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Abstract 

Predicting the quality of machine transla-
tion has traditionally been addressed with 
language-specifc models, under the assump-
tion that the quality label distribution or lin-
guistic features exhibit traits that are not 
shared across languages. An obvious disadvan-
tage of this approach is the need for labelled 
data for each given language pair. We chal-
lenge this assumption by exploring different 
approaches to multilingual Quality Estimation 
(QE), including using scores from translation 
models. We show that these outperform single-
language models, particularly in less balanced 
quality label distributions and low-resource 
settings. In the extreme case of zero-shot QE, 
we show that it is possible to accurately predict 
quality for any given new language from mod-
els trained on other languages. Our fndings 
indicate that state-of-the-art neural QE models 
based on powerful pre-trained representations 
generalise well across languages, making them 
more applicable in real-world settings. 

1 Introduction 

Quality Estimation (QE) (Blatz et al., 2004a; Spe-
cia et al., 2009) is the task of predicting the quality 
of an automatically generated translation at test 
time, when no reference translation is available for 
comparison. Instead of reference translations, QE 
turns to explicit quality indicators that are either 
provided by the Machine Translation (MT) system 
itself (the so-called glass-box features) or extracted 
from both the source and the target texts (the so-
called black-box features) (Specia et al., 2018b). 

In the current QE approaches, black-box fea-
tures are learned representations extracted by fne-
tuning pre-trained multilingual or cross-lingual sen-
tence encoders such as BERT (Devlin et al., 2018), 
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XLM-R (Conneau et al., 2019) or LASER (Artetxe 
and Schwenk, 2019). These supervised approaches 
have led to the state-of-the-art (SOTA) results in 
this task (Kepler et al., 2019; Fonseca et al., 2019), 
similarly to what has been observed for a myriad 
of other downstream natural language processing 
applications that rely on cross-lingual sentence sim-
ilarity. Glass-box features are usually obtained by 
extracting various types of information from the 
MT system, e.g. lexical probability or language 
model probability in the case of statistical MT sys-
tems (Blatz et al., 2004b), or more recently softmax 
probability and attention weights from neural MT 
models (Fomicheva et al., 2020). Glass-box ap-
proach is potentially useful for low resource or zero-
shot scenarios as it does not require large amounts 
of labelled data for training, but it does not perform 
as well as SOTA supervised models. 

QE is therefore generally framed as a supervised 
machine learning problem, with models trained 
on data labelled for quality for each language pair. 
Training data publicly available to build QE models 
is constrained to very few languages, which has 
made it diffcult to assess how well QE models 
generalise across languages. Therefore QE work 
to date has been addressed as a language-specifc 
task. 

The recent availability of multilingual QE data 
in a diverse set of language pairs (see Section 4.1) 
has made it possible to explore the multilingual 
potential of the QE task and SOTA models. In this 
paper, we posit that it is possible and benefcial to 
extend SOTA models to frame QE as a language-
independent task. 

We further explore the role of in-language super-
vision in comparison to supervision coming from 
other languages in a multi-task setting. Finally, 
we propose for the frst time to model QE as a 
zero-shot cross-lingual transfer task, enabling new 
avenues of research in which multilingual models 
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can be trained once and then serve a multitude of 
languages. 

The main contributions of this paper are: (i) 
we propose new multi-task learning approaches 
for multilingual QE (Section 3); (ii) we show that 
multilingual system outperforms single language 
ones (Section 5.1.1), especially in low-resource and 
less balanced label distribution settings (Section 
5.1.3), and – counter-intuitively – that sharing a 
source or target language with the test case does 
not prove benefcial (Section 5.1.2); and (iii) we 
study black-box and glass-box QE in a multilingual 
setting and show that zero-shot QE is possible for 
both (Section 5.1.3 and 5.2). 

2 Related Work 

QE Early QE models were trained upon a set of 
explicit features expressing either the confdence 
of the MT system, the complexity of the source 
sentence, the fuency of the translation in the target 
language or its adequacy with regard to the source 
sentence (Specia et al., 2018b). Current SOTA 
models are learnt with the use of neural networks 
(NN) (Specia et al., 2018a; Fonseca et al., 2019). 
The assumption is that representations learned can, 
to some extent, account for source complexity, tar-
get fuency and source-target adequacy. These are 
fne-tuned from pre-trained word representations 
extracted using multilingual or cross-lingual sen-
tence encoders such as BERT (Devlin et al., 2018), 
XLM-R (Conneau et al., 2019) or LASER (Artetxe 
and Schwenk, 2019). 

Kim et al. (2017) propose the frst breakthrough 
in neural-based QE with the Predictor-Estimator 
modular architecture. The Predictor model is an 
encoder-decoder Recurrent Neural Network (RNN) 
model trained on a huge amount of parallel data 
for a word prediction task. Its output is fed to the 
Estimator, a unidirectional RNN trained on QE 
data, to produce the quality estimates. Kepler et al. 
(2019) use a similar architecture where the Predic-
tor model is replaced by pretrained contextualised 
word representations such as BERT (Devlin et al., 
2018) or XLM-R (Conneau et al., 2019). Despite 
achieving strong performances, such models are 
resource heavy and need to be fne-tuned for each 
language-pair under consideration. 

In a very different approach, Fomicheva et al. 
(2020) propose exploiting information provided 
by the NMT system itself. By exploring uncer-
tainty quantifcation methods, they show that the 

confdence with which the NMT system produces 
its translation correlates well with its quality. Al-
though not performing as well as SOTA supervised 
models, their approach has the main advantage to 
be unsupervised and not rely on labelled data. 

Multilinguality Multilinguality allows training 
a single model to perform a task from and to mul-
tiple languages. This principle has been success-
fully applied to NMT (Dong et al., 2015; Firat 
et al., 2016b,a; Nguyen and Chiang, 2017). Aha-
roni et al. (2019) stretches this approach by translat-
ing up to 102 languages from and to English using 
a Transformer model (Vaswani et al., 2017). They 
show that multilingual many-to-many models are 
effective in low resource settings. Multilinguality 
also allows for zero-shot translation (Johnson et al., 
2017). With a simple encoder-decoder architec-
ture and without explicit bridging between source 
and target languages, they show that their model is 
able to build a form of inter-lingual representation 
between all involved language pairs. 

Shah and Specia (2016) is the only work in QE 
that attempted to explore models for more than one 
language. They use multitask learning with annota-
tors or languages as multiple tasks. In a traditional 
black-box feature-based approach with Gaussian 
Processes as learning algorithm, their results sug-
gest that adequately modelling the additional data 
is as important as the additional data itself. The 
multilingual models led to marginal improvements 
over bilingual ones. In addition, the experiments 
were only conducted with English translation into 
two closely related languages (French and Span-
ish). 

3 Multilingual QE 

In this section, we describe the QE models we 
propose and experiment with. They build upon pre-
trained representations and represent the SOTA in 
QE, as we will show in Section 5. 

Pre-trained contextualised representations 
such as BERT (Devlin et al., 2018) and XLM-R 
(Conneau et al., 2019) are deep contextualised 
language models based on the transformer 
neural architecture (Vaswani et al., 2017). These 
models are pre-trained on a large amount of 
texts in multiple languages and optimised with 
self-supervised loss functions. They use shared 
subword vocabularies that directly support more 
than a hundred languages without the need for 



Figure 1: Baseline QE model. 

any language-specifc pre-processing. We explore 
QE models built on top of XLM-R, a pre-trained 
contextualised language model that achieves SOTA 
performance on multiple benchmark datasets. 

Baseline QE model (BASE) Given a source sen-
Ytence sX in language X and a target sentence s

in language Y , we model the QE function f by 
stacking a 2-layer multilayer perceptron (MLP) on 
the vector representation of the [CLS] token from 
XLM-R: 

Xf(s , s Y ) =W2 · ReLU( 
XW1 · Ecls(s , s Y ) + b1 (1) 

) + b2 

, b2 ∈ R, W1 ∈ R4096×1024where W2 ∈ R1×4096 

∈ R4096and b1 . Ecls is a function that extracts 
the vector representation of the [CLS] token af-

Yter encoding the concatenation of sX and s with 
XLM-R and ReLU is the Rectifed Linear Unit acti-
vation function. We explore two training strategies: 
The bilingual (BL) strategy trains a QE model for 
every language pair while the multilingual (ML) 
strategy trains a single multilingual QE model for 
all language pairs, where the training data is sim-
ply pooled together without any language identifer. 
We note that this multilingual model here corre-
sponds to a pooled, single-task learning approach. 

Multi-task Learning QE Model (MTL) Multi-
task learning has shown promising results in dif-
ferent NLP tasks (Ruder, 2017). Here, we want to 
explore whether having parameter sharing across 
languages is benefcial, and to what extent hav-
ing language-specifc predictors can boost perfor-
mance. Therefore, we experiment with a sim-
ple multi-task approach where we concurrently 
optimise multiple QE BASE models that use a 
language-specifc (LS) training strategy. To allow 
for testing in zero-shot conditions, we also train 

Figure 2: Multi-task learning QE model (MTL) with a 
shared XLM-R encoder. 

a language-agnostic (LA) component, which re-
ceives sampled data from every language. We refer 
to these two models as MTL-LA and MTL-LS. 
As seen in Figure 2, the MTL-LS submodels and 
MTL-LA submodel share a common XLM-R en-
coder, while each submodel has its own dedicated 
language-specifc MLP. The intuition of this ap-
proach is that it can result in improved learning 
effciency and prediction accuracy by exploiting 
the similarities and differences in the QE tasks for 
different language directions (Thrun, 1996; Bax-
ter, 2000). At training time, we iterate through 
the MTL-LS submodels in a round-robin fashion 
and alternate between training the MTL-LA sub-
model and training the chosen MTL-LS submodel. 
At test time, we can evaluate a test set with either 
the MTL-LA submodel or the MTL-LS submodel 
trained on the same language pair as the test set. 

4 Experimental Setup 

4.1 QE Dataset 

We use the offcial data from the WMT 2020 QE 
Shared Task 11. This dataset contains sentences 
extracted from Wikipedia (Fomicheva et al., 2020) 
and Reddit for Ru-En, translated to and from En-
glish for a total of 7 language pairs. The lan-
guage pairs are divided into 3 categories: the 
high-resource English–German (En-De), English– 
Chinese (En-Zh) and Russian–English (Ru-En) 
pairs; the medium-resource Romanian–English 
(Ro-En) and Estonian–English (Et-En) pairs; and 

1http://statmt.org/wmt20/ 
quality-estimation-task.html 
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the low-resource Sinhala–English (Si-En) and 
Nepali–English (Ne-En) pairs. Each translation 
was produced with SOTA transformer-based NMT 
models and manually annotated for quality using 
an annotation scheme inspired by the Direct Assess-
ment (DA) methodology proposed by Graham et al. 
(2013). Specifcally, translations were annotated 
on a 0-100 scale, where the 0-10 range represents 
an incorrect translation; 11-29, a translation with 
few correct keywords, but the overall meaning is 
different from the source; 30-50, a translation with 
major mistakes; 51-69, a translation which is un-
derstandable and conveys the overall meaning of 
the source but contains typos or grammatical er-
rors; 70-90, a translation that closely preserves the 
semantics of the source sentence; and 90-100, a 
perfect translation. Figure 3 shows the distribution 
of DA scores for the different language pairs. 

Figure 3: Distribution of DA judgments for different 
language pairs. 

4.2 Settings 

We train and test our models in the following con-
ditions: 

Data splits we use the training and development 
sets provided for the WMT2020 shared task on 
QE.2 Since the test set is not publicly available, we 
further split the 7,000-instance training set for each 
language pair by using the frst 6,000 instances 
for training and the last 1,000 instances for devel-
opment, and report results on the offcial (1,000) 
development set. 

Training details We optimise our models with 
Adam (Kingma and Ba, 2015) and use the same 

2http://www.statmt.org/wmt20/ 
quality-estimation-task.html 

learning rate (1e−6) for all experiments. We use 
a batch size of 8 and train on Nvidia V100 GPUs 
for 20 epochs. Each model is trained 5 times with 
different random seeds. 

Evaluation All results in this paper are in terms 
of the average Pearson’s correlation for predicted 
QE scores against gold QE scores over the 5 differ-
ent runs. Pearson correlation is the standard metric 
for this task, but we also compute error using Root 
Mean Squared Error (RMSE) (see Appendix). 

5 Results 

In what follows, we pose and discuss various hy-
potheses on multilinguality for QE. First we focus 
on our black-box approach from Section 3 (Section 
5.1). Second, we examine the behavior of a glass-
box approach which does not directly model the 
source and target texts in multilingual settings (Sec-
tion 5.2). In all cases, we defne TrainL as the set 
of language pairs used for training the QE model, 
and TestL as the set of language pairs used at test 
time. 

5.1 Black-box QE Approach 

5.1.1 Multilingual models are better than 
bilingual models 

As we can see from the results in Table 13, the aver-
age Pearson’s correlation scores of the multilingual 
models are always higher the bilingual ones, in 
some cases by a large margin. This is particularly 
true for En-De where the best BL model performs 
at Pearson’s correlation of 0.39, while both BASE-
ML and MTL-LA achieve 0.47, which is a 20.5% 
relative improvement over the best BL model. Fur-
thermore, the average score of Base-ML across all 
TestL is 0.69, 0.03 (4.5%) higher than the average 
score (0.66) of the best BASE-BL scores across all 
TestL (diagonal in the top part of Table 1). The 
results clearly show that multilingual models gen-
erally outperform bilingual models, even when the 
latter are optimised individually for different TestL. 
An interesting observation in Table 1 is that some 
BASE-BL models trained on different TrainL than 
TestL can perform almost as well as the models 
trained on the same TrainL as TestL. For example, 

3The best results for BASE-BL are underlined and bold 
marks the best results across all models. Signifcant improve-
ments over BASE BL are marked with *. We use the Hotelling-
Williams test for dependent correlations to compute signif-
cance of the difference between correlations (Williams, 1959) 
with p-value < 0.05. 
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Model Strategy TrainL 
En-De En-Zh Et-En 

TestL 

Ro-En Si-En Ne-En Ru-En Avg 

En-De 0.39 (-0.17) (-0.39) (-0.51) (-0.32) (-0.51) (-0.35) 0.34 
En-Zh (-0.02) 0.47 (-0.19) (-0.36) (-0.16) (-0.24) (-0.17) 0.50 
Et-En (-0.10) (-0.08) 0.75 (-0.20) (-0.07) (-0.10) (-0.08) 0.57 

BASE BL Ro-En 
Si-En 

(-0.10) 

(-0.13) 

(-0.14) 

(-0.13) 

(-0.02) 

(-0.08) 

0.89 
(-0.15) 

(-0.02) 

0.66 
(-0.04) 

(-0.05) 

(-0.08) 

(-0.07) 

0.60 
0.57 

Ne-En (-0.10) (-0.11) (-0.06) (-0.08) (-0.01) 0.77 (-0.08) 0.60 
Ru-En (-0.04) (-0.09) (-0.19) (-0.26) (-0.11) (-0.16) 0.70 0.54 

ML All 0.47* 0.49 0.78* 0.89 0.70* 0.78 0.73 0.69 

LS All 0.45 0.48 0.77 0.89 0.66 0.79 0.72 0.68 
LA All 0.47* 0.49 0.76 0.89 0.66 0.78 0.72 0.68 

MTL LS En-* 0.41 0.46 - - - - - -
LA En-* 0.45 0.46 - - - - - -

LS *-En - - 0.78* 0.90 0.69 0.79 0.73 -
LA *-En - - 0.78* 0.89 0.69 0.78 0.73 -

‡ BERT-BiRNN (Fomicheva et al., 2020) 0.27 0.37 0.64 0.76 0.47 0.55 - -
‡ WMT20 QE Shared Task 1 Leaderboard (June 2020) 0.47 0.48 0.79 0.90 0.65 0.79 0.78 0.69 

Table 1: Results for BASE and MTL QE models. We train different BASE-BL models for every language pair 
and a single BASE-ML model on all language pairs. We also train a single MTL QE model consists of multiple 
MTL-LS and MTL-LA submodels. For each TestL, we evaluate it with the MTL-LS submodel trained on the same 
language pair. We bold the best results across all models. Signifcant improvements over BASE BL are marked 
with *. ‡ identifes systems trained on the full 7,000-instance training set with performances reported on the offcial 
test set of the WMT’20 QE Shared Task 1 (https://competitions.codalab.org/competitions/24447), 
which we assume to come from the same distribution as the dev set. 

a BASE-BL model trained on En-Zh and tested on 
En-De performs at average Pearson’s correlation 
of 0.37, which is only 0.02 below the best result. 
We hypothesize that XLM-R might be capturing 
certain traits in TrainL that can generalise well to 
other TestL, i.e. the complexity of source sentences 
or the fuency of the target sentences (Sun et al., 
2020). 

5.1.2 There is little beneft from specialisation 

Here we investigate whether having specialised 
language-specifc sub-models which can beneft 
from the shared supervision from other languages 
while keeping their focus on a language-specifc 
task can help to improve performance. Further-
more, it is possible that multi-task learning works 
better when language pairs share certain charac-
teristics. Therefore, we also investigate whether 
combining language pairs that share either source 
or target languages can be more benefcial. For 
that, we use the MTL models but with a reduced 
set of languages. 

From the results in Table 1, we observe that 
language-specialised predictors do not help im-
prove performance. There is no clear advantage in 
using the multi-task learning QE approach (MTL-

LS and MTL-LA) where each language pair is 
treated as a separate task; over the simple single-
task multi-lingual learning approach (BASE-ML), 
despite the former having more parameters and 
language-specifc MLP layers. 

In the table, we compare MTL models trained 
on language pairs that share the source language 
(En-*) or the target language (*-En) against MTL 
models trained on all languages (All). As we can 
see from the results, the MTL model trained on En-
* perform worse than the MTL model trained on all 
language pairs. In contrast, the MTL model trained 
on *-En performs a little bit better than the MTL 
model trained on all language pairs on 4 out of the 
5 language pairs and is comparable to Base-ML on 
those language directions. 

5.1.3 Multilingual models help zero- and 
few-shot QE 

To test whether a multilingual model for QE can 
generalise beyond the language pairs observed dur-
ing training, we also conduct experiments vary-
ing amounts of in-language data (i.e. 0% –zero-
shot, 5%, 10%, 25%, 50%, 75% and 100%). We 
build and compare BASE-BL and BASE-ML mod-
els. We train BASE-BL models only on the sub-
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TestL 

% in-lang Model Strategy En-De En-Zh Et-En Ro-En Si-En Ne-En Ru-En Avg 

0 BASE ML 0.45 0.42 0.75 0.80 0.68 0.76 0.68 0.65 

5 BASE BL 
ML 

0.13 
0.38 

0.39 
0.44 

0.65 
0.74 

0.70 
0.85 

0.58 
0.67 

0.63 
0.76 

0.63 
0.71 

0.53 
0.65 

10 BASE BL 
ML 

0.24 
0.37 

0.43 
0.46 

0.69 
0.75 

0.85 
0.87 

0.56 
0.64 

0.68 
0.77 

0.64 
0.71 

0.58 
0.65 

25 BASE BL 
ML 

0.27 
0.40 

0.45 
0.46 

0.70 
0.75 

0.87 
0.88 

0.61 
0.66 

0.72 
0.76 

0.70 
0.71 

0.62 
0.66 

50 BASE BL 
ML 

0.33 
0.41 

0.47 
0.48 

0.74 
0.76 

0.88 
0.89 

0.62 
0.69 

0.74 
0.77 

0.69 
0.72 

0.64 
0.67 

75 BASE BL 
ML 

0.39 
0.46 

0.47 
0.49 

0.75 
0.78 

0.88 
0.89 

0.64 
0.70 

0.76 
0.78 

0.70 
0.71 

0.66 
0.69 

100 BASE BL 
ML 

0.39 
0.47 

0.47 
0.49 

0.75 
0.78 

0.89 
0.89 

0.66 
0.70 

0.77 
0.78 

0.70 
0.73 

0.66 
0.69 

Table 2: Results of BASE QE models for different portions of training data (%data). For BASE-ML, we train 
the models on subsampled training data in the test language pair and all training data in other language pairs. For 
BASE-BL, we train the models on only subsampled training data in the test language pair. We underline the best 
results for each %data setting. 

sampled in-language training data and train BASE- 1 
En-De 
En-ZhML on both sub-sampled in-language training data 
Et-En 

and all training data in other language pairs. In 0.8 
Ro-En 
Si-Enother words, we want to know whether multilin-

0 5 10 25 50 75 100 

C
or

re
la

tio
n Ne-En0.6 

gual QE helps if we have limited or no training 
data in our desired test language pair. Results are 

Ru-En 
Avg 

0.4 

shown in Table 2. For ease of visualisation, we 
also plot the Pearson’s correlation results against 
the percentage of in-language training data in Fig-
ure 4. As seen in Table 2, the multilingual model 
performs better than the bilingual models on all 
language pairs for every confguration of training 
data. Moreover, in 3 out of 7 cases, the zero-shot 
models perform better than the fully-trained bilin-
gual models. This provides strong evidence that 
the QE task can be solved in a multilingual way, 
without loss of performance compared to bilingual 
performance. It also shows strong evidence for the 
zero-shot applicability of our models. 

5.2 Glass-box QE Approach 

Having pre-trained representations can help build 
state-of-the-art multilingual systems. However, 
these representations are costly to compute in prac-
tice, which limits their applicability for building 
QE systems for real-time scenarios. Glass-box ap-
proaches to QE extract information from the NMT 
system itself to predict quality, without directly re-
lying on the source and target text or using any ex-
ternal resources. To test how well this information 
can generalise across different languages, we lever-

0.2 

0 

% Data 

Figure 4: Results of BASE QE models for various zero-
shot and few-shot cross-lingual transfer settings. The 
solid lines represent the BASE ML models while the 
dashed lines are the BASE BL models. 

age existing work on glass-box QE by Fomicheva 
et al. (2020) that explores NMT output distribution 
to capture predictive uncertainty as a proxy for MT 
quality. We use the following 5 best-performing 
glass-box indicators from their work: 

• Average NMT log-probability of the trans-
lated sentence; 

• Variance of word-level log-probabilities; 

• Entropy of NMT softmax output distribution; 

• NMT log-probability of translations generated 
with Monte Carlo dropout (Gal and Ghahra-
mani, 2016);4 

4This method consists in performing several forward 



TrainL En-De En-Zh 
TestL 

Et-En Ro-En Si-En Ne-En 

En-De 
En-Zh 
Et-En 
Ro-En 
Si-En 
Ne-En 

0.24 
(+0.08) 

(+0.07) 

(+0.05) 

(+0.06) 

(-0.00) 

(-0.25) 

0.44 
(-0.03) 

(-0.05) 

(-0.04) 

(-0.09) 

(-0.36) 

(-0.05) 

0.61 
(-0.03) 

(-0.04) 

(-0.09) 

(-0.22) 

(-0.04) 

(-0.02) 

0.76 
(-0.03) 

(-0.09) 

(-0.24) 

(-0.03) 

(-0.02) 

(-0.02) 

0.54 
(-0.04) 

(-0.32) 

(-0.08) 

(-0.06) 

(-0.06) 

(-0.03) 

0.58 

All langs 0.32 0.44 0.60 0.75 0.55 0.56 

Best feature 0.26 0.32 0.64 0.69 0.51 0.60 

Table 3: Pearson correlation for regression models based on glass-box features trained on each language pair and 
evaluated either on the same language pair or other language pairs. For testing on a different language pair we 
report the difference in Pearson correlation with respect to training and testing on the same language pair. For 
comparison we show the correlation individual best performing feature with no learning involved. 

• Lexical similarity between MT hypotheses 
generated with Monte Carlo dropout. 

We train an XGboost regression model (Chen 
and Guestrin, 2016)5 to combine these features to 
predict DA judgments and test the performance 
of the model in multilingual settings. Table 3 
shows Pearson correlation for the regression mod-
els trained on each language pair and evaluated 
either on the same language pair or other language 
pairs.6 The ’All langs’ row indicates the results 
when training on all language pairs, whereas ’Best 
feature’ indicates the correlation obtained by the 
best performing feature individually. Comparing 
these results to the results for pre-trained represen-
tations in Table 1 we can make three observations. 

5.2.1 Glass-box features are more 
comparable across languages 

First, although the correlation is generally lower 
for the glass-box approach, performance degrada-
tion when testing on different language pairs is 
smaller. For all language pairs except English-
German, we observe a relatively small decrease 
in performance (up to 0.09) when training and test 
language pairs are different. This suggests that the 
indicators extracted from the NMT model are more 

passes through the network, collecting posterior probabili-
ties generated by the model with parameters perturbed by 
dropout and using the resulting distribution to approximate 
model uncertainty. 

5We chose a regression model over an NN given the 
smaller number of features available. 

6These experiments do not include Russian-English, as 
the corresponding NMT system is an ensemble and it is not 
evident how the glass-box features proposed by Fomicheva 
et al. (2020) should be extracted in this case. 

comparable across languages than input features 
from pre-trained representations. 

We note that the NMT systems in MLQE dataset 
were all based on Transformer architecture but 
trained using different amount of data and have 
different overall output quality. Interestingly, the 
results of this experiment indicate that glass-box 
information extracted from these systems could 
be language-independent. More experiments are 
needed to confrm if this observation can be extrap-
olated to other datasets, language pairs, domains 
and MT systems. 

5.2.2 Multilingual gains are limited by 
learning algorithm 

Second, by contrast to the results in Table 1 where 
multilingual training brings signifcant improve-
ments, we do not see any gains in performance 
from training with all available data. The rea-
son could be that training a regression model 
with a small number of features does not require 
large amounts of training data, and therefore per-
formance does not improve with additional data. 
English-German is an exception with a large gain 
in correlation when training on all language pairs. 

5.2.3 The output label distribution matters 
Finally, similarly to the black-box approach in Ta-
ble 1, the performance for English-German benefts 
from using the data from other language pairs for 
training. This indicates that the results are affected 
by factors that are independent of the approach 
used for prediction. To better understand these 
results we look at the distribution of NMT log-
probabilities (Figure 5) and the distribution of DA 
scores (Figure 3). 



Figure 5: Distribution of NMT log-probabilities for dif-
ferent language pairs 

While log-probability distributions are compara-
ble across language pairs, the distributions of DA 
scores are very different. We suggest, therefore, 
that the decrease in performance when testing on 
a different language is related to a higher extent to 
the shift in the output distribution across languages 
(i.e. DA judgments) than to the shift in the input 
features. This also explains the diffculty for train-
ing and predicting on English-German data where 
the distribution of DA scores is highly skewed with 
minimal variability in the quality range. 

6 Discussion and Conclusions 

From our various experiments, one setting that 
stood out is that of English-German. We suggest 
that the diffculty for predicting quality for this 
language pair was exacerbated by the metric used 
for evaluation. Because of its sample-dependence, 
Pearson correlation can be more sensitive to the out-
put distribution. In contrast, an error-based metric 
like RMSE will be less sensitive to these variations. 
To illustrate these effects, in Figure 6, we show 
the hierarchical clustering of language directions 
obtained by using the metric value from training 
on one direction and testing on another one as a 
notion of distance. In subfgure (a), we observe 
the clusters based on Pearson correlation as shown 
in Table 1. In subfgure (b), we observe the same 
clustering done based on RMSE. It should be noted 
that in the former, En-De is a clear outlier, whereas 
in the latter, we have a clustering that is more con-
sistent with the general maturity of the language 
pairs: Ne-En and Si-En are low resource, Ro-En 
and Et-En are medium resource, etc. 

We explored the use of multilingual contextual 

(a) Pearson correlation 

(b) RMSE 

Figure 6: Language hierarchical clustering according 
to the results of training on one language and testing on 
another. In subfgure (a) we plot the clustering based 
on Pearson correlation. In subfgure (b) we plot the 
same clustering based on RMSE. The y axis denotes 
the distance between language pairs according to each 
evaluation. 

representations to build state-of-the-art multilin-
gual QE models. From our experiments, we ob-
served that: 1) multilingual systems are always 
better than bilingual systems; 2) having multi-task 
models, which share parts of the model across lan-
guages and specialise others, does not necessarily 
yield better results; and 3) multilingual systems 
for QE generalise well across languages and are 
powerful even in zero-shot scenarios. We also con-
trasted the use of pre-trained representations which 
are costly to obtain, to the use of glass-box features 
which can be extracted from the NMT system. We 
observed that glass-box features are very compa-
rable across languages, and training multilingual 
systems with them adds little value. Finally, we 
observed that the distribution of the output labels 
matters for the evaluation of QE. 

http:system.We
http:scenarios.We
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Appendix 

For completeness, Tables 4 and 5 report RMSE 
scores for our main experiments. 



TestL Model Strategy TrainL 
En-De En-Zh Et-En Ro-En Si-En Ne-En Ru-En Avg 

En-De 0.71 0.72 0.86 0.92 0.79 0.82 0.88 0.81 
En-Zh 0.85 0.69 0.75 0.85 0.75 0.83 0.82 0.79 
Et-En 0.76 0.69 0.59 0.71 0.78 0.91 0.74 0.74 

BL Ro-En 0.93 0.77 0.61 0.48 0.82 1.01 0.79 0.77BASE Si-En 1.01 0.79 0.89 0.94 0.64 0.61 0.87 0.82 
Ne-En 1.13 0.84 1.10 1.16 0.79 0.57 1.05 0.95 
Ru-En 0.83 0.66 0.78 0.87 0.73 0.73 0.67 0.75 

ML All 0.68 0.65 0.55 0.44 0.59 0.53 0.65 0.58 

LS All 0.69 0.64 0.56 0.45 0.62 0.54 0.66 0.59 
LA All 0.68 0.64 0.57 0.44 0.61 0.54 0.66 0.59 

MTL LS En-* 0.71 0.70 - - - - - -
LA En-* 0.69 0.68 - - - - - -

LS *-En - - 0.56 0.46 0.60 0.55 0.64 -
LA *-En - - 0.56 0.46 0.61 0.54 0.66 -

Table 4: RMSE for BASE and MTL QE models. We underline the best RMSE for BASE-BL and bold the best 
RMSE across all models. 

TestL 

%data Model Strategy En-De En-Zh Et-En Ro-En Si-En Ne-En Ru-En Avg 

0 BASE ML 0.74 0.65 0.64 0.65 0.61 0.84 0.72 0.69 

5 BASE BL 
ML 

0.74 
0.77 

0.70 
0.74 

0.72 
0.62 

0.75 
0.56 

0.76 
0.73 

0.76 
0.62 

0.74 
0.71 

0.74 
0.68 

10 BASE BL 
ML 

0.74 
0.77 

0.70 
0.72 

0.71 
0.62 

0.59 
0.54 

0.74 
0.73 

0.71 
0.64 

0.75 
0.70 

0.71 
0.67 

25 BASE BL 
ML 

0.77 
0.72 

0.70 
0.71 

0.65 
0.61 

0.54 
0.49 

0.74 
0.69 

0.70 
0.64 

0.71 
0.70 

0.69 
0.65 

50 BASE BL 
ML 

0.73 
0.69 

0.72 
0.68 

0.60 
0.59 

0.52 
0.47 

0.68 
0.65 

0.62 
0.59 

0.71 
0.67 

0.65 
0.62 

75 BASE BL 
ML 

0.71 
0.67 

0.70 
0.65 

0.59 
0.55 

0.48 
0.45 

0.65 
0.62 

0.61 
0.54 

0.68 
0.67 

0.63 
0.59 

100 BASE BL 
ML 

0.72 
0.68 

0.68 
0.66 

0.57 
0.56 

0.47 
0.44 

0.64 
0.60 

0.56 
0.54 

0.68 
0.65 

0.62 
0.59 

Table 5: RMSE of BASE QE models for different portions of training data (%data). We underline the best RMSE 
for each %data setting. 
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