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Abstract

We study the use of amortized optimization to predict optimal transport (OT) maps
from the input measures, which we call Meta OT. This helps repeatedly solve sim-
ilar OT problems between different measures by leveraging the knowledge and
information present from past problems to rapidly predict and solve new prob-
lems. Otherwise, standard methods ignore the knowledge of the past solutions
and suboptimally re-solve each problem from scratch. Meta OT models surpass
the standard convergence rates of log-Sinkhorn solvers in the discrete setting and
convex potentials in the continuous setting. We improve the computational time
of standard OT solvers by multiple orders of magnitude in discrete and continuous
transport settings between images, spherical data, and color palettes.

1 Introduction

Optimal transportation [Villani, 2009, Ambrosio, 2003, Santambrogio, 2015, Peyré et al., 2019,
Merigot and Thibert, 2021] is thriving in domains including economics [Galichon, 2016], rein-
forcement learning [Dadashi et al., 2020, Fickinger et al., 2021], style transfer [Kolkin et al., 2019],
generative modeling [Arjovsky et al., 2017, Seguy et al., 2017, Huang et al., 2020, Rout et al., 2021],
geometry [Solomon et al., 2015, Cohen et al., 2021], domain adaptation [Courty et al., 2017b, Redko
et al., 2019], signal processing [Kolouri et al., 2017], fairness [Jiang et al., 2020], and cell repro-
gramming [Schiebinger et al., 2019]. A core component in these settings is to couple two measures
(α, β) supported on domains (X ,Y) by solving a transport optimization problem such as the primal
Kantorovich problem, which is defined by:

π?(α, β, c) ∈ arg min
π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y), (1)

where the optimal coupling π? is a joint distribution over the product space, U(α, β) is the set of
admissable couplings between α and β, and c : X × Y → R is the ground cost, that represents a
notion of distance between elements in X and elements in Y .

Challenges. Unfortunately, solving eq. (1) once is computationally expensive between general mea-
sures and computationally cheaper alternatives are an active research topic: Entropic optimal trans-
port [Cuturi, 2013] smooths the transport problem with an entropy penalty, and sliced distances
[Kolouri et al., 2016, 2018, 2019, Deshpande et al., 2019] solve OT between 1-dimensional projec-
tions of the measures, where eq. (1) can be solved easily.

Furthermore, when an optimal transport method is deployed in practice, eq. (1) is not just solved
a single time, but is repeatedly solved for new scenarios between different input measures (α, β).
For example, the measures could be representations of images we care about optimally transporting
between and in deployment we would receive a stream of new images to couple. Standard optimal
transport solvers deployed in this setting would re-solve the optimization problems from scratch, but
this ignores the shared structure and information present between different coupling problems. We
note this is not the out-of-sample setting of Seguy et al. [2017], Perrot et al. [2016] that seeks to
couple measures and then extrapolate the map to larger measures containing the original measures.
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Overview and outline. We study the use of amortized optimization and machine learning methods
to rapidly solve multiple optimal transport problems and predict the solution from the input measures
(α, β). This setting involves learning a meta model to predict the solution to the optimal transport
problem, which we will refer to as Meta Optimal Transport. We learn Meta OT models to predict
the solutions to optimal transport problems and significantly improve the computational time and
number of iterations needed to solve eq. (1) between discrete (sect. 3.1) and continuous (sect. 3.2)
measures. The paper is organized as follows: in sect. 2 we recall the main concepts needed for the
rest of the paper, in particular the formulations of the entropy regularized and unregularized optimal
transport problems and the basic notions of amortized optimization. In sect. 3 we present the Meta
Optimal Transport models and algorithms. In sect. 4 we empirically demonstrate the effectiveness
of Meta OT in practice. Finally, sect. 5 and sect. 6 contain the limitation of the proposed approach
and related work respectively.

2 Preliminaries and background

2.1 Dual optimal transport solvers

We review foundations of optimal transportation, following the notation of Peyré et al. [2019] in
most places. The discrete setting often favors the entropic regularized version since it can be com-
puted efficiently and in a parallelized way using the Sinkhorn algorithm. On the other hand, the
continuous setting is often solved from samples using convex potentials. While the primal Kan-
torovich formulation in eq. (1) provides an intuitive problem description, optimal transport prob-
lems are rarely solved directly in this form due to the high-dimensionality of the couplings π and
the difficulty of satisfying the coupling constraints U(α, β). Instead, most computational OT solvers
use the dual of eq. (1), which we build our Meta OT solvers on top of in discrete and continuous
settings.

2.1.1 Entropic OT between discrete measures with the Sinkhorn algorithm
Algorithm 1 Sinkhorn(α, β, c, ε, f0 = 0, g0 = 0)

for iteration i = 1 to N do
fi ← ε log a− ε log (K exp{gi−1/ε})
gi ← ε log b− ε log

(
K> exp{fi−1/ε}

)
end for
Compute PN from fN , gN using eq. (6)
return PN ≈ P ?

Let α :=
∑m
i=1 aiδxi and β :=

∑n
i=1 biδyi be

discrete measures, where δz is a Dirac at point
z and a ∈ ∆m−1 and b ∈ ∆n−1 are in the
probability simplex defined by

∆k−1 := {x ∈ Rk : x ≥ 0 and
∑
i

xi = 1}. (2)

Discrete OT. In the discrete setting, eq. (1) simplifies to the linear program

P ?(α, β, c) ∈ arg min
P∈U(a,b)

〈C,P 〉 U(a, b) := {P ∈ Rn×m+ : P1m = a, P>1n = b} (3)

where P is a coupling matrix, P ?(α, β) is the optimal coupling, and the cost can be discretized as a
matrix C ∈ Rm×n with entries Ci,j := c(xi, yj), and 〈C,P 〉 :=

∑
i,j Ci,jPi,j ,

Entropic OT. The linear program above can be regularized adding the entropy of the coupling to
smooth the objective as in Cominetti and Martín [1994], Cuturi [2013], resulting in:

P ?(α, β, c, ε) ∈ arg min
P∈U(a,b)

〈C,P 〉 − εH(P ) (4)

where H(P ) := −
∑
i,j Pi,j(log(Pi,j)− 1) is the discrete entropy of a coupling matrix P .

Entropic OT dual. As presented in Peyré et al. [2019, Prop. 4.4], the dual of eq. (4) is

f?, g? ∈ arg max
f∈Rn,g∈Rm

〈f, a〉+ 〈g, b〉 − ε 〈exp{f/ε},K exp{g/ε}〉 , Ki,j := exp{−Ci,j/ε}, (5)

where K ∈ Rm×n is the Gibbs kernel and the dual variables or potentials f ∈ Rn and g ∈ Rm are
associated, respectively, with the marginal constraints P1m = a and P>1n = b. The optimal duals
depend on the problem, e.g. f?(α, β, c, ε), but we omit this dependence for notational simplicity.

Recovering the primal solution from the duals. Given optimal duals f?, g? that solve eq. (5) the
optimal coupling P ? to the primal problem in eq. (4) can be obtained by

P ?i,j(α, β, c, ε) := exp{f?i /ε}Ki,j exp{g?j /ε} (K is defined in eq. (5)) (6)
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The Sinkhorn algorithm. Algorithm 1 summarizes the log-space version, which takes closed-form
block coordinate ascent updates on eq. (5) obtained from the first-order optimality conditions [Peyré
et al., 2019, Remark 4.21]. We will use it to fine-tune predictions made by our Meta OT models.

Computing the error. Standard implementations of the Sinkhorn algorithm, such as Flamary et al.
[2021], Cuturi et al. [2022], measure the error of a candidate dual solution (f, g) by computing the
deviation from the marginal constraints, which we will also use in comparing our solution quality:

err(f, g;α, β, c) := ‖P1m − a‖1 + ‖P>1n − b‖1 (compute P from eq. (6)) (7)

Mapping between the duals. The first-order optimality conditions of eq. (5) also provide an equiv-
alence between the optimal dual potentials that we will make use of:

g(f ; b, c) := ε log b− ε log
(
K> exp{f/ε}

)
. (8)

2.1.2 Wasserstein-2 OT between continuous (Euclidean) measures with dual potentials

Algorithm 2 W2GN(α, β, ϕ0)
for iteration i = 1 to N do

Sample from (α, β) and estimate L(ϕi−1)
Update ϕi with approximation to∇ϕL(ϕi−1)

end for
return TN (·) := ∇xψϕN (·) ≈ T ?(·)

Let α and β be continuous measures in Euclidean
space X = Y = Rd (with α absolutely contin-
uous with respect to the Lebesgue measure) and
the ground cost be the squared Euclidean distance
c(x, y) := ‖x−y‖22. Then the minimum of eq. (1)
defines the square of the Wasserstein-2 distance:

W 2
2 (α, β) := min

π∈U(α,β)

∫
X×Y

‖x− y‖22dπ(x, y) = min
T

∫
X
‖x− T (x)‖22dα(x), (9)

where T is a transport map pushing α to β, i.e. T#α = β with the pushforward operator defined
by T#α(B) := α(T−1(B)) for any measurable set B.

Convex dual potentials. The primal form in eq. (9) is difficult to solve, as in the discrete setting, due
to the difficulty of representing the coupling and satisfying the constraints. Makkuva et al. [2020],
Taghvaei and Jalali [2019], Korotin et al. [2019, 2021b, 2022] propose to instead solve the dual:

ψ?( · ;α, β) ∈ arg min
ψ∈convex

∫
X
ψ(x)dα(x) +

∫
Y
ψ(y)dβ(y), (10)

where ψ is a convex function referred to as a convex potential, and ψ(y) := maxx∈X 〈x, y〉−ψ(x) is
the Legendre-Fenchel transform or convex conjugate of ψ [Fenchel, 1949, Rockafellar, 2015]. The
potential ψ is often approximated with an input-convex neural network (ICNN) [Amos et al., 2017].

Recovering the primal solution from the dual. Given an optimal dual ψ? for eq. (10), Brenier
[1991] remarkably shows that an optimal map T ? for eq. (9) can be obtained with differentiation:

T ?(x) = ∇xψ?(x). (11)

Wasserstein-2 Generative Networks (W2GNs). Korotin et al. [2019] model ψϕ and ψϕ in eq. (10)
with two separate ICNNs parameterized by ϕ. The separate model for ψϕ is useful because the
conjugate operation in eq. (10) becomes computationally expensive. They optimize the loss:

L(ϕ) := E
x∼α

[ψϕ(x)] + E
y∼β

[
〈∇ψϕ(y), y〉 − ψϕ(∇ψϕ(y))

]
︸ ︷︷ ︸

Cyclic monotone correlations

+γ E
y∼β
‖∇ψϕ ◦ ∇ψϕ(y)− y‖22,︸ ︷︷ ︸
Cycle-consistency regularizer

(12)

where ϕ is a detached copy of the parameters and γ is a hyper-parameter. The first term are the
cyclic monotone correlations [Chartrand et al., 2009, Taghvaei and Jalali, 2019], and the second
term provides cycle consistency [Zhu et al., 2017]. Algorithm 2 shows how L is typically optimized
using samples from the measures, which we use to fine-tune Meta OT predictions.

2.2 Amortized optimization and learning to optimize

Our paper is an application of amortized optimization methods that predict the solutions of opti-
mization problems, as surveyed in, e.g., Chen et al. [2021], Amos [2022]. We use the basic setup
from Amos [2022], which considers unconstrained continuous optimization problems of the form

z?(φ) ∈ arg min
z

J(z;φ), (13)
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Figure 1: Meta OT uses objective-based amortization for optimal transport. In the general formula-
tion, the parameters θ capture shared structure in the optimal couplings π? between multiple input
measures and costs over some distribution D. In practice, we learn this shared structure over the
dual potentials which map back to the coupling: f? in discrete settings and ψ? in continuous ones.

where J is the objective, z ∈ Z is the domain, and φ ∈ Φ is some context or parameterization. In
other words, the context conditions the objective but is not optimized over. Given a distribution over
contexts P(φ), we learn a model ẑθ parameterized by θ to approximate eq. (13), i.e. ẑθ(φ) ≈ z?(φ).
J will be differentiable for us, so we optimize the parameters using objective-based learning with

min
θ

E
φ∼P(φ)

J(ẑθ(φ);φ), (14)

which does not require ground-truth solutions z? and can be optimized with a gradient-based solver.

3 Meta Optimal Transport

Figure 1 illustrates our key contribution of connecting objective-based amortization in eq. (14) to
optimal transport. We consider solving multiple OT problems and learning shared structure and
correlations between them. We denote a joint meta-distribution over the input measures and costs
with D(α, β, c), which we call meta to distinguish it from the measures α, β.

In general, we could introduce a model that directly predicts the primal solution to eq. (1), i.e.
πθ(α, β, c) ≈ π?(α, β, c) for (α, β, c) ∼ D. This is difficult for the same reason why most compu-
tational methods do not operate directly in the primal space: the optimal coupling is often a high-
dimensional joint distribution with non-trivial marginal constraints. We instead turn to predicting
the dual variables used by today’s solvers.

3.1 Meta OT between discrete measures

We build on standard methods for entropic OT reviewed in sect. 2.1.1 between discrete measures
α :=

∑m
i=1 aiδxi and β :=

∑n
i=1 biδxi with a ∈ ∆m−1 and b ∈ ∆n−1 coupled using a cost c. In the

Meta OT setting, the measures and cost are the contexts for amortization and sampled from a meta-
distribution, i.e. (α, β, c) ∼ D(α, β, c). For example, sects. 4.1 and 4.2 considers meta-distributions
over the weights of the atoms, i.e. (a, b) ∼ D, where D is a distribution over ∆m−1 ×∆n−1.

Amortization objective. We will seek to predict the optimal potential. At optimality, the pair of
potentials are related to each other via eq. (8), i.e. g(f ;α, β, c) := ε log b − ε log

(
K> exp{f/ε}

)
where K ∈ Rm×n is the Gibbs kernel from eq. (5). Hence, it is sufficient to predict one of the
potentials, e.g. f , and recover the other. We thus re-formulate eq. (5) to just optimize over f with

f?(α, β, c, ε) ∈ arg min
f∈Rn

J(f ;α, β, c), (15)

where −J(f ;α, β, c) := 〈f, a〉 + 〈g, b〉 is the dual objective over f . Even though most solvers
optimizers over f and g jointly as in eq. (15), amortizing over these would likely need: 1) to have a
higher capacity than a model just predicting f , and 2) to learn how f and g are connected through
eq. (8) while in eq. (15) we explicitly provide this knowledge.
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Algorithm 3 Training Meta OT
Initialize amortization model with θ0
for iteration i do

Sample (α, β, c) ∼ D
Predict duals f̂θ or ϕ̂θ on the sample
Estimate the loss in eq. (16) or eq. (17)
Update θi+1 with a gradient step

end for

Algorithm 4 Fine-tuning with Sinkhorn

Predict duals f̂θ(α, β, c)
Compute ĝ from f̂θ using eq. (8)
return Sinkhorn(α, β, c, ε, f̂θ, ĝ)

Algorithm 5 Fine-tuning with W2GN
Predict dual ICNN parameters ϕ̂θ(α, β, c)
return W2GN(α, β, c, T, ϕ̂θ)

Amortization model. We predict the solution to eq. (15) with f̂θ(α, β, c) parameterized by θ,
resulting in a computationally efficient approximation f̂θ ≈ f?. Here we use the notation f̂θ(α, β, c)
to mean that the model f̂θ depends on representations of the input measures and cost. In our settings,
we define f̂θ as a fully-connected MLP mapping from the atoms of the measures to the duals.

Amortization loss. Applying objective-based amortization from eq. (14) to the dual in eq. (15)
completes our learning setup. Our model should best-optimize the expectation of the dual objective

min
θ

E
(α,β,c)∼D

J(f̂θ(α, β, c);α, β, c), (16)

which is appealing as it does not require ground-truth solutions f?. Algorithm 3 shows a basic
training loop for eq. (16) using a gradient-based optimizer such as Adam [Kingma and Ba, 2014].

Sinkhorn fine-tuning. The dual prediction made by f̂θ with an associated ĝ can easily be input as
the initialization to a standard Sinkhorn solver as shown in algorithm 4. This allows us to deploy the
predicted potential with Sinkhorn to obtain the optimal potentials with only a few extra iterations.

On accelerated solvers. Here we have only considered fine-tuning the Meta OT prediction with
a log-Sinkhorn solver. Meta OT can also be combined with accelerated variants of entropic OT
solvers such as Thibault et al. [2017], Altschuler et al. [2017], Alaya et al. [2019], Lin et al. [2019]
that would otherwise solve every problem from scratch.

Convergence rates. The knowledge of the hyper-distribution D of problems being solved enables
Meta OT methods to surpass the convergence rates and computational time of standard algorithms
by restricting the set of problems rather than considering the average- or worst-case performance.
The model f̂θ distills information between the problem instances into the parameters θ.

3.2 Meta OT between continuous measures (Wasserstein-2)

We take an analogous approach to predicting the Wasserstein-2 map between continuous measures
for Wasserstein-2 as reviewed in sect. 2.1.2. Here the measures α, β are supported in continuous
space X = Y = Rd and we focus on computing Wasserstein-2 couplings from instances sampled
from a meta-distribution (α, β) ∼ D(α, β). The cost c is not included inD as it remains fixed to the
squared Euclidean cost everywhere here.

One challenge here is that the optimal dual potential ψ?( · ;α, β) in eq. (10) is a convex function and
not simply a finite-dimensional real vector. The dual potentials in this setting are approximated by,
e.g., an ICNN. We thus propose a Meta ICNN that predicts the parameters ϕ of an ICNN ψϕ that
approximates the optimal dual potentials, which can be seen as a hypernetwork [Stanley et al., 2009,
Ha et al., 2016]. The dual prediction made by ϕ̂θ can easily be input as the initial value to a standard
W2GN solver as shown in algorithm 5. App. B discusses other modeling choices we considered:
we tried models based on MAML [Finn et al., 2017] and neural processes [Garnelo et al., 2018b,a].

Amortization objective. We build on the W2GN formulation [Korotin et al., 2019] and seek pa-
rameters ϕ? optimizing the dual ICNN potentials ψϕ and ψϕ with L(ϕ;α, β) from eq. (12). We
chose W2GN due to the stability, but could also easily use other losses optimizing ICNN potentials.

Amortization model: the Meta ICNN. We predict the solution to eq. (12) with ϕ̂θ(α, β) param-
eterized by θ, resulting in a computationally efficient approximation to the optimum ϕ̂θ ≈ ϕ?.
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Sinkhorn (converged, ground-truth)

α0 α1
α2

Meta OT (initial prediction)

α0 α1
α2

Figure 2: Interpolations between MNIST test digits using couplings obtained from (left) solving
the problem with Sinkhorn, and (right) Meta OT model’s initial prediction, which is ≈100 times
computationally cheaper and produces a nearly identical coupling.

α
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z1
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z

ϕ̂θ

Parameters

ψϕ̂θ

ICNN

T̂ (·) = ∇xψϕ̂θ (·)
Transport map

ResNetθ

ResNetθ

MLPθ

Figure 3: A Meta ICNN for image-based input measures. A shared ResNet processes the input
measures α and β into latents z that are decoded with an MLP into the parameters ϕ of an ICNN
dual potential ψϕ. The derivative of the ICNN provides the transport map T̂ .

Table 1: Discrete OT runtime (in seconds) to reach
a marginal error of 10−3 and Meta OT’s runtime.

MNIST Spherical

Sinkhorn 3.3 · 10−3 ±1.0 · 10−3 1.5 ±0.64

Meta OT + Sinkhorn 2.2 · 10−3 ±3.8 · 10−4 0.48 ±.24

Meta OT (Initial prediction) 4.6 · 10−5 ±2.8 · 10−6 4.4 · 10−5 ±3.2 · 10−6

Table 2: Color transfer runtimes.

Iter Runtime (s) Dual Value

Meta OT None 2.0 · 10−3 ±1.5 · 10−4 0.98 ±6.2 · 10−3

+ W2GN 1k 0.93 ±4.88 · 10−2 1.0 ±1.3 · 10−3

2k 1.8 ±9.6 · 10−2 1.0 ±4.3 · 10−4

W2GN 1k 0.90 ±1.66 · 10−2 0.94 ±2.91 · 10−2

2k 1.8 ±2.92 · 10−2 0.98 ±6.86 · 10−3

We report the mean and (standard deviation) across 10 test instances.

Figure 3 instantiates a convolutional Meta ICNN model using a ResNet-18 [He et al., 2016] archi-
tecture for coupling image-based measures. We again emphasize that α, β used with the model here
are representations of measures, which in our cases are simply images.

Amortization loss. Applying objective-based amortization from eq. (14) to the W2GN loss in
eq. (12) completes our learning setup. Our model should best-optimize the expectation of the loss:

min
θ

E
(α,β)∼D

L(ϕ̂θ(α, β);α, β). (17)

As in the discrete setting, it does not require ground-truth solutions ϕ? and we learn it with Adam.

4 Experiments

We demonstrate how Meta OT models improve the convergence of the state-of-the-art solvers in
settings where solving multiple OT problems naturally arises. We implemented our code in JAX
[Bradbury et al., 2018] as an extension to the the Optimal Transport Tools (OTT) package [Cuturi
et al., 2022]. We have attached the complete source code to reproduce every experiment in our paper
and will open source it. All experiments take roughly ≈2 hours to run on our single Quadro GP100
GPU. App. C covers further experimental and implementation details.

4.1 Discrete OT between MNIST digits

Images provide a natural setting for Meta OT where the distribution over images provide the meta-
distribution D over OT problems. Given a pair of images α0 and α1, each grayscale image is
cast as a discrete measure in 2-dimensional space where the intensities define the probabilities of
the atoms. The goal is to compute the optimal transport interpolation between the two measures
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Figure 4: Sinkhorn convergence on test instances. Meta OT successfully predicts warm-start initial-
izations that significantly improve the convergence of Sinkhorn iterations.

Sinkhorn (converged, ground-truth) Meta OT (initial prediction)

Figure 5: Test set coupling predictions of the spherical transport problem. Meta OT’s initial pre-
diction is ≈37500 times faster than solving Sinkhorn to optimality. Supply locations are shown as
black dots and the blue lines show the spherical transport maps T going to demand locations at the
end. The sphere is visualized with the Mercator projection.

as in, e.g., Peyré et al. [2019, §7]. Formally, this means computing the optimal coupling P ? by
solving the entropic optimal transport problem between α0 and α1 and computing the interpolates
as αt = (tprojy +(1− t) projx)#P

?, for t ∈ [0, 1], where projx(x, y) := x and projy(x, y) = y.
We selected ε = 10−2 as app. A shows that it gives interpolations that are not too blurry or sharp.

Our Meta OT model f̂θ (sect. 3.1) is an MLP that predicts the transport map between pairs of
MNIST digits. We train on every pair from the standard training dataset. Figure 2 shows that even
without fine-tuning, Meta OT’s predicted Wasserstein interpolations between the measures are close
to the ground-truth interpolations obtained from running the Sinkhorn algorithm to convergence.
We then fine-tune Meta OT’s prediction with Sinkhorn as in algorithm 4. Figure 4 shows that the
near-optimal predictions can be quickly refined in fewer iterations than running Sinkhorn with the
default initialization, and table 1 shows the runtime required to reach the default threshold.

4.2 Discrete OT for supply-demand transportation on spherical data

We next set up a synthetic transport problem between supply and demand locations where the supply
and demands may change locations or quantities frequently, creating another Meta OT setting to be
able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere
defined by S2 := {x ∈ R3 : ‖x‖ = 1}, i.e. X = Y = S2, with the transport cost given by the
spherical distance c(x, y) = arccos(〈x, y〉). We then randomly sample supply locations uniformly
from Earth’s landmass and demand locations from Earth’s population density to induce a class of
transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.
[2015]. Figure 5 shows that the predicted transport maps on test instances are close to the optimal
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α β T#α T−1
# β

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image α to the second β, producing an invertible
transport map T . Meta OT’s prediction is ≈1000 times faster than training W2GN from scratch.
α is Market in Algiers by August Macke (1914) and β is Argenteuil, The Seine by Claude Monet
(1872), obtained from WikiArt.

maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 shows
improved convergence and runtime.

4.3 Continuous Wasserstein-2 color transfer
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Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

The problem of color transfer between two im-
ages consists in mapping the color palette of one
image into the other one. The images are re-
quired to have the same number of channels, for
example RGB images. The continuous formula-
tion that we use from Korotin et al. [2019], takes
i.e. X = Y = [0, 1]3 with c being the squared
Euclidean distance. We collected ≈200 public
domain images from WikiArt and trained a Meta
ICNN model from sect. 3.2 to predict the color
transfer maps between every pair of them. Fig-
ure 6 shows the predictions on test pairs and fig. 7
shows the convergence in comparison to the stan-
dard W2GN learning. Table 2 reports runtimes
and app. D shows additional results.

5 Limitations of Meta OT

While we have illustrated successful applications of Meta OT, it is also important to understand the
limitations: 1) Meta OT does not make previously intractable problems tractable. All of the
baseline OT solvers we consider can solve our problems within milliseconds or seconds. 2) Out-
of-distribution generalization. Meta OT may not generate good predictions on instances that are
not close to the training OT problems from the meta-distribution D over the measures and cost If
Meta OT generates a bad prediction in practice, it is possible to measure the error and re-solve the
instance from scratch if necessary.
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6 Related work

Efficiently estimating OT maps. To compute OT maps with fixed cost between pairs of mea-
sures efficiently, neural OT models [Korotin et al., 2019, Li et al., 2020, Korotin et al., 2021a,
Mokrov et al., 2021, Korotin et al., 2021b] leverage ICNNs to estimate maps between continuous
high-dimensional measures given samples from these, and Litvinenko et al. [2021], Scetbon et al.
[2021a], Forrow et al. [2019], Sommerfeld et al. [2019], Scetbon et al. [2021b], Muzellec and Cuturi
[2019], Bonet et al. [2021] leverage structual assumptions on coupling and cost matrices to reduce
the computational and memory complexity. In the meta-OT setting, we consider learning to rapidly
compute OT mappings between new pairs measures. All these works can hence potentially benefit
from an acceleration effect by leveraging amortization similarly.

Embedding measures where OT distances are discriminative. Effort has been invested in learn-
ing encodings/projections of measures through a nested optimization problem, which aims to find
discriminative embeddings of the measures to be compared [Genevay et al., 2018, Deshpande et al.,
2019, Nguyen and Ho, 2022]. While these works share an encoder and/or a projection across task
with the aim of leveraging more discriminative alignments (and hence an OT distance with a metric
different from the Euclidean metric), our work differs in the sense that we find good initializations
to solve the OT problem itself with fixed cost more efficiently across tasks.

Optimal transport and amortization. Few previous works in the OT literature leverage amorti-
zation. Courty et al. [2017a] learn a latent space in which the Wasserstein distance between the
measure’s embeddings is equivalent to the Euclidean distance. Concurrent work [Nguyen and Ho,
2022] amortizes the estimation of the optimal projection in the max-sliced objective, which differs
from our work where we instead amortize the estimation of the optimal coupling directly. Also,
Lacombe et al. [2021] learns to predict Wasserstein barycenters of pixel images by training a con-
volutional networks that, given images as input, outputs their barycenters. Our work is hence a
generalization of this pixel-based work to general measures – both discrete and continuous. A limi-
tation of Lacombe et al. [2021] is that it does not provide alignments, as the amortization networks
predicts the barycenter directly rather than individual couplings.

7 Conclusions and future directions

We have presented foundations for modeling and learning to solve OT problems with Meta OT by
using amortized optimization to predict optimal transport plans. This works best in applications that
require solving multiple OT problems with shared structure. We instantiated it to speed up entropic
regularized optimal transport and unregularized optimal transport with squared cost by multiple
orders of magnitude. We envision extensions of the work in: 1) Meta OT models. While we mostly
consider models based on hypernetworks, other meta-learning paradigms can be connected in, and 2)
OT algorithms. While we instantiated models on top of log-Sinkhorn and W2GN, Meta OT could
be integrated with most other methods too. 3) OT applications that are computationally expensive
and repeatedly solved, e.g. in multi-marginal and barycentric settings, or for Gromov-Wasserstein
distances between metric-measure spaces.
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A Selecting ε for MNIST

Figure 8: We selected ε = 10−2 for our MNIST coupling experiments as it results in transport maps
that are not too blurry or sharp.

B Other models considered for continuous OT

:::::
While

:::::::::
developing

:::
the

:::::::::::::
hyper-network

::
or

:::::
Meta

::::::
ICNN

::
in

::::::::
sect. 3.2

::
for

:::::::::
predicting

::::::::
couplings

:::::::
between

:::::::::
continuous

::::::::
measures,

:::
we

::::::::::
considered

:::::::::
alternative

::::::::
modeling

:::::::::::
formulations

:::::
briefly

:::::::::::
documented

::
in

:::
this

::::::
section.

::::
We

:::::::
finalized

::::
only

:::
the

:::::::::::::
hyper-network

:::::
model

:::::::
because

::
it
::
is

:::::::::::
conceptually

:::
the

::::
most

::::::
similar

::
to

::::::::
predicting

:::
the

:::::::
optimal

::::
dual

:::::::
variables

::
in

:::
the

::::::::::
continuous

:::::
setting

::::
and

::::::
results

::
in

::::
rapid

::::::::::
predictions.

:

B.1 MAML
:::::::::::::::::
Optimization-based

:::::::::::::
meta-learning

::::::::::::::::
(MAML-inspired)

:::
The

:::::::::::::
model-agnostic

:::::::::::::
meta-learning

:::::
setup

::::::::
proposed

:::
in

:::::::
MAML

::::::::::::::::
[Finn et al., 2017]

::::
could

:::::
also

::
be

::::::
applied

::
in

:::
the

:::::
Meta

::::
OT

::::::
setting

::
to

:::::
learn

::
an

:::::::::
adaptable

:::::
initial

:::::::::::::::
parameterization.

:::
In

:::
the

:::::::::
continuous

::::::
setting,

:::
one

:::::
initial

:::::::
version

:::::
would

::::
take

:
a
::::::::::::
parameterized

::::
dual

:::::::
potential

::::::
model

::::::
ψϕ(x)

:::
and

::::
seek

::
to

::::
learn

::
an

:::::
initial

::::::::::::::
parameterization

:::
ϕ0:::

so
:::
that

::::::::::
optimizing

:
a
::::

loss
:::::
such

::
as

:::
the

:::::::
W2GN

:::
loss

::
L
:::::

from
:::::::
eq. (12)

:::::
results

::
in

::
a

:::::::
minimal

::::::
L(ϕK)

::::
after

::::::::
adapting

:::
the

:::::
model

:::
for

::
K

:::::
steps.

:::::::::
Formally,

:::
this

:::::
would

:::::::::
optimize:

arg min
ϕ0

L(ϕK) where ϕt+1 = ϕt −∇ϕL(ϕt)

::::::::::::::::::::::::::::::::::::::::

(18)

::::::::::::::::
Tancik et al. [2021]

:::::::
explores

::::::
similar

:::::::
learned

::::::::::::
initializations

::::
for

::::::::::::::
coordinate-based

::::::
neural

:::::::
implicit

::::::::::::
representations

:::
for

:::
2D

:::::::
images,

:::
CT

::::
scan

:::::::::::::
reconstruction,

:::
and

:::
3d

:::::
shape

:::
and

:::::
scene

::::::::
recovery

::::
from

:::
2D

:::::::::::
observations.

:::::::::
Challenges

:::
for

:::::
Meta

::::
OT.

:::
The

::::::::
transport

::::
maps

:::::
given

:::
by

::::::::
T = ∇ψ

:::
can

::::::::::
significantly

:::::
vary

::::::::
depending

::
on

:::
the

::::
input

::::::::
measures

:::::
α, β.

:::
We

:::::
found

:
it
:::::::
difficult

::
to

:::::
learn

::
an

::::::::::
initialization

::::
that

:::
can

::
be

::::::
rapidly

:::::::
adapted,

:::
and

:::::::::
optimizing

::::::::
eq. (18)

:
is
:::::

more
::::::::::::::
computationally

:::::::::
expensive

::::
than

:::::::
eq. (17)

::
as

::
it
:::::::
requires

::::::::
unrolling

::::::
through

:::::
many

::::::::::
evaluations

:::
of

:::
the

::::::::
transport

::::
loss

::
L.

::::::
And,

:::
we

:::::
found

::::
that

::::
only

:::::::
learning

::
to

::::::
predict

::
the

:::::::
optimal

::::::::::
parameters

::::
with

::::::
eq. (17)

:
,
::::::::::
conditional

::
on

:::
the

:::::
input

::::::::
measures,

::::
and

::::
then

:::::::::
fine-tuning

::::
with

::::::
W2GN

::
to

::
be

::::::
stable.

:

::::::::::
Advantages

:::
for

::::::
Meta

::::
OT.

::::::::
Exploring

::::::::::::::
MAML-inspired

::::::::
methods

::::::
could

::::::
further

::::::::::
incorporate

:::
the

:::::::::
knowledge

::::
that

:::
the

::::::::
model’s

:::::::::
prediction

:::
is

:::::
going

:::
to

:::
be

:::::::::
fine-tuned

:::::
into

:::
the

::::::::
learning

:::::::
process.
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:::
One

:::::::::
promising

:::::::::
direction

:::
we

:::
did

::::
not

:::
try

::::::
could

:::
be

::
to

::::::::
integrate

:::::
some

:::
of

::::
the

:::::
ideas

:::::
from

::::
LEO

:::::::::::::::
[Rusu et al., 2018]

:::
and

:::::::
CAVIA

::::::::::::::::::
[Zintgraf et al., 2019]

:
,
:::::
which

:::::::
propose

:::::
learn

::
a
:::::
latent

:::::
space

:::
for

:::
the

:::::::::
parameters

:::::
where

:::
the

:::::::::::
initialization

::
is

:::
also

::::::::::
conditional

::
on

:::
the

:::::
input.

:

B.2 Neural process

:::
The

:::::::::::
(conditional)

::::::
neural

::::::
process

::::::
models

::::::::::
considered

::
in

::::::::::::::::::::
Garnelo et al. [2018b,a]

:::
can

:::
also

:::
be

::::::
adapted

::
for

:::
the

:::::
Meta

:::
OT

:::::::
setting.

::
In

:::
the

::::::::::
continuous

::::::
setting,

:::
this

::::::
would

:::::
result

::
in

::
a

::::
dual

:::::::
potential

::::
that

::
is

:::
also

:::::::::
conditioned

:::
on

::
a
::::::::::::
representation

::
of

::::
the

::::
input

:::::::::
measures,

:
e.g.

:::::::
ψϕ(x; z)

::::::
where

::::::::::::::
z := f emb

ϕ (α, β)
::
is

:
a

::::::
learned

:::::::::
embedding

:::
of

:::
the

:::::
input

::::::::
measures

:::
that

::
is
:::::::
learned

::::
with

:::
the

:::::::::
parameters

:::
of

::
ψ.

:::::
This

:::::
could

::
be

:::::::::
formulated

::
as

arg min
ϕ

E
(α,β)∼D

L(ϕ, f emb
ϕ (α, β)),

::::::::::::::::::::::::::::

(19)

:::::
where

::
L

:::::::
modifies

:::
the

::::::
model

::::
used

::
in

:::
the

:::
loss

:::::::
eq. (12)

::
to

::::
also

::
be

::::::::::
conditioned

::
on

:::
the

:::::::
context

:::::::
extracted

::::
from

:::
the

::::::::
measures.

:

:::::::::
Challenges

::::
for

:::::
Meta

::::
OT.

::::
This

:::::
raises

:::
the

:::::
issue

:::
on

::::::::::::::
best-formulating

:::
the

::::::
model

::
to

:::
be

:::::::::
conditional

::
on

:::
the

:::::::
context.

:::::
One

::::
way

:::::
could

::
be

::
to
:::::::

append
::
z

::
to

:::
the

:::::
input

::::
point

::
x
:::
in

:::
the

:::::::
domain,

:::
but

::
if

::
ψ

::
is

::
an

::::::::::
input-convex

::::::
neural

::::::::
network,

::::
then

:::
the

:::::
model

::::::
would

::::
only

:::::
need

::
to

::
be

:::::::
convex

::::
with

::::::
respect

::
to

::
x
:::
and

:::
not

::
z.

::::::::::
Advantages

:::
for

:::::
Meta

:::
OT.

:
A

:::::
large

::::::::
advantage

::
is

:::
that

:::
the

::::::::::::
representation

:
z
::
of
:::
the

::::::::
measures

::::
α, β

:::::
would

::
be

::::::::::
significantly

::::::::::::::::
lower-dimensional

::::
than

:::
the

:::::::::
parameters

::
ϕ

:::
that

:::
our

:::::
Meta

:::
OT

::::::
models

:::
are

:::::::::
predicting.

:

C Additional experimental and implementation details

:::
We

::::
have

:::::::
attached

:::
the

:::
Jax

::::::
source

::::
code

:::::::::
necessary

::
to

:::
run

::::
and

::::::::
reproduce

:::
all

::
of

:::
the

::::::::::
experiments

::
in

:::
our

::::
paper

::::
and

:::
will

:::::::::::
open-source

::
all

::
of

::
it.
:::::

Here
::
is

:
a
:::::
basic

::::::::
overview

::
of

:::
the

::::
files:

:

meta_ot Meta OT Python library code

conjugate.py Exact conjugate solver for the continuous setting

data.py

models.py

utils.py

config Hydra configuration for the experiments (containing hyper-parameters)

train_discrete.py Train Meta OT models for discrete OT

train_color_single.py Train a single ICNN with W2GN between 2 images (for debugging)

train_color_meta.py Train a Meta ICNN with W2GN

plot_mnist.py Visualize the MNIST couplings

plot_world_pair.py Visualize the spherical couplings

eval_color.py Evaluate the Meta ICNN in the continuous setting

eval_discrete.py Evaluate the Meta ICNN for the discrete tasks
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:::::::::
Connecting

::
to

:::
the

::::
data

::
is

:::
one

::::::::
difficulty

::
in

:::::::
running

::
the

:::::::::::
experiments.

::::
The

::::::
easiest

:::::::::
experiment

::
to

:::::
re-run

:
is
:::
the

:::::::
MNIST

::::
one,

:::::
which

::::
will

:::::::::::
automatically

:::::::::
download

:::
the

::::::
dataset:

:

1
::
./

::::::::::::::::
train_discrete

:
.
:::
py

::
#

:::::::
Train

::::
the

:::::::
model

:
,
:::::::::::::
outputting

:::
to

::
<
::::::::
exp_dir

:
>

2
::
./

:::::::::::::::
eval_discrete

:
.
::
py

:::
<

::::::::
exp_dir

:
>

::
#
::::::::::
Evaluate

:::::
the

:::::::::
learned

::::::::
models

3
::
./

::::::::::::
plot_mnist

:
.

::
py

::
<
::::::::
exp_dir

:
>
:::
#

:::::::::
Produce

:::::::::
further

:::::::::::::::::
visualizations

:::
We

::::
lastly

::::::::::
summarize

:::
the

::::::::::::::
hyper-parameters

:::
we

:::::
used:

C.1
::::::::::::::::
Hyper-parameters

::::
Here

:::
we

:::::
briefly

::::::::::
summarize

:::
the

::::::::::::::
hyper-parameters

:::
we

::::
used

:::
for

:::::::
training,

:::::
which

:::
we

:::
did

:::
not

:::::::::
extensively

::::
tune.

::
In

:::
the

:::::::
discrete

::::::
setting,

:::
we

:::
use

:::
the

::::
same

::::::::::::::
hyper-parameters

:::
for

:::
the

:::::::
MNIST

:::
and

:::::::
spherical

:::::::
settings.

Table 3:
:::::::
Discrete

:::
OT

:::::::::::::::
hyper-parameters.

:::::
Name

:::::
Value

:::::
Batch

::::
size

:::
128

:

:::::::
Number

::
of

:::::::
training

::::::::
iterations

:::::
50000

:

::::
MLP

:::::::
Hidden

:::::
Sizes [

::::
1024,

:::::
1024,

:::::
1024]

:::::
Adam

:::::::
learning

::::
rate

::::
1e-3

Table 4:
:::::::::
Continuous

:::
OT

:::::::::::::::
hyper-parameters.

::::
Name

: :::::
Value

::::
Meta

:::::
batch

:::
size

::::
(for

::::
α, β)

: :
8
:

:::::
Inner

::::
batch

::::
size

:::
(to

:::::::
estimate

::
L)

: ::::
1024

:

:::::
Cycle

:::
loss

::::::
weight

:::
(γ)

: ::
3.

:::::
Adam

:::::::
learning

:::
rate

: ::::
1e-3

::̀2::::::
weight

::::::
penalty

: ::::
1e-6

:::
Max

::::
grad

:::::
norm

::::
(for

:::::::
clipping)

: ::
1.

:::::::
Number

::
of

::::::
training

::::::::
iterations

: ::::::
200000

:

::::
Meta

:::::
ICNN

:::::::
Encoder

: ::::::::
ResNet18

:

:::::::
Encoder

:::::
output

::::
size

:::::
(both

::::::::
measures)

: ::::::
256×2

::::
Meta

:::::
ICNN

:::::::
Decoder

:::::::
Hidden

::::
Sizes

:
[
:::
512]

D Additional color transfer results

:::
We

::::::::
obtained

::
the

:::::::::
following

:::::
public

:::::::
domain

::::::
images

::::
from

::::::::
WikiArt.

Painting on Light Ground by Wassily Kandinski (1916) Argenteuil by Claude Monet (1875)
Market in Algiers by August Macke (1914) The white wall by Telemaco Signorini (1864)
Market in Algiers by August Macke (1914) Yachts at Argenteuil by Claude Monet (1875)
Distant View of the Pyramids by Winston Churchill (1921) Charing Cross Bridge, Overcast Weather by Claude Monet (1900)
Gartenbild by August Mace (1911) Breakup of Ice by Claude Monet (1880)
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https://www.wikiart.org/
https://www.wikiart.org/en/wassily-kandinsky/painting-on-light-ground-1916
https://www.wikiart.org/en/claude-monet/argenteuil
https://www.wikiart.org/en/august-macke/market-in-algiers
https://www.wikiart.org/en/telemaco-signorini/the-white-wall-1864
https://www.wikiart.org/en/august-macke/market-in-algiers
https://www.wikiart.org/en/claude-monet/argenteuil-yachts-02
https://www.wikiart.org/en/winston-churchill/distant-view-of-the-pyramids-1921
https://www.wikiart.org/en/claude-monet/charing-cross-bridge-overcast-weather
https://www.wikiart.org/en/august-macke/gartenbild
https://www.wikiart.org/en/claude-monet/breakup-of-ice


α β T#α T−1
# β

Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.

17



α β T#α T−1
# β

Figure 10: Meta ICNN + W2GN fine-tuning. The sources are given in the beginning of app. D.
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α β T#α T−1
# β

Figure 11: W2GN (final). The sources are given in the beginning of app. D.
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