next subsections.

4.5.1 Table Scans, Filter, and Project. Table scans are done column-
by-column with filter pushdown support. Columns containing fil-
ters are processed first, producing a row number for hits plus op-
tionally the hitting value. Filters are adaptively ordered at run time,
so that the filter with the minimum time to drop a value is evaluated
first. The score is defined as time / (1 + values-in - values-out), in such
a way that the best filter drops the most values in the least amount
of time. This is the same principle as in reordering conjuncts in
AND/OR expressions, described in Section 4.3.

Simple filters are evaluated multiple values at a time using SIMD,
which allows Velox to process roughly an integer hit per CPU clock
using AVX2. Filter results for dictionary-encoded data are cached
(as described in Section 4.3), and SIMD is used again to check cache
hits using a gather + compare + mask lookup + permute to write out
the passing rows, processing more than one hit per CPU clock, on



average. Velox also provides an efficient implementation for large
IN filters, used for hash join pushdown, which allows it to trigger 4
cache misses at a time.

In addition, the FilterProject operator uses a single expression
evaluation context for all of the filter and project expressions. For
each batch of input data, the operator first evaluates the filter expres-
sion on all input rows, and only executes the project expressions
on the subset of rows that passed the filter. If no rows passed the
filter, the evaluation of project expressions is completely skipped.

4.5.2 Aggregate and Hash Joins. Hash joins and aggregations are
the backbone of analytical data processing. Velox provides a care-
fully designed hash table implementation optimized for both of
these use cases, which, other than promoting reusability, unifies
the adaptivity in both scenarios. Hashing keys are processed in a
columnar manner using an abstraction called VectorHasher, which
recognizes the key ranges and cardinality, and where applicable
translates keys to a smaller integer domain. If all keys map to a
handful of integers, they are directly mapped to a flat array. If there
are multiple keys, they are mapped to a single 64 bit normalized
key if possible, and either used to index a flat array or used as a
single hash table key depending on the range of this generated
key. An inefficient multipart hash key is only used if none of the
optimizations described above were possible. Moreover, the optimal
hashing layout is decided adaptively, and is subject to change as
new batches of data are processed. Considering that VectorHashers
form a kind of digest of distinct values per key, these objects can
also be pushed down to TableScans and used as efficient IN filters,
in cases where the table scan and hash joins are colocated.

The hash table layout is similar to Meta’s F14 [5]. Memory ac-
cesses between lookups of different keys are interleaved, with the
purpose of maximizing the number of cache misses in-flight at a
time, and incurring fewer and shorter pipeline stalls due to data
dependency. The hash table values are stored row-wise in order
to minimize cache misses, since commonly all dependent data is
accessed in hash joins and aggregations.

4.6 Memory Management
Velox Tasks track memory usage via memory pools. Small objects
like query plans, expression trees, and other control structures are
allocated directly from the C++ heap, but larger objects such as data
cache entries, hash tables for aggregates and hash joins, and other
assorted buffers are allocated using a custom allocator offering
zero fragmentation for large objects (using mmap and madvise),
similar to work described in [11]. All memory allocations made
through memory pools are tracked in a hierarchical fashion, and
are subject to limit enforcement policies. Velox memory consumers
can also reserve memory in order to have a guaranteed budget for
completing a specific operation, such as processing a batch of group
by keys.

Memory consumers may provide recovery mechanisms such
as spilling for cases when memory allocations fail. To support
memory recovery strategies, consumers may be asynchronously
paused; when a pause is requested, the consumer will acknowledge
by going off-thread and returning a continuation future that allows
the engine to resume the consumer’s execution at a later point in
time. While in the paused state, a task may be instructed to spill to

secondary storage, or be canceled in order to make space for other
tasks, depending on prioritization policies.

The default action for exceeding memory limit is to invoke a
process wide memory arbiter. This arbiter has visibility over all
running tasks, their memory usage, and the amount of reclaimable
memory, which is howmuch memory the Task could release in case
it was instructed to spill. However, the logic for deciding which
Task will be requested to spill or be canceled is pluggable, and can
be provided by developers to implement engine-specific behavior.

In order to support spilling, operators need to implement an
interface that communicates how much memory could be released
by spilling, and the actual spilling method. If these methods are
not implemented by an operator, when an allocation fails, the op-
erator has no choice but to either continue execution without the
additional allocation, or fail. Lastly, operators can choose to also
monitor overall memory usage, and react based on different mem-
ory pressure scenarios; for example, the Exchange operator could
decide to reduce its buffer size if memory is becoming scarce (or if
some of its allocations fail).

4.6.1 Caching. For data computation systems leveraging a dis-
aggregated storage architecture, Velox provides support for both
memory and SSD caching in order to alleviate the impact of remote
IO stalls to query latency. Memory caching acts as a special memory
user and is allowed to consume all memory not allocated otherwise.
All IO buffers are allocated directly from the memory cache and
can have arbitrary sizes, according to the underlying columnar
dataset’s layout, unlike in Operating Systems where caches are
allocated in fixed-size chunks (pages). Arbitrary allocation sizes are
mixed without fragmentation by leveraging mmap/madvise [11]
(as mentioned above).

Cached columns are first read from disaggregated storage sys-
tems, such as S3 or HDFS, stored in RAM for the time of first use,
and eventually persisted to local SSD. Furthermore, IO reads for
nearby columns are typically coalesced (merged) if the gap between
them is small enough (currently about 20K for SSD and 500K for
disaggregated storage), aiming to serve neighboring reads in as few
IO reads as possible. Naturally, this leverages the effect of temporal
locality which makes correlated columns to be cached together on
SSD.

Considering that all remote columnar formats have similar ac-
cess patterns, consisting of first reading file metadata to identify
the buffer boundaries, followed by read of parts of these buffers, IO
reads can be scheduled in advance (prefetched) in order to interleave
IO stalls and CPU processing. Velox tracks access frequencies of
columns on a per-query basis, and adaptively schedules prefetches
for hot columns. The combination of memory caching and smart
pre-fetching logic makes many SQL interactive analytical work-
loads, which are commonly built based on small to mid-sized tables,
to be effectively served from memory, since IO stalls are taken off
of the critical path and do not contribute to query latency.

Table 1 illustrates the read throughput (read latency, plus de-
coding and decompression) from different layers in the storage
hierarchy. According to empirical data from Meta’s hardware and
workloads, RAM cache hits are roughly 3x faster than reads from
local SSD, which are about 4x faster than remote reads from Meta’s



disaggregated storage system. The data corresponds to queries exe-
cuting a simple filter or aggregation on scalar columns, based on a
26-core server with 64GB of memory and 2x2TB SSD devices.

Table 1: Data rate for reading and decompressing data.

RAM SSD Disaggregated

Read rate 8GB/s 2-3GB/s 700MB/s

5 EXPERIMENTAL RESULTS
In this Section, we present experimental results obtained from end-
to-end tests with Prestissimo, the Velox integration with Presto
described in Section 3.1, comparing the new C++ Velox-based ex-
ecution engine with the current Presto Java implementation. The
test platform is a cluster composed of 80 nodes with 64G RAM and
2x2TB SSD devices. Both systems have local caching enabled and
run from a warm cache. The dataset is a 3TB TPC-H in ORC format
with no zstd compression, and lineitem and orders co-partitioned.
The query formulations are hand-written to have the right join
tree shape with all the selective joins gathered on the build side,
and joins are hash joins. Table 2 presents CPU and wall times for
selected CPU-bound queries (Q1 and Q6), and shuffle/IO heavy
queries (Q13 and Q19).

Table 2: TPC-H results comparing Prestissimo (Velox’s C++
engine) vs. Presto Java engine.

Wall time (sec) CPU time (sec)

C++ Java Speedup C++ Java Speedup

Q1 5 42 8.4x 2211 14435 6.5x
Q6 1 9 9x 538 2018 3.7x
Q13 15 31 2x 5647 12322 2.1x
Q19 6 13 2.1x 1362 3483 2.5x

For CPU-bound queries, Q1 and Q6, Prestissimo provides a
speedup close to an order of magnitude, and is now bottlenecked
on the coordinator’s speed to dispatch work. For the queries that
shuffle data, Q13 and Q19, the new bottleneck is shuffle latency.
The possible optimizations are better metadata handling on the
coordinator, better timing and message sizes on the shuffle and pos-
sibly some very lightweight encoding to cut down on the shuffle
data volume.

While TPC-H is still a valid data point for system comparison,
it does not provide a comprehensive representation of modern
workloads. In order to evaluate Velox’s performance under real
workloads, we have conducted an experiment where we replay
production traffic generated by a variety of interactive analytical
tools found at Meta to two clusters with identical hardware char-
acteristics (one running Prestissimo and one running Presto Java).
Figure 4 shows a histogram of the relative speedup provided by
Prestissimo over Presto Java - 0x means Presto Java is faster; 10x
means Prestissimo is 10 or more times faster. The average speedup

is about 6-7x, but many queries observe a speedup larger than an
order of magnitude.

Figure 4: Prestissimo speedup over Presto Java under real
interactive analytical workloads. The bars represent how
many times Prestissimo is faster than Presto Java.

Lastly, in addition to the initial question of how much CPU can
be saved by the new C++-based stack, a natural follow up question
when dealing with hyperscale system deployments is the capacity
impact of this new stack in terms of number of servers, which
ultimately translates to datacenter power. In order to conduct this
experiment, we created two clusters (one Prestissimo and one Presto
Java) shadowing the exact same production workloads, and slowly
decreased the number of servers in the Prestissimo cluster. We
observed that with the Velox based stack, Prestissimo was able to
support the same workloads with equal or better user-perceived
performance, with 3x fewer servers (60 vs 20).

6 FUTURE DIRECTIONS
In the last decade, the ubiquity of clouds and disaggregation of
compute from storage caused amajor inflection in the design of data
management systems. We believe that today we are experiencing
two new ongoing trends that have a similar disruptive potential:
(a) the rise of AI as the principal consumer of data management,
and (b) componentization and specialization of compute resources,
as exemplified by GPUs, FPGAs, tensor accelerators, and cache-
coherent interconnects like CXL [6].

Up until now, data computation engines were developed asmono-
liths containing their own language frontend, execution engine,
and storage. In the future, we expect specialized processing ker-
nels to be plugged into some kind of data management function
bus, such as Velox, which can then execute query plans from mul-
tiple frontends with different execution characteristics, and fully
leverage the available underlying hardware. This platform trend is
already reflected in software with the advent and standardization
of in memory data formats like Apache Arrow, and more recently,
Substrait [19] for interoperable plan representation. We believe
Velox to be an important step towards this direction.

As next steps, we expect to continue blurring the boundaries
between AI and traditional data management systems by investing
in stack unification and consolidation of language frontends and
functions packages. We will also continue integrating Velox with



other data computation stackswithinMeta, for instance, monitoring
and observability systems, graphs, and operational workloads. The
latter still poses substantial challenges related to vectorization,
small batch sizes, and low latency requirements, which are still
open questions.

Lastly, we envision a componentized world that relies less and
less on a forever omniscient query optimizer, but that rather em-
phasizes local intelligence and adaptivity at all levels of the stack.
Similarly, manual configuration of parameters such as resource al-
location between different users becomes more and more laborious,
error-prone, and opaque, and therefore computation systems need
to be autonomous, auto-configurable, and self-driven [14]. We be-
lieve this to be the path towards a unified computation stack suited
for different specialized workloads such as batch/ETL, interactive
analytics, stream processing, transactional, AI/ML, and more, with
one extensible open source engine.

7 RELATEDWORK
DuckDB [15] is an embeddable analytical RDBMS developed as
a C++ library, focused on providing fast SQL processing capabili-
ties in a lightweight and portable way. DuckDB provides extensive
data management features and is deeply integrated into the Python
and R ecosystems, in addition to providing language bindings for
Java, C, and C++. Although providing a vectorized engine that
shares many of the same design decisions as Velox, DuckDB fo-
cuses on providing a full-stack RDBMS implementation, having a
single SQL dialect as the main API with its users. Contrarily, Velox
focuses on providing modular, extensible, language-agnostic, and
high-performance building blocks to be integrated into existing
large scale computation engines, including stream processing and
realtime data infrastructure, ML platforms, and more.

The Apache Arrow project [3] provides a module containing
analytical functions that process Arrow columnar data, known
as “Arrow Compute” [1]. These functions (or kernels) represent
computation operations over inputs of possibly varying types, and
are intended for use inside query engines and data frame libraries.
Despite the fact that Arrow’s function API, composed of scalar, vec-
torized, and aggregate functions, is similar in principle to Velox’s
function APIs, Arrow Compute has a considerably narrower scope
and does not provide other SQL operators or resource manage-
ment primitives available in Velox. The Apache Arrow library also
provides Gandiva [7], an LLVM-based execution environment for
analytical kernels over Arrow encoded data. Despite the design
differences between Arrow Compute and Gandiva (interpreted vec-
torized vs. just-in-time compiled), the projects are similar in terms
of scope, being restricted to execution of functions/kernels.

Photon [16] is a proprietary C++ vectorized execution engine
developed by Databricks which is deeply (and transparently) in-
tegrated into the Spark ecosystem and targets speedup of Spark
queries. When Photon is enabled, the Spark runtime takes another
pass over the optimized query plan, determining which parts of
that plan can be run in Photon. The Photon library is then loaded
into the JVM to execute these fragments, leveraging JNI for commu-
nication and exchange of off-heap data pointers. Although sharing
similar design decisions and optimizations with Velox, Photon is
solely focused on accelerating Spark workloads, in addition to being

proprietary. Velox, in its turn, is engine- and dialect-agnostic and
developed in partnership with the open source community.

Lastly, Optimized Analytics Package [13] (OAP) is an open source
project driven by Intel, also aimed at optimizing Spark. OAP con-
tains a plugin called Gazelle [12], focused on providing SIMD-
optimized execution kernels and an LLVM-based expression engine
to accelerate Spark queries. Similarly to Photon, JNI is used to
communicate and exchange data using the Apache Arrow layout,
leveraging Arrow Compute, Gandiva, and custom operators for
vectorized kernel execution. Despite following similar design deci-
sions, Gazelle is focused on Spark workloads and not targeted to
engine-agnostic usage in other domains.

8 CONCLUSION
The fast proliferation of specialized data computation engines tar-
geted to very specific types of workloads has created a siloed data
ecosystem. These engines usually share little to nothing with each
other and are hard to maintain, evolve, and optimize, and ultimately
provide an inconsistent experience to data users. In this paper we
presented Velox, a novel open source C++ database acceleration
library which provides reusable, extensible, high-performance, and
dialect-agnostic data processing components that are being used to
unify existing computation engines at Meta.

Velox demonstrates that it is possible to converge existing com-
putation engines into a best-of-breed query execution component,
considering it is being integrated with more than a dozen data
systems at Meta, including not only analytical engines such as
Presto and Spark, but also stream processing platforms, message
buses and data warehouse ingestion infrastructure, ML systems
for data preprocessing and feature engineering, and more. Velox
provides benefits in terms of (a) efficiency wins, by democratizing
optimizations previously only found in individual engines, (b) in-
creased consistency for data users, and (c) engineering efficiency
by promoting reusability and eliminating duplicated efforts.

As developers of data infrastructure technology, we see Velox as
the crystallization of the experience from some of the +20 systems
the authors have worked on. As future steps, we are exploring uni-
fying operational and analytical systems through Velox, integration
with graph and monitoring engines, as well as further convergence
with ML platforms. We are also exploring new areas where adaptiv-
ity can be leveraged, in addition to further componentization and
hardware specialization via efficient and reusable kernels. Finally,
we hope Velox can be used as an open compute platform where
developers and users alike can experiment and direct advances,
providing an open laboratory for the next generation.
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