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Figure 1: Our model takes RGB albedo captures as input, and reconstructs a set of biophysical properties of human skin. On the left, an
example of a captured albedo vs the reconstruction of our model (top) using the estimated skin properties, of which melanin and hemoglobin
are shown in the bottom. On the right, renderings using albedos modified through edits of some of the estimated parameters, under two
different lighting setups (top and bottom rows).

Abstract
We present a new method to reconstruct and manipulate the spectral properties of human skin from simple RGB albedo captures.
To this end, we leverage Monte Carlo light simulation over an accurate biophysical human skin layering model parameterized
by its most important components, thereby covering a plausible range of colors. The practical complexity of the model allows
us to learn the inverse mapping from any albedo to its most probable associated skin properties. Our technique can faithfully
reproduce any skin type, being expressive enough to automatically handle more challenging areas like the lips or imperfec-
tions in the face. Thanks to the smoothness of the skin parameters maps recovered, the albedo can be robustly edited through
meaningful biophysical properties.

CCS Concepts
• Computing methodologies → Reflectance modeling; Reconstruction;

1. Introduction

Creating convincing photo realistic replicas of human faces has
been a long-standing goal of computer graphics, usually relying
on skilled artists to fine tune a large number of spatially varying

shading parameters. As a crucial part of virtual humans, significant
effort has been put on accurately modeling skin. Skin is not only
challenging due to its complex interaction with light, but also be-
cause the human visual system has specifically evolved for strong
facial perception. A number of models have targeted the effect of
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the biophysical composition of the skin on its final appearance, of-
ten centered in its diffuse reflectance resulting from the complex
interaction of light inside the dermal tissues [DJ06; KB04; BK10;
CBKM15; IAJG15]. More recently, the interest in estimating skin
properties from captures has grown, mostly focusing on inverting
the biophysical properties of skin from its diffuse reflectance, lever-
aging biophysical constraints [AS17; GAS*19; ZDP*19; GGD*20;
GGR*21].

We present a new model that, given a biophysically-inspired
space of spectral skin albedos, makes use of a neural network to ac-
curately recover, out of simple RGB albedos, the main components
and structure of the skin. For this, our model builds upon a bio-
physical description of the main properties in human skin, which
we translate into albedo by means of Monte Carlo simulations.

Thus, our high-level contributions can be summarized as fol-
lows:

• An expressive space of spectral skin albedo constrained by phys-
ical properties of real skin, in agreement with measurements re-
ported in tissue optics and medical research. Such space is cre-
ated through a biophysically-inspired model of human skin of
practical complexity.

• A learned inverse mapping from skin albedo to its associated
spectral biophysical skin properties, that enables the recovery of
smooth, high resolution spatially varying maps of skin properties
from RGB captured albedos.

• Altogether, a framework to faithfully reproduce captured albedos
of a wide range of skin types with minimal error, also enabling
editing capabilities in a robust way through the estimated bio-
physical properties.

The process is composed of two steps. First, we precompute an
albedo space in the form of a high dimensional tensor of skin tones
resulting from all possible combinations of skin parameters. The
details of our biophysical skin model are described in Section 3.
Then, we learn the inverse mapping from an albedo to its associ-
ated skin properties in Section 4. After discussion of implementa-
tion details in Section 5, we show how to identically reconstruct
the albedo and the results of manipulating the skin parameters in
Section 6, with comparisons to related work in Section 7.

2. Related Work

Accurately capturing and modeling the appearance of human skin
has been a very active area of research for decades. Here we focus
on appearance modeling and reconstruction, and refer to a number
of extensive surveys for further details in skin and face appearance
modeling [INN07; NMM*19], face appearance capture [KRP*15;
WLL*09], or a broader collection of methods acquiring the optical
properties of translucent materials [FJM*20].

Modeling. There has been a bunch or works focusing on biophys-
ical skin components. Some of these isolated the distributions of
melanin and hemoglobin in human skin [THM99; TOS*03]. After
an early model first introduced multi-spectral skin color [AMD01],
spectral techniques that explicitly drive the appearance through bio-
physical properties have been developed, spanning models of dif-
ferent complexity, ranging from two layers and the two most rele-
vant components (melanin and haemoglobin) [DJ06], up to seven

layers and accounting for a large number of parameters related to
the chemical composition and structure of human skin [CBKM15;
IAJG15; KB04; BK10]. Or even a model for dynamic facial
color [JSB*10], built from in vivo measurements of melanin and
hemoglobin concentrations.

Capturing. Since early efforts in computer graphics to acquire
the skin BRDF [MWL*99], a series of approaches focused on
human face acquisition, progressively improving from the origi-
nal Light Stage device [DHT*00]. Relying on such Light Stage-
type scans, a number of models reconstructed the reflectance
functions directly from captures [MHP*07; GHP*08; GFT*11;
GTB*13], or synthesized high-resolution facial surface microge-
ometries [GTB*13]. Some other subsequent publications expanded
on the facial appearance modeling and capture, including dynamic
diffuse albedo encoding blood flow, specular intensity or high res-
olution normals [GRB*18; GRB*20], even single-shot [RGB*20],
with editing capabilities [WMP*06]. Another method [DWd*08]
used multi spectral photographs to recover spatially varying bio-
physical components over a layered skin model. A number of
works opted to rely on Kubelka-Munk (KM) theory [KM31] to re-
cover the skin parameter maps. An example [AS17] of this kind
of models is tested and discussed in Supplementary Section 2.2. In
skin research, 3D maps of human skin properties on the full face
with shadows can be reconstructed from 3D hyper spectral imag-
ing [GAS*19] via a two-flux KM model. Based on this, neural net-
works were trained to recover maps of oxygen rate, blood volume
fraction, melanin concentration, bilirubin concentration, and epi-
dermal thickness [GGR*21]. Also relying on hyperspectral imag-
ing, a neural network and a more complex 7 layer skin model were
presented [ZDP*19] to extract 2D maps of blood volume fraction,
blood oxygen saturation, melanin content and epidermal thickness.
It demonstrated the importance of the thickness of the superficial
bloodless layer. However, both approaches [GGR*21; ZDP*19]
lack albedos reconstructed by the model and the resulting esti-
mated parameters, making it difficult to assess its application in
a vfx or virtual reality context. Closest to our solution, a recent pa-
per [GGD*20] reconstructs spectral skin properties through a novel
measurement system, benefiting from narrow-band LEDs, based on
a simplified skin model [JSB*10; DJ06].

Differently to previous works, our model is capable of faith-
fully reproducing with minimal error any skin type by a set of bio-
physical properties proven to be relevant. It relies on Monte Carlo
simulations to accurately model light-skin interactions, avoiding
assumptions (e.g. epidermal blood [GGD*20]) and corrections
needed for KM approaches [GGR*21; Sau42]. Also, our model
does not require hyperspectral captures, since it operates directly
on simple RGB albedos (although it can be extended to spectral
captures), and recovers smooth parameter maps that allow for intu-
itive edits in such parameter space.

3. A Space of Biophysically-Based Skin Albedos

In this section we describe how we create our albedo space, the de-
tails of the skin model and the data employed, together with balance
of practical complexity and expressiveness.
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3.1. Skin Model: Structure and Optical Properties

3.1.1. Skin Structure

We decided to restrict our model to two layers, epidermis and der-
mis, since a similar assumption has proven to be adequate in the
past [MM02] and fits our purpose. The epidermis is composed of
two parts: the living epidermis and the stratum corneum. The lat-
ter is the outermost part, and exhibits properties (surface roughness
and sebum production) that affect the specular reflectance of the
skin. However, it has a minimal effect on the albedo of the skin,
given its low absorption and relative small thickness (5 and 20 µm
depending on the body location [CSLM19]).

On the other hand, we model the dermis as a single layer of av-
eraged properties of scattering and absorption of its two sub-layers,
the reticular dermis and the papillary dermis. It is modeled as a
semi infinite medium, omitting the sub-dermal fat layer. This was
decided to keep the generality of the model, with a focus on faces:
next to the dermis can be not only fat, but other internal tissues like
cartilage or muscles, heavily depending on the anatomical location
and composition of the subject. Also, we empirically found that in-
cluding the dermal thickness has a minimal effect over the resulting
diffuse reflectance.

3.1.2. Absorption

Following well known multi-layered tissue optics models [Jac13],
we describe the optical properties of each layer by its spectral ab-
sorption (µa) and scattering (µs) coefficients. The absorption of
each layer µai is the result of the additive contribution of each chro-
mophore absorption µac present in each layer:

µai = ∑
c∈Ci

µac = ∑
c∈Ci

Vc pcεc

wc
(1)

where Ci is the set of chromophores contained in the layer i; Vc is
the volume fraction of the substance containing the chromophore
c; pc is the concentration in g/L; εc is the molar extinction of the
chromophore; and wc is its molar weight (Table 2 in Appendix A).

As a result, the total spectral absorption of epidermis is defined
as µae = Vm

(
ϕmµaeu +(1−ϕm)µaph

)
+ (1 −Vm)

(
µaβ−c +µabase

)
,

and the spectral absorption of the dermis is defined as
µad =Vb

(
ϕhµahb +(1−ϕh)µahbO2 +µabil +µaβ−c

)
+(1−Vb)µabase .

In the same spirit of biophysical approaches [KB04; IAJG15;
CBKM15; DJ06], we include the effect of melanin, determined
by the melanosomes volume fraction Vm, containing the two types
of melanin (eumelanin µaeu and pheomelanin µaph ) in the epider-
mis, governed by the melanin type ratio ϕm, which greatly varies
through skin type. We also incorporate the haemoglobin present in
blood Vb in the dermis: oxygenated haemoglobin µahbO2 , responsi-
ble for the saturated reddish tint, and deoxygenated haemoglobin
µahb , responsible for a desaturated purple color; ϕh being the
haemoglobin type ratio. Other chromophores included by the
model are the beta-carotene µaβ−c in both epidermis and dermis and
bilirubin µabil in the dermis, contained in blood. Additionally, we
also include a baseline of skin absorption µabase = 7.84x108

λ
−3.255

[Sai92] already employed in previous models.

Figure 2: Melanin and haemoglobin have a highly non-linear re-
lationship with the final albedo. In this example, we vary melanin
and haemoglobin to show the effect on the spectral reflectance (top)
and corresponding final albedos (bottom). Left: Melanin is cubicly
sampled with Mn = (0.2, 0.7, 2.3, 5.4, 10.6, 18.2, 29.9, 43.1)%,
while haemoglobin is fixed at 2%. Right: haemoglobin is quarticly
sampled with Bn = (0.1, 0.2, 0.7, 2, 4.5, 9.6, 17.7, 30)%, while
melanin is fixed at 0.8%. These spectral reflectance plots are qual-
itatively in agreement with previous models of computer graph-
ics [KB04], optics [ZDP*19], color research [VGI94], computer
vision [AMD01], and dermatology [AP81].

3.1.3. Scattering

We treat epidermis and dermis as homogeneous mediums, the later
being semi infinite. Both layers have an index of refraction of 1.4
resulting from the weighted (by thickness) sum of the correspond-
ing sub layers: stratum corneum (1.53), living epidermis (1.34),
papillary dermis (1.39) and reticular dermis (1.395). The interfaces
of the two layers, as well as other details of multiple scattering in
the tissue, are discussed in Section 3.2.

The reduced scattering coefficient µ′s is modeled through a func-
tion of wavelength fitted by Jacques [Jac13], which is generic for a
wide range of human tissues :

µ′s(λ) = a

(
fRay

(
λ

λr

)−4

+(1− fRay)

(
λ

λr

)−bMie
)

(2)

where the wavelength λ is normalized by a reference wavelength
λr = 500 nm, the scaling factor a = µ′s(λr), fRay is the relative con-
tribution of Rayleigh scattering, and bMie characterizes the wave-
length dependence of the Mie scattering component. We rely on
the coefficients reported in the optics literature [BGT11], lead-
ing to a = 36.4, fRay = 0.48, and bMie = 0.22 for human skin.
In addition, we include the spectral dependency of the anisotropy
factor g, which has been measured in the past [VJSS89], rang-
ing from 0.73 at 380 nm to 0.84 at 780 nm. It is expressed as
ge ∼ gd ∼ 0.62+λ 0.29x10−3.

3.2. Layered Model for Albedo Generation

For computing the diffuse reflectance of a skin patch, we first at-
tempted to use a Kubelka-Munk - based layering model [AS17].
However, it suffers from lack of expressiveness to robustly recover
the parameters of a wide enough range of skin types. Details on
such exploration can be found in the Supplemental, Section 2.2.
Thus, we decided to shift to a brute force Monte Carlo random
walk. At this stage, we focus on resolving the transports through the
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Parameter Description Epidermis Dermis
Vm Melanin Volume Fraction [0.001, 1] -
Vb Blood Volume Fraction - [0.001, 1]
t Thickness [µm] [10, 250] 2100
ϕm Ratio of melanin types [0.001, 1] -
ϕh Ratio of haemoglobin types - [0.001, 1]

Table 1: Ranges for the skin properties of our 5D albedo space.

stacking of the different layers of the skin structure (3.1.1). We con-
duct the walk in 2D, assuming symmetry in the azimuthal planes of
each layer. The interface between the epidermis and dermis only
considers the change in scattering and absorption parameters, since
the index of refraction is measured to be mostly the same in both
layers [LWC12].

For each skin tone, we run spectral simulations for the wave-
lengths comprised in the visible range, between 380 to 780 nm.
We empirically found that steps of 10 nm is enough to produce
stable, noise free albedos. For each wavelength, a million photons
are launched, simulating the 2D random walk over the two-layered,
semi infinite medium, to produce diffuse albedos (by opposition to
the rendering step, where we make use of such uv-mapped albedos
to conduct true 3D random walks, as outlined in Section 6). We
treat the skin as an homogeneous medium with exponential decay,
since the more recent statistical theories attempting to account for
spatial correlations in some materials [WVH17; BRM*18; dEon19]
do not have corresponding measured data of particle distributions
for tissue. We use the multiple scattering parameters listed previ-
ously, including the wavelength dependent anisotropy factor g from
the Henyey-Greenstein [HG41] phase function, expressed in its 2D
form [dEo21]. Note that the simulation starts once the photon has
crossed the outermost interface and scatters diffusely into the tis-
sue, namely choosing the initial direction from a Lambertian distri-
bution around the inverse surface normal, in agreement with what
we later use at rendering time (Section 6).

We validated the biophysical model by plotting the spectral re-
flectance of different skin tones, showing that our results are in
agreement with existing measurements and simulations found in
the literature (see Figure 2).

3.3. Albedo Space Parametrization and Sampling

Our biophysically-based albedo space is created by varying the skin
properties in the ranges listed in Table 1. Note that we consider epi-
dermal thickness, which proved to be critical for parameter estima-
tion [ZDP*19]. Accounting for this parameter over the face, along
with varying values in melanin concentrations, helps us achieve lo-
cal dark zones, such as moles, and generalizes over any skin type.
We also allow melanin and haemoglobin to go beyond the usual
values for human adults measured in the literature [MM02], in or-
der to automatically handle outliers found in the face, such as the
lips, which exhibit very thin epidermis and higher blood concen-
tration, or other cases like underlying veins and capillary veins, or
areas with abnormal melanin concentration like freckles or spots.
This range expansion is also reasonable for the oxygenation level,
since it can vary a lot depending on the physical state of the person,
and for the melanin type ratio, where there is little agreement in the
available measured data.

Figure 3: Matrices of resulting skin albedos, built by varying
melanin and blood concentrations in subsets (here [0.1, 43] and
[0.1, 30] % for visualization purposes) of the ranges employed for
our final space referenced in Table 1. Epidermal thickness, melanin
type ratio and blood oxygenation significantly affect the appear-
ance of the skin.

Thus, some parameters like bilirubin and β-carotene concentra-
tions, remain fixed to common values of human skin measurements
found in literature (see Table 2 in Appendix A). The remaining 5D
parameter space is sampled as follows: melanin and haemoglobin
are respectively selected cubicly ( 3

√
Vm) and quarticly ( 4

√
Vb), to bet-

ter adjust to their non linear effect on the albedo (see Figure 2); epi-
dermal thickness, melanin type ratio and haemoglobin type ratio all
are treated uniformly.

4. Recovering the Skin Properties

Our biophysical model defines the forward mapping from the skin
parameters to the skin albedo. For the inverse process, we need
to characterize the mapping from the skin albedo back to skin pa-
rameters. The non-bijective nature of such mapping, where many
combinations of skin properties can lead to the same albedo, makes
this task challenging.

Metamerism. It is important to note that our model operates in
spectral space to compute the reflectance corresponding to each
skin parameter combination, but then such reflectance is integrated
to RGB to learn the mapping. This is a design choice: it simpli-
fies the capture, and provides good enough recovered skin parame-
ter maps to both a) reconstruct the original albedo and b) perform
plausible edits. However, operating in a higher dimensional space
could alleviate metamerism, which could help to disentangle more
accurately the skin parameters, generalize the model to any illumi-
nant, or be robust to different levels of exposure, among others. Out
of scope for this paper, further exploration can be done inspired by
the literature in Spectral Reconstruction from RGB, where signifi-
cant efforts have been done, specially in data-driven deep learning
methods (a recent survey covers the wide variety of existing tech-
niques [ZSR*21]).

4.1. Look-up Tensor (LUT).

We pre-compute a wide tensor of skin tones by following the sam-
pling strategy outlined in Section 3.3. To estimate the skin param-
eters given an input albedo, we search the LUT on each texel of
the albedo to find the best skin parameter set that minimizes a re-
construction L2 error. Then, we can manipulate them and query the
new corresponding albedo from the LUT. Some slices of the 5D
tensor are shown in Figure 3. This approach is able to reconstruct
the skin albedo faithfully with an error close to zero. However, the
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inverted parameter maps are noisy and have many discontinuities,
since the mapping from RGB to skin parameters is not smooth. In
turn, editing operations over neighboring pixels in such extracted
components can lead to unexpected abrupt changes in the recon-
structed albedos (see Figure 4). We leave out of scope of this pa-
per the assessment of different representations or data structures
suitable for more efficient search strategies, that could dramatically
improve the performance of this approach.

Figure 4: The LUT approach suffers from quantization in the esti-
mated parameters maps even for large tensors. This issue does not
reveal during reconstruction, but creates artifacts and even some
perceptual color shifting when edits on the skin properties are per-
formed. An example of a x3 edit over the reconstructed melanin
concentration of a Type III skin is shown. From left to right: a)
original image, and reconstructions (edited melanin x3) using a b)
tensor of 55296 skin tones (Vm,Vb, t,ϕm,ϕh) = (64, 32, 3, 3, 3),
c) tensor of 256k skin tones (64, 32, 5, 5, 5), d) learned inverse
mapping using 600k points to train the network. Whereas even for
densely sampled tensors quantization appears, the neural approach
provides smooth maps for the estimated parameters, which results
in clean edits.

4.2. Neural Skin Parameter Estimation

To overcome the limitations of the LUT approach, we opted to
train an encoder-decoder network to recover smooth skin parame-
ter maps. Both the encoder and the decoder are MLPs of four fully
connected layers, with two hidden layers of 70 neurons each. The
encoder maps a 3D skin albedo to a 5D skin parameter vector, while
the decoder does the inverse.

Dataset. Using our biophysical skin model, we generate a data
set of 600k pairs of 5D skin parameter vector and the correspond-
ing 3D albedo, split 80% and 20% for training and validation re-

spectively. For validation, we sample the skin parameters according
to the uniform distribution. For training, we rely on Quasi-Monte
Carlo for a better coverage of the skin parameters, using a low-
discrepancy sequence (Halton [Hal64]). Both are subsequently non
linearly remapped following the schemes detailed in Section 3.3,
and the corresponding albedos are computed using the biophysical
model.

Training. We used the Adam optimizer [KB14], with an learning
rate of 10−4 and a batch size of 4096 for an optimal number of
400 epochs to prevent over fitting. A grid search was performed to
find the optimal hyper parameters listed, including the number of
hidden neurons. The loss consists of three parts:

L= Lparam +Lalbedo +Lcycle (3)

where Lparam denotes the parameter loss (encoder), which com-
putes the L2 difference between the predicted skin properties from
the input albedo and its corresponding ground truth properties.
Lalbedo (decoder) computes the L1 differences between the pre-
dicted albedo and the ground truth albedo corresponding to the in-
put skin properties. Lcycle evaluates the full encoder-decoder cy-
cle, computing the L1 difference between the predicted albedos
from the predicted skin properties, and the ground truth albedos.
We chose L1 loss for robustness against outliers in albedo. Note
that, although in theory, a given albedo can invert to different sets
of skin parameters, we use the skin parameter set that generates this
albedo from the Monte Carlo simulation; this input serves as weak
supervision and works well in practice.

5. Implementation Details

Spectral Downsampling. The albedo space is generated through
spectral computations, but input albedos are in RGB space. To
downsample the multi-band spectral values into RGB, we use an
existing integration approach [MY19] (note that we could rely on
other concurrent works [JH19] to this end). Most color spaces will
work here (we use sRGB), considering that diffuse albedos have
rather limited gamuts and dynamic ranges. We perform a change
of illuminant for direct comparisons to previous work in Section 7,
which we further detail in the Supplementary, Section 1.

Using Albedo Maps in Rendering. The final 3D lit geometries
of our virtual faces are rendered using our own skin materials in-
side Blender Cycles [Ble20]. Aside from the specular component
of the skin, which we represent as a double lobe GGX [WMLT07],
we follow, in the spirit of a state of the art technique in produc-
tion [WVH17], a 3D random walk subsurface scattering solution
that relies on a numerical albedo inversion around the mean free
path and accounting for the anisotropy factor g (see Supplemental
Section 2.1). At this stage, we simplify the model to be single lay-
ered, dermis and epidermis combined, as a semi infinite medium.
Obviously multi-layered models could be employed, for instance
directly consuming the chromophores estimations, but these are out
of scope of this paper. See Figure 1, Figure 9 and the Supplemen-
tal material for examples of path traced renders under 3 different
lighting environments.
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6. Results

We perform estimations and manipulations of skin parameters over
several skin types covering the Fitzpatrick scale [Fit88]. With the
LUT approach, using the largest tensor (256k skintones) resulted in
varying times from 2 to 5 hours for 2k by 2k images, or more than
7 hours for 4k by 4k images, using brute force multi threaded (12)
search on the tensor in an Intel Xeon W-2135 at 3.70GHz. Instead,
the learned mapping has the advantages of little memory consump-
tion and efficient computation (less than 2 seconds on average for
2k by 2k images, on the same Intel Xeon CPU mentioned above).
We refer the readers to Figure 4, Figure 7, Figure 8, Figure 9 and
the Supplemental Material to see the neural results. In Figure 7, we
observe that we trade a tiny bit of reconstruction correctness (im-
perceptible in final renders), in favor of spatial regularization and
performance.

Editing the Skin Parameters We show how we can manipulate di-
rectly in this space of inferred skin properties, scaling some of them
up or down in an intuitive and predictable manner. We run the neu-
ral decoder on these modified quantities to reconstruct biophysical
albedos, and finally render them on 3D faces. For skin types rang-
ing from I to V, we perform large edits in haemoglobin and melanin
content, with details explained in Figure 9. Note the edits are naive
in order to cover similar ranges for all skin types. Figure 10 shows
edits over the rest of the parameters of the model. The level of blood
oxygenation translates into paler or more saturated skin colors. The
thinning of the epidermis, which typically occurs with aging, trans-
lates into a more translucent look, revealing the heterogeneities of
the underlying layers (e.g. capillary and veins), while a thicker epi-
dermis results in a more opaque and rough appearance. Last, we
vary several components to simulate tanning and flushing. While it
is hard to fully validate the correctness of the recovered skin prop-
erties, we find the parametrization adequate to produce plausible
human skin albedos.

7. Comparisons with Previous Work

We conduct a series of comparisons with the related and recent
work from [GGD*20]. Not having access to the training data, we
decided to reproduce the authors’ results from the examples in the
paper with our approach. Figure 5 is a comparison on more true
albedos from [GGD*20], which were obtained via the Antera de-
vice (under D65 illuminant). In Figure 6 we process one of the D65’
faces. This was a bit more complex, because of the conversion of
the color spaces involved in some of their captures (which we out-
line in Supplemental). The general observation is that our recon-
struction error is much lower, and we tested the model across more
skin types. See the Supplemental Section 1 for additional tests.

8. Discussion and Future Work

In this paper, we presented our framework to recover and robustly
manipulate the key biophysical properties of human skin from a
given RGB albedo. This is accomplished through the combination
of an expressive biophysically-inspired skin model, together with
an encoder-decoder structure that maps albedo to skin properties
and back. We demonstrate how such learned mapping overcomes
the limitations of a Look-Up Tensor approach, proving how the

INPUT GITLINA’20 OURS

Figure 5: Antera device comparisons. Our reconstructions
consistently exhibit less errors than in the previous work: MSE
([GGD*20], ours) of the skin patches from top to bottom:
(0.0142,1.65x10−6),(0.1016,2.31x10−5),(0.0585,1.08x10−5),
(0.2239,8.93x10−5).

latter becomes impractical and leads to quantization artifacts and
shifts in colors. On the other hand, the expressiveness and robust-
ness of our method is assessed through estimating and manipulat-
ing biophysical parameters of a variety of skin shades covering the
Fitzpatrick scale.

As future work, although we consider all the chromophores in
our current model, we aim to widen the albedo space to handle
uncommon skin shades resulting from rare chromophore concen-
trations, such as the excess of bilirubin, beta-carotene, or weird
pathologies related to methemoglobin. Incorporating the effect of
hair roots on the light transport inside the skin would be interesting
to better handle short beards or shaved skulls.

Another direction to further improve our results would be to train
the neural network to learn the mapping between skin parameters
and spectral albedos directly, instead of RGB. Finally, we want to
look at adding the ability to automatically remove or compensate
the baked lighting that exists in some captures, through analyzing
the parts of the image that show incoherence in the estimated skin
parameters, with the goal of reconstructing the skin properties un-
der uncontrolled lighting scenarios like normal pictures.
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Figure 6: Albedo map from [GGD*20], comparison of their estimated parameters (top row) and ours (bottom row). On top right, we
converted their albedo map from D65’ illuminant to standard D65, and removed some baked lighting (see Supplemental, Section 1). Our
model is able to reconstruct the albedo with MSE = 0.1608 (abs. error in the inset). MSE = 0.0687 when a mask over hair regions is applied
as in Figure 7. While the common parameters with related work are similar, our new parameters predict well features like the reddish areas
due to blood oxygenation, removing the need of extra blood in the epidermis. Or the epidermal thickness, where lips are identified as the
thinnest area. The extra parameters available in our model might also explain the smoother melanin type ratio compared to [GGD*20],
where it is the only extra parameter their model heavily relies on to enable a closer matching to the original albedo than previous works.
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Figure 7: From top to bottom, captured albedos and reconstructions our Neural and LUT approaches for five subjects of different skin type
(x4 absolute errors as insets). The learned mapping exhibits slightly higher reconstruction error than the discrete LUT approach. This was
expected due to the inductive bias of the network, forcing smoothness in the recovered maps and thus enabling robust manipulation of the
estimated properties.
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Figure 8: Estimated skin parameters. The overall melanin concentration is coherent to the skin type of each subject. Note how melanin spots
are nicely isolated from small capillars, veins or reddish imperfections. Also, the color of the lips is mostly due to the high concentration of
blood and the relatively thin epidermis in all cases.
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Figure 10: Further examples of parameter manipulation. From left to right, a) original albedo, b) fully deoxygenated and c) oxygenated
blood, epidermal thinning d) and thickening e) (minimum and maximum respectively), f) tanning (40% melanin increase, full pheomelanin),
g) flushing (70% increase blood, fully oxygenated), and h) simulated vitiligo through edited melanin concentration.

[BRM*18] BITTERLI, BENEDIKT, RAVICHANDRAN, SRINATH,
MÜLLER, THOMAS, WRENNINGE, MAGNUS, NOVÁK, JAN,
MARSCHNER, STEVE, and JAROSZ, WOJCIECH. “A Radiative
Transfer Framework for Non-Exponential Media”. ACM Trans. Graph.
37.6 (Dec. 2018). ISSN: 0730-0301 4.

[CBKM15] CHEN, TENN F, BARANOSKI, GLADIMIR VG, KIMMEL,
BRADLEY W, and MIRANDA, ERIK. “Hyperspectral modeling of skin
appearance”. ACM Transactions on Graphics (TOG) 34.3 (2015), 1–
14 2, 3.

[CSLM19] CZEKALLA, CAROLIN, SCHÖNBORN, KARL HEINZ, LADE-
MANN, JÜRGEN, and MEINKE, MARTINA C. “Noninvasive determi-
nation of epidermal and stratum corneum thickness in vivo using
two-photon microscopy and optical coherence tomography: Impact of
body area, age, and gender”. Skin pharmacology and physiology 32.3
(2019), 142–150 3.

[dEo21] D’EON, EUGENE. “A Hitchhiker’s Guide to Multiple Scattering”.
(2021) 4.

[dEon19] D’EON, EUGENE. “A Reciprocal Formulation of Nonexponen-
tial Radiative Transfer. 2: Monte Carlo Estimation and Diffusion Ap-
proximation”. Journal of Computational and Theoretical Transport 48.6
(Sept. 2019), 201–262. ISSN: 2332-4325 4.

[DHT*00] DEBEVEC, PAUL, HAWKINS, TIM, TCHOU, CHRIS, DUIKER,
HAARM-PIETER, SAROKIN, WESTLEY, and SAGAR, MARK. “Acquir-
ing the reflectance field of a human face”. Proceedings of the 27th
annual conference on Computer graphics and interactive techniques.
2000, 145–156 2.

[DJ06] DONNER, CRAIG and JENSEN, HENRIK WANN. “A Spectral
BSSRDF for Shading Human Skin.” Rendering techniques 2006
(2006), 409–418 2, 3, 11.

[DWd*08] DONNER, CRAIG, WEYRICH, TIM, D’EON, EUGENE, RA-
MAMOORTHI, RAVI, and RUSINKIEWICZ, SZYMON. “A layered, het-
erogeneous reflectance model for acquiring and rendering human skin”.
ACM Transactions on Graphics (TOG) 27.5 (2008), 1–12 2.

[Eis21] EISKO. “Photoreal Digital Doubles”. (2021). URL: https://
www.eisko.com/ 8.

[Fit88] FITZPATRICK, THOMAS B. “The validity and practicality of sun-
reactive skin types I through VI”. Archives of dermatology 124.6
(1988), 869–871 6.

[FJM*20] FRISVAD, JEPPE REVALL, JENSEN, SØREN ALKÆRSIG,
MADSEN, JONAS SKOVLUND, CORREIA, ANTÓNIO, YANG, LI,
GREGERSEN, SØREN KS, MEURET, YOURI, and HANSEN, POUL-
ERIK. “Survey of Models for Acquiring the Optical Properties of
Translucent Materials”. STAR 39.2 (2020) 2.

[GAS*19] GEVAUX, LOU, ADNET, CYPRIEN, SÉROUL, PIERRE, CLERC,
RAPHAEL, TRÉMEAU, ALAIN, PERROT, JEAN LUC, and HÉBERT,
MATHIEU. “Three-dimensional maps of human skin properties on full
face with shadows using 3-D hyperspectral imaging”. Journal of biomed-
ical optics 24.6 (2019), 066002 2.

[GFT*11] GHOSH, ABHIJEET, FYFFE, GRAHAM, TUNWATTANAPONG,
BOROM, BUSCH, JAY, YU, XUEMING, and DEBEVEC, PAUL. “Multi-
view face capture using polarized spherical gradient illumination”. Pro-
ceedings of the 2011 SIGGRAPH Asia Conference. 2011, 1–10 2.

[GGD*20] GITLINA, YULIYA, GUARNERA, GIUSEPPE CLAUDIO,
DHILLON, DALJIT SINGH, HANSEN, JAN, LATTAS, ALEXANDROS,
PAI, DINESH, and GHOSH, ABHIJEET. “Practical Measurement and
Reconstruction of Spectral Skin Reflectance”. Computer Graphics
Forum. Vol. 39. 4. Wiley Online Library. 2020, 75–89 2, 6, 7.

[GGR*21] GEVAUX, LOU, GIERSCHENDORF, JORDAN, RENGOT, JULI-
ETTE, CHEREL, MARIE, SÉROUL, PIERRE, NKENGNE, ALEX, ROBIC,
JULIE, TRÉMEAU, ALAIN, and HÉBERT, MATHIEU. “Real-time skin
chromophore estimation from hyperspectral images using a neural net-
work”. Skin Research and Technology 27.2 (2021), 163–177 2.

[GHP*08] GHOSH, ABHIJEET, HAWKINS, TIM, PEERS, PIETER, FRED-
ERIKSEN, SUNE, and DEBEVEC, PAUL. “Practical modeling and acqui-
sition of layered facial reflectance”. ACM SIGGRAPH Asia 2008 papers.
2008, 1–10 2.

[GRB*18] GOTARDO, PAULO, RIVIERE, JÉRÉMY, BRADLEY, DEREK,
GHOSH, ABHIJEET, and BEELER, THABO. “Practical Dynamic Facial
Appearance Modeling and Acquisition”. 37.6 (Dec. 2018) 2.

[GRB*20] GOTARDO, PAULO, RIVIERE, JÉRÉMY, BRADLEY, DEREK,
GHOSH, ABHIJEET, and BEELER, THABO. “Practical dynamic facial
appearance modeling and acquisition”. (2020) 2.

[GTB*13] GRAHAM, PAUL, TUNWATTANAPONG, BOROM, BUSCH, JAY,
YU, XUEMING, JONES, ANDREW, DEBEVEC, PAUL, and GHOSH, AB-
HIJEET. “Measurement-based synthesis of facial microgeometry”. Com-
puter Graphics Forum. Vol. 32. 2pt3. Wiley Online Library. 2013, 335–
344 2.

[Hal64] HALTON, JOHN H. “Algorithm 247: Radical-inverse quasi-
random point sequence”. Communications of the ACM 7.12 (1964), 701–
702 5.

[HG41] HENYEY, LOUIS G and GREENSTEIN, JESSE L. “Diffuse radia-
tion in the galaxy”. The Astrophysical Journal 93 (1941), 70–83 4.

[IAJG15] IGLESIAS-GUITIAN, JOSE A., ALIAGA, CARLOS, JARABO,
ADRIAN, and GUTIERREZ, DIEGO. “A Biophysically-Based Model of
the Optical Properties of Skin Aging”. Computer Graphics Forum (EU-
ROGRAPHICS 2015) 34.2 (2015) 2, 3.

[INN07] IGARASHI, TAKANORI, NISHINO, KO, and NAYAR, SHREE K.
The appearance of human skin: A survey. Now Publishers Inc, 2007 2.

[Jac13] JACQUES, STEVEN L. “Optical properties of biological tissues: a
review”. Physics in Medicine & Biology 58.11 (2013), R37 3, 11.

[JH19] JAKOB, WENZEL and HANIKA, JOHANNES. “A Low-Dimensional
Function Space for Efficient Spectral Upsampling”. Computer Graphics
Forum (Proceedings of Eurographics) 38.2 (Mar. 2019) 5.

[JM91] JACQUES, STEVEN L and MCAULIFFE, DANIEL J. “The
melanosome: threshold temperature for explosive vaporization and in-
ternal absorption coefficient during pulsed laser irradiation”. Photochem-
istry and photobiology 53.6 (1991), 769–775 11.

10

https://www.eisko.com/
https://www.eisko.com/


[JSB*10] JIMENEZ, JORGE, SCULLY, TIMOTHY, BARBOSA, NUNO,
DONNER, CRAIG, ALVAREZ, XENXO, VIEIRA, TERESA, MATTS,
PAUL, ORVALHO, VERÓNICA, GUTIERREZ, DIEGO, and WEYRICH,
TIM. “A practical appearance model for dynamic facial color”. ACM
Transactions on Graphics (Proc. SIGGRAPH Asia) 29.6 (2010) 2.

[KB04] KRISHNASWAMY, ARAVIND and BARANOSKI, GLADIMIR VG.
“A biophysically-based spectral model of light interaction with human
skin”. Computer Graphics Forum. Vol. 23. 3. Wiley Online Library.
2004, 331–340 2, 3.

[KB14] KINGMA, DIEDERIK P and BA, JIMMY. “Adam: A method for
stochastic optimization”. arXiv preprint arXiv:1412.6980 (2014) 5.

[KM31] KUBELKA, PAUL and MUNK, FRANZ. “An article on optics of
paint layers”. Z. Tech. Phys 12.593-601 (1931), 259–274 2.

[KRP*15] KLEHM, OLIVER, ROUSSELLE, FABRICE, PAPAS, MARIOS,
BRADLEY, DEREK, HERY, CHRISTOPHE, BICKEL, BERND, JAROSZ,
WOJCIECH, and BEELER, THABO. “Recent Advances in Facial Appear-
ance Capture”. Computer Graphics Forum (Proceedings of Eurographics
- State of the Art Reports) 34.2 (May 2015), 709–733 2.

[LWC12] LISTER, TOM, WRIGHT, PHILIP A., and CHAPPELL, PAUL H.
“Optical properties of human skin”. Journal of Biomedical Optics 17.9
(2012), 1–15 4.

[MHP*07] MA, WAN-CHUN, HAWKINS, TIM, PEERS, PIETER,
CHABERT, CHARLES-FELIX, WEISS, MALTE, and DEBEVEC, PAUL.
“Rapid Acquisition of Specular and Diffuse Normal Maps from
Polarized Spherical Gradient Illumination”. 2007 2.

[MM02] MEGLINSKI, IGOR V and MATCHER, STEPHEN J. “Quantitative
assessment of skin layers absorption and skin reflectance spectra sim-
ulation in the visible and near-infrared spectral regions”. Physiological
measurement 23.4 (2002), 741 3, 4.

[MWL*99] MARSCHNER, STEPHEN R, WESTIN, STEPHEN H, LAFOR-
TUNE, ERIC PF, TORRANCE, KENNETH E, and GREENBERG, DONALD
P. “Image-based BRDF measurement including human skin”. Rendering
Techniques’ 99. Springer, 1999, 131–144 2.

[MY19] MALLETT, IAN and YUKSEL, CEM. “Spectral Primary Decom-
position for Rendering with RGB Reflectance”. Eurographics Sympo-
sium on Rendering (EGSR 2019). Strasbourg, France: The Eurographics
Association, 2019 5.

[NMM*19] NUNES, AUGUSTO LP, MACIEL, ANDERSON, MEYER,
GARY W, JOHN, NIGEL W, BARANOSKI, GLADIMIR VG, and WAL-
TER, MARCELO. “Appearance modelling of living human tissues”. Com-
puter Graphics Forum. Vol. 38. 6. Wiley Online Library. 2019, 43–65 2.

[PJ] PRAHL, SCOTT and JACQUES, STEVEN L. Tabulated Molar Extinc-
tion Coefficient for Hemoglobin in Water. https://omlc.org/
spectra/hemoglobin/summary.html 11.

[RGB*20] RIVIERE, JÉRÉMY, GOTARDO, PAULO, BRADLEY, DEREK,
GHOSH, ABHIJEET, and BEELER, THABO. “Single-shot high-quality
facial geometry and skin appearance capture”. ACM Transactions on
Graphics (TOG) 39.4 (2020), 81–1 2.

[Sai92] SAIDI, IYAD SALAM. “Transcutaneous optical measurement of
hyperbilirubinemia in neonates”. PhD thesis. 1992 3.

[Sau42] SAUNDERSON, JL. “Calculation of the color of pigmented plas-
tics”. JOSA 32.12 (1942), 727–736 2.

[SS06] SARNA, TADEUSZ and SWARTZ, HAROLD A. “The physical prop-
erties of melanins”. The pigmentary system: physiology and pathophysi-
ology (2006), 311–341 11.

[THM99] TSUMURA, NORIMICHI, HANEISHI, HIDEAKI, and MIYAKE,
YOICHI. “Independent-component analysis of skin color image”. JOSA
A 16.9 (1999), 2169–2176 2.

[TOS*03] TSUMURA, NORIMICHI, OJIMA, NOBUTOSHI, SATO,
KAYOKO, SHIRAISHI, MITSUHIRO, SHIMIZU, HIDETO, NABESHIMA,
HIROHIDE, AKAZAKI, SYUUICHI, HORI, KIMIHIKO, and MIYAKE,
YOICHI. “Image-based skin color and texture analysis/synthesis by
extracting hemoglobin and melanin information in the skin”. ACM
SIGGRAPH 2003 Papers. 2003, 770–779 2.

[VGI94] VRHEL, MICHAEL J., GERSHON, RON, and IWAN, LAWRENCE
S. “Measurement and Analysis of Object Reflectance Spectra”. Color
Research & Application 19.1 (1994), 4–9 3.

[VJSS89] VAN GEMERT, MJC, JACQUES, STEVEN L, STERENBORG,
HJCM, and STAR, WM. “Skin optics”. IEEE Transactions on biomedi-
cal engineering 36.12 (1989), 1146–1154 3.

[WLL*09] WEYRICH, TIM, LAWRENCE, JASON, LENSCH, HENDRIK
PA, RUSINKIEWICZ, SZYMON, and ZICKLER, TODD. Principles of ap-
pearance acquisition and representation. Now Publishers Inc, 2009 2.

[WMLT07] WALTER, BRUCE, MARSCHNER, STEPHEN R., LI, HONG-
SONG, and TORRANCE, KENNETH E. “Microfacet Models for Refrac-
tion through Rough Surfaces”. Proceedings of the 18th Eurographics
Conference on Rendering Techniques. EGSR’07. Grenoble, France: Eu-
rographics Association, 2007, 195–206. ISBN: 9783905673524 5.

[WMP*06] WEYRICH, TIM, MATUSIK, WOJCIECH, PFISTER,
HANSPETER, BICKEL, BERND, DONNER, CRAIG, TU, CHIEN,
MCANDLESS, JANET, LEE, JINHO, NGAN, ADDY, JENSEN, HEN-
RIK WANN, and GROSS, MARKUS. “Analysis of Human Faces Using a
Measurement-Based Skin Reflectance Model”. ACM Trans. Graph. 25.3
(July 2006) 2.

[WVH17] WRENNINGE, MAGNUS, VILLEMIN, RYUSUKE, and HERY,
CHRISTOPHE. Path traced subsurface scattering using anisotropic phase
functions and non-exponential free flights. Tech. rep. Technical Memo,
2017 4, 5.

[ZDP*19] ZHEREBTSOV, EVGENY, DREMIN, VIKTOR, POPOV,
ALEXEY, DORONIN, ALEXANDER, KURAKINA, DARIA, KIRILLIN,
MIKHAIL, MEGLINSKI, IGOR, and BYKOV, ALEXANDER. “Hyper-
spectral imaging of human skin aided by artificial neural networks”.
Biomedical optics express 10.7 (2019), 3545–3559 2–4.

[ZSR*21] ZHANG, JINGANG, SU, RUNMU, REN, WENQI, FU, QIANG,
and NIE, YUNFENG. “Learnable Reconstruction Methods from RGB Im-
ages to Hyperspectral Imaging: A Survey”. arXiv:2106.15944 (2021) 4.

Appendix A: Specifications of Skin Chromophores

Parameter Description Value
µahbO2 Oxy-Haemoglobin absorption 2.303 phbεhbO2

whb
µahb Deoxy-Haemoglobin absorption 2.303 phbεhb

whb
εhbO2 Oxy-Haemoglobin Extinction [Jac13]
εhb Deoxy-Haemoglobin Extinction [Jac13]
phb Haemoglobin Concentration 150
whb Molar weight of Haemoglobin 64500
µaeu Eumelanin absorption 6.6x1011 λ−3.33

µapheo Pheomelanin absorption 2.9x1015 λ−4.75

pbil Bilirubin Concentration 0.05
wbil Molar weight of bilirubin 584.66
pβ−ce β-carotene Concentration (Epidermis) 2.1x10−4

pβ−cd
β-carotene Concentration (Dermis) 7x10−5

wβ−c Molar weight of β-carotene 536.8726

Table 2: Chromophore specifications. The absorption coefficient
is defined in cm−1; the extinction coefficient εc in cm−1

moles/liter ; the
concentration of the chromophore pc in g/L; and the molar weight
wc in g/mol. The absorption of melanins µaeu and µapheo is de-
fined through a fit from [DJ06] to the measurements from [JM91]
and [SS06] respectively. The 2.303 coefficient in µahb comes from
deriving a factor of ln(0), since ε has been historically recorded
in such base 10 nomenclature from measurements of old spectrom-
eters in literature. Finally, oxy and deoxy haemoglobin extinction
can be found tabulated in [PJ].
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