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ABSTRACT
Silent Errors within hardware devices occur when an internal de-
fect manifests in a part of the circuit which does not have check
logic to detect the incorrect circuit operation. The results of such a
defect can range from flipping a single bit in a single data value, up
to causing the software to execute the wrong instructions. Silent
data corruptions (SDC) in hardware impact computational integrity
for large-scale applications. Manifestations of silent errors are ac-
celerated by datapath variations, temperature variance, and age,
among other silicon factors. These errors do not leave any record
or trace in system logs. As a result, silent errors stay undetected
within workloads, and their effects can propagate across several ser-
vices, causing problems to appear in systems far removed from the
original defect. In this paper, we describe testing strategies to detect
silent data corruptions within a large scale infrastructure. Given the
challenging nature of the problem, we experimented with different
methods for detection and mitigation. We compare and contrast
two such approaches - 1. Fleetscanner (out-of-production testing)
and 2. Ripple (in-production testing). We evaluate the infrastructure
tradeoffs associated with the silicon testing funnel across 3+ years
of production experience.

KEYWORDS
silent data errors; data corruption; system reliability; hardware
reliability; bitflips; large scale infrastructure

1 INTRODUCTION
Meta Infrastructure serves numerous applications like Facebook,
Whatsapp, Instagram, Messenger and Oculus workloads. All these
applications expect computational integrity and reliability from the
underlying infrastructure. Silent data corruptions challenge these
fundamental assumptions and impact applications at scale. In our
previous paper [10], we shared insights on the impact of silent data
corruptions with a case study within the Spark workloads at Meta.
In the shared example, a simple computation like (1.1)53 resulted
in the wrong answer (0 instead of 156.24), resulting in missing rows
within the database, which subsequently led to data loss for the ap-
plication. Within Meta infrastructure, we have observed hundreds
of instances of unique silent data corruptions. Meta runs several
detection and testing frameworks, and we prevent the impact to
our applications before the corruption can propagate. We have em-
ployed these detection strategies since 2019 within our fleet. Within
this paper, we provide insights into the different strategies which

majorly fall into 2 buckets: 1. Out-of-production testing and 2. In-
production testing. We summarize the tradeoffs and test metrics
associated with different stages within the silicon lifecycle.

The paper is structured in the following way - Section 2 provides
insights on related work within this domain. Section 3 dives deep
into the testing philosophies at different stages within the silicon
lifecycle. Section 4 provides themotivation for fleetwide testing. Sec-
tion 5 elaborates on the infrastructure testing strategies employed at
Meta by exploring the in-production and out-of-production testing
mechanisms. Section 6 provides insights into the results associated
with the different strategies and evaluates tradeoffs associated with
them. Section 7 concludes the paper.

2 RELATEDWORK
There has been recent interest in the area of silent data corrup-
tions [10], [14], [28]. Prior studies [6], [22], [7] within this domain
focused on the soft errors induced due to cosmic rays. Fault in-
jection studies [17], [8], [11] focused on fault modeling using soft
error occurrence rates which were modeled at one fault in a million
silicon devices. Meta published one of the first studies on large scale
impact of silent errors [10], and showed that the SDC occurrence
rate of one in thousand silicon devices is reflective of fundamen-
tal silicon challenges, and not limited to particle effects or cosmic
rays. Google also published their observations [14], where mer-
curial cores were identified to disobey the fundamental rules of
computation and produce erroneous results. This is an industry
wide problem. At OCP 2021 [3], a panel of experts [4] from both
industry and academia within the silent error domain gathered to
discuss the strategies for the domain moving forward. More re-
search and articles [2], [1], [13], [21], [29] establish the importance
of this domain. The research focus for industry and academia has
strongly been on identifying strategies and mitigating silent data
corruptions not only in CPUs but also in all silicon devices.

3 SILICON TESTING FUNNEL
Before a silicon device reaches the Meta infrastructure fleet, the
silicon device goes through different stages as part of the silicon
development process. In this section, we will not go into elaborate
details regarding the silicon development process. We are compar-
ing the testing strategies employed at different stages to understand
the cost associated with testing at fleetwide scale, and why that can
be challenging. The silicon testing funnel in figure 1 provides a
high level comparison for different stages within this section. Fol-
lowing subsections provide primitive descriptions of the different
stages. It is to be noted that each stage is a dedicated research topic



on its own, and the testing model varies for hyperscalars versus
enterprise scale companies. In this paper, we focus on three impor-
tant parameters: testing volume, test time, and the impact of a fault
at that stage.

3.1 Design and verification
For any silicon device, once the architectural requirements are fi-
nalized, the silicon design and development process is initiated.
Testing is usually limited to a few design models of the device, and
simulations and emulations are used to test different features. The
device is tested regularly with implementation of novel features.
Test iterations are implemented on a daily basis. The cost of testing
is low relative to the other stages, and the testing is repeated using
different silicon variation models. Design iteration at this stage is
faster than any other stage in the process. Faults can be identified
based on internal states that are not visible in later stages of the
development cycle. The test cost increases slowly with placement of
standard cells for ensuring that the device meets the frequency and
clock requirements, and also with the addition of different physical
characteristics associated with the materials as part of the physical
design of the device. There is plenty of available industry research
on testing optimizations within these stages [19], [12], [20], [5], [16].
The testing process here lasts usually for many months to a cou-
ple of years depending on the chip and the development stages
employed.

3.2 Post silicon validation
At this stage, numerous device samples are available for validation.
Using the test modes available within the design of the device, the
design is validated for different features. The number of device
variations has grown from models in the previous stage to actual
physical devices exhibiting manufacturing variance. Significant
fabrication costs have been incurred before obtaining the samples,
and a device fault at this stage has a higher impact since it typically
results in a re-spin for the device. Additionally, there is a larger
test cost associated with precise and expensive instrumentation for
multiple devices under test. At the end of this validation phase, the
silicon device can be considered as approved for mass production.
The testing process here typically lasts for a few weeks to a few
months.

3.3 Manufacturer testing
At mass production, every device is subjected to automated test
patterns using advanced fixtures. Based on the results of the testing
patterns, the devices are binned into different performance groups
to account for manufacturing variations. As millions of devices are
tested and binned, time allocated for testing has a direct impact on
manufacturing throughput. The testing volume has increased from
a few devices in the previous step to millions of devices, and test
cost scales per device. Faults are expensive at this stage, as they
typically result in respin or remanufacturing of the device.

3.4 Integrator testing
After the manufacturing and testing steps, the devices are shipped
to an end customer. A large scale infrastructure operator typically
utilizes an integrator to coordinate the process of rack design, rack

integration and server installation. The integrator facility typically
conducts testing for multiple sets of racks at once. The complexity
of testing has now increased from one device type to multiple types
of devices working together in cohesion. The test cost increases
from a single device to testing for multiple configurations and
combinations of multiple devices. An integrator typically tests the
racks for a few days to a week. Any faults require reassembly of
racks and reintegration.

3.5 Infrastructure intake testing
As part of the rack intake process, infrastructure teams typically
conduct an intake test where the entire rack received from the
integrator is wired together with datacenter networks within the
designated locations. Subsequently, test applications are executed
on the device before executing actual production workloads. In
testing terms, this is referred to as infrastructure burn-in testing.
Tests are executed for a few hours to a couple of days. There are
hundreds of racks containing a large number of complex devices
that are now paired with complex software application tools and
operating systems. The testing complexity has increased signifi-
cantly relative to previous test iterations. A fault is challenging to
diagnose due to the larger source of fault domain.

3.6 Infrastructure fleet testing
Historically, the testing practices concluded at infrastructure burn-
in testing. The device is expected to work for the rest of its lifecycle,
and any faults if observed would be captured using system health
metrics and reliability-availability-serviceability features built into
devices, which allow for collecting system health signals.

However, with silent data corruptions, there is no symptom or
signal that indicates there is a fault with a device. Hence without
running dedicated test patterns to detect and triage silent data
corruptions, it is almost impossible to protect an infrastructure
application from corruption. As a result, it has become imperative
to test periodically within the fleet using different strategies. At
this point within the lifecycle, the device is already part of a rack
and serving production workloads. The testing cost is high relative
to other stages, as it requires complex orchestration and scheduling
while ensuring that the workloads are drained and undrained ef-
fectively. Tests are designed to run in complex multi-configuration,
multi-workload environments. Any time spent in creating test en-
vironments and running the tests is time taken away from server
running production workloads.

A fault within a production fleet is expensive to triage and root-
cause as the fault domains have evolved to be more complex with
ever changing software and hardware configurations. As a result,
advanced strategies are required to detect silent data corruptions
with expensive infrastructure tradeoffs.

4 WHY IS THIS A HARD PROBLEM ?
With millions of devices, within a large scale infrastructure, there
is a probability of error propagation to the applications. With an
occurrence rate of one fault within a thousand devices, silent data
corruptions have the ability to impact numerous applications. Until
the application exhibits noticeable difference at higher level met-
rics, the corruption continues to propagate and produce erroneous



Figure 1: Silicon testing funnel

computations. This scale of fault propagation presents a significant
challenge to a reliable infrastructure. We have observed that faults
can be due to a variety of sources or accelerants. We categorize
these into four major sections. We turn to periodic testing with dy-
namic control of tests to triage corruptions and protect applications.
These observations are based on testing and aggregating samples
for ≈3 years within Meta infrastructure. We are using an example
product computation of 3 times 5 to demonstrate our observations:

• Data randomization: We observe that the corruptions are
data dependent by nature. For example, we observe numer-
ous instances where the majority of the computations would
be fine within a corrupt CPU but a smaller subset would
always produce faulty computations due to certain bit pat-
tern representation. For example, we may observe that 3
times 5 is 15, but 3 times 4 is evaluated to 10, and thus un-
til and unless 3 times 4 is verified specifically, we cannot
confirm computation accuracy within the device for that
specific computation. This leads to a fairly large state space
for testing.

• Electrical variations: In a large scale infrastructure, with
varying nature of workloads and scheduling algorithms, the
devices undergo a variety of operating frequency (f), voltage
(V) and current (I) fluctuations. We observe that changing
operating voltages, frequency and current associated with
the device can lead to acceleration of occurrence of erroneous
results on faulty devices. While the result would be accurate
with one particular set of f, V and I, the result may not hold
true for all the possible operating points. This leads to a
multi-variate state space. For example, we may observe that
3 times 5 is 15 in some operating conditions, but repeating
the same calculation may not always result in 15 under all
operating conditions.

• Environmental variations: We observe that variations in
location dependent parameters also accelerate occurrence of
silent data corruptions. It is well documented that tempera-
ture [15], [30], [31], [27], and humidity [26], [9], [25] have a
direct impact on the voltage and frequency parameters asso-
ciated with the device due to device physics. In a large-scale
datacenter, while the temperature and humidity variations
are controlled to be minimal, there can be occurrences of
hot-spots within specific server locations due to the nature of

repeated workloads on that server and neighboring servers.
Also the seasonal trends associated with a datacenter loca-
tion can create hotspots across data halls within a datacenter.
For example, we may observe 3 times 5 is 15 in datacenter A,
but repeated computations can result in 3 times 5 computing
to 12 in datacenter B.

• Lifecycle variations: We observe that silicon continually
changes in performance and reliability with time. This has
been well documented in bathtub curve failure modeling
across the literature [18], [24], [23]. However, with silent
data corruptions we observe that certain failures can man-
ifest earlier than the traditional bathtub curve predictions
based on device usage. As a result, a computation produc-
ing a correct result today provides no guarantee that the
computation will produce a correct result tomorrow. In one
specific experiment, we repeated the exact same computa-
tion sequence on the device once every day for a period of
6 months and the device failed after 6 months indicating
degradation with time for that computation. In essence, a
computation like 3 times 5 equals 15 can provide a correct
result today but tomorrow may result in 3 times 5 being
evaluated to an incorrect value.

As a result of all four observations, we conclude that the only way
to measurably protect the fleet against silent data corruptions is to
repeatedly test the infrastructure with ever improving test routines
and advanced test pattern generation. By building engineering
capability in finding hidden patterns across hundreds of failures,
and feeding the insights into optimizations for test runtimes, testing
policies and architectures, the fleet resiliency can be improved.
Sharing these insights with vendors, industry and academia on a
periodic basis also enables the collective research growth within
this domain.

5 INFRASTRUCTURE TESTING
As part of Meta infrastructure, we have implemented 2 broad cate-
gories of testing at fleet scale. When a fleet is made up of millions of
machines spread across multiple regions and fault domains, it is im-
portant that testing is efficient and tactical. The 2 broad categories
of testing are:

• Out-of-production testing.
• In-production testing.



Figure 2: Out-of-production testing

5.1 Out-of-production testing
Out-of-production testing refers to the ability to subject machines
to known patterns of inputs, and comparison of its expected outputs
with known reference values across millions of different execution
paths. Tests are executed across different temperatures, voltages,
machine types, regions etc. while the machine is idle and not exe-
cuting production workloads.

The test patterns are generated based on our production experi-
ence and understanding of silicon architectures as well as obtained
from silicon vendors. The instructions are carefully crafted in se-
quences tomatch known defects or target a variety of defect families
using numerous state search policies within the testing state space.

Typically in a large scale infrastructure, there are always sets of
machines going through maintenance. Before any of these mainte-
nance are started, the workload is safely migrated off the machine,
typically referred to as a draining phase. Post a successful drain
phase, we observe one or many of the following maintenance:

• Firmware upgrades: There are numerous devices within a
given server and there may be new firmware available on at
least one component. These component firmware upgrades
are required to keep the fleet up to date for fixing firmware
bugs as well as security vulnerabilities.

• Kernel upgrades: Similar to component level upgrades, the
kernel on a particular server is upgraded at a regular cadence,
and these provide numerous application and security updates
for the entire fleet.

• Provisioning:While the above twomechanisms refer to the
process of upgrading a server. Provisioning refers to the pro-
cess of preparing the server for workloadswith installation of
operating systems, drivers and application-specific recipes.
There could also be instances of reprovisioning where-in
within a dynamic fleet a server is moved from one type of
workload to another.

• Repair: Each server that encounters a known fault or trig-
gers a match to a failing signature ends up in a repair queue.
Within the repair queue, based on the diagnoses associated
with the device, a soft repair (without replacing hardware

components) is conducted or a component swap is executed.
This enables faulty servers to return back to production.

Any machine exiting the maintenance phase is then undrained
to make the machine available to production workloads. With these
maintenances already available within the fleet, we at Meta devel-
oped and integrated a tool called Fleetscanner. Fleetscanner oppor-
tunistically identifies machines entering and exiting maintenance
states and schedules the machines to undergo silent data corruption
testing. The architecture for fleetscanner and its integration at a
very high level is represented in Figure 2. In all the cases, based on
the time available and the type of machine identified, fleetscanner
runs optimized versions of tests and provides a snapshot for the
device’s response to sensitive architectural codepaths, and verifies
the computations to be accurate. A number of machine specific
parameters are captured at this instant to enable understanding the
conditions that result in device failures. Any machine identified to
fail for silent data corruption routines are routed to the quarantine
pool for further investigation and test refinements.

The four out-of-production workflows are independent com-
plex systems with orchestration across millions of machines, and
fleetscanner enables a seamless methodology to orchestrate silent
data corruption tests within a large fleet by integrating with all the
workflows. It is extremely important to minimize the time spent in
drain and undrain phases and piggyback on existing maintenance.
It is also important to minimize disruption to existing workflows
with significant time overheads and orchestration complexities.
This allows the testing cost to be noticeable yet minimal per ma-
chine while providing reasonable protection against application
corruptions.

5.2 In-production testing
While out-of-production testing allows for testing opportunistically
when machines transition across states, there are many instances
within our fleet where a novel signature identified must be im-
mediately scaled to the entire fleet. Waiting for out-of-production
scanning opportunities and subsequently ramping up fleetwide



Figure 3: In-production testing

coverage is slow. While fleetscanner has its own benefits in im-
plementing longer running tests, with test runtime in minutes,
we observe a requirement for an alternate light-weight method to
test within the fleet while the machines are running production
workloads. This is tricky to achieve without a granular understand-
ing of the workload and modulation of testing routines with the
workloads.

At Meta, we have implemented a testing methodology called
Ripple which co-locates with the workload, and executes test in-
structions for millisecond level intervals. The architecture for rip-
ple testing is described in figure 3. Test sequences used in out-
of-production testing are modified specifically to be conducive to
run through Ripple. Typically intrusive tests are used as part of
infrastructure burn-in testing; changing them to run in ripple mode
requires fine-tuning of tests along with test coverage tradeoff deci-
sions. The test orchestration is implemented with extreme care as
any variation within the test could immediately affect the applica-
tion. This test is live within the entire fleet and provides granular
control on test subsets, cores to test, type of workloads to co-locate
with as well as in scaling the test up and down to multiple sets of
cores based on the workload.

Figure 4: Shadow testing

5.2.1 Shadow testing: We implemented and fully rolled out rip-
ple across multiple sets of workloads. We have also crafted the
ripple test architecture to be able to have safeguards to prevent
fleetwide fallout in case of a test defect. We implemented shadow
testing by running a wide variety of workloads with A/B testing
for different instruction sequences with different seasonality and

across different workloads. A major challenge in shadow testing is
enabling colocation. Based on the scaling of the workload, the test-
ing mechanism had to descale. For each type of workload at Meta,
we identified an evaluation process for the scaling factor. Based
on instrumentation, we established the footprint tax associated
with the test. Each workload type’s colocation study provides the
tax, and the goal for the tool is to minimize its tax below a certain
threshold. A simplified version of the architecture is referenced in
Figure 4. With repeated sets of experimentation, we established
control structures and safeguards for enabling different options for
different workloads, and then scaled the solution to the entire fleet.

5.2.2 Always-on in production: This mechanism is always on. Only
the scale at which it is operating is dynamically controlled through
configurations within the fleet. This methodology is powerful in
finding defects which require thousands of iterations of the same
data inputs, as well as in identifying devices undergoing degrada-
tion. A novel signature identified within the fleet for a device could
be scaled to the entire fleet with satisfiable test randomization and
defect pattern matching within a couple of weeks. This method-
ology is also uniquely effective in identifying silicon transition
defectsl. In the comparison of results below, we share the statistical
value of this method in identifying silent data corruptions for a
large subset of defects for one CPU defect family.

5.2.3 Recommendations to the industry: We have recommended
this mechanism of testing as an important evolution for silent data
corruption tools from large scale internal studies. Based on our find-
ings and data-sharing practices, our vendors have enabled modes
within their tests that make them suitable for ripple test. Vendors
have published white-papers [29] around a testing methodology
called trickle testing which derives from the in-production testing
flow and its fleetwide success within Meta. We would like to thank
our industry partners in taking lessons from our fleetwide studies
and making them available to industry and academia.



Metric Fleetscanner Ripple
Total tests executed ≈68 million (lifetime) ≈2.5 billion (per month)
Testing time ≈4 billion fleet seconds (lifetime) ≈100 million fleet seconds (per month)
Performance aware No Yes
Unique SDC coverage 23 percent 7 percent
Time to equivalent SDC coverage ≈6 months (70 percent) ≈15 days (70 percent)

Table 1: Comparison of Fleetscanner and Ripple

6 RESULTS
We are sharing results below from around 3 years of data aggre-
gation regarding the effectiveness of these two different testing
strategies. The result dataset here in comparison is for a large sub-
set of defects for one CPU defect family, with tests being executed
on a significantly large percentage of the fleet. Equivalent coverage
within this section refers to the ability to detect the same set of
failures through different methods of testing.

6.1 Out-of-production testing (Fleetscanner)
Using fleetscanner as part of the fleetwide out-of-production de-
tection across millions of machines, we have obtained a total of
around 68 million unique test iterations within the lifetime of the
tool. Test runtimes vary based on type of maintenance available and
the type of integration sequence in place. In total, we have tested
for around 4 billion test seconds. The tests are inherently intrusive
in nature and hence conducted out-of-production. We observe that
fleetscanner provides 93 percent coverage among all detected silent
data corruptions for defect family under study. Fleetscanner also
achieves 23 percent unique coverage which is not reachable by
ripple. Based on different cadences of maintenance, we observe that
some machines may undergo significantly more testing than others.
However, fleetscanner achieves approximately full fleetwide cover-
age within fivemonths to six months based on average deployments
and maintenance.

From a test cost perspective, this is expensive. The fleet spends
a significant compute time executing tests. However, it is our ob-
servation that this is an important cost with increasing sightings
of silent data corruptions.

6.2 In-production testing (Ripple)
In comparison to the out-of-production testing, the ripple test frame-
work provides its own set of unique coverage metrics. Since ripple
is always-on, we are able to achieve around 2.5 billion unique test
instances any given month because of the non-intrusive nature of
the tests and granular control and co-location. Test runtimes vary
based on workload intensity and the subscription configurations.
However, given that each test is limited to hundreds of milliseconds
at best, we obtain a total test runtime of around 100 million fleet
seconds every month.

Ripple testing offers a unique coverage of 7 percent among the
set of all detectable machines. We observe that this coverage is
impossible to achieve with fleetscanner due to the inherent nature
of testing and the underlying silicon defects. To elaborate, certain
failures are detected via ripple due to frequent transitions of test

instructions along with workloads, and are not detected with con-
tinuous long running tests. While 7 percent coverage is unique
to ripple, it can detect 70 percent within the 93 percent coverage
that fleetscanner provides within 15 days. While ripple can achieve
this coverage within 15 days, fleetscanner requires around 5 to 6
months. This scaling effect makes ripple a powerful framework
within a large fleet.

6.3 Comparison
A comparison of the numbers presented in the above 2 sections is
provided in table 1. From the table, we observe that for defect family
under study within this paper, 70 percent of the common coverage
detection could be completed within 15 days using ripple. Fleetscan-
ner ramps up to the remaining 23 percent of the coverage over 6
months. A unique 7 percent coverage is through repeated ripple
instances within the fleet. Ripple provides a total coverage of 77 per-
cent with significantly lower total test runtimes than fleetscanner.
There are benefits to both models of testing. We also consistently
revisit and evaluate these coverage metrics to inform and update
our fleetwide testing strategies around test vectors, test cadences
and test runtimes. We observe that with different types of defects,
the coverage split varies.

Historically, each CPU only went through a few hours of testing
as part of infrastructure burn-in tests. Further testing was typ-
ically conducted via sampling. We observe that novel detection
approaches are required for application health and fleet resiliency.
In this paper, we demonstrate the ability to test at scale and get
through billions of fleet seconds of testing every month across a
large fleet consistently. These novel techniques enable us to detect
silent data corruptions and mitigate them at scale.

7 CONCLUSIONS
Detecting silent data corruption is a challenging problem for large-
scale infrastructures. Applications show significant sensitivity to
these problems and can be exposed to such corruptions for months
without accelerated detection mechanisms. It can also result in
data loss and require months to debug and resolve software level
residue of silent corruptions. This research shows novel techniques
resulting from years of experience observing silent corruptions
and in categorizing their occurrence patterns and faster time to
detection. Impact of silent data corruption can have a cascading
effect on applications and we have to address this as a critical
problem. As a result, detecting these at scale as quickly as possible
is important towards enabling a safer and reliable fleet.
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