
Alternating Blind Identification of Power Sources for Mobile SoCs
Sofiane Chetoui
Brown University
Providence, USA

sofiane_chetoui@brown.edu

Michael Chen
Brown University
Providence, USA

michael_chen@brown.edu

Abhinav Golas
Meta Platforms
Burlingame, USA
agolas@fb.com

Farrukh Hijaz
Meta Platforms
Redmond, USA
fhijaz@fb.com

Adel Belouchrani
Ecole Nationale Polytechnique

Algiers, Algeria
adel.belouchrani@g.enp.edu.dz

Sherief Reda
Brown University
Providence, USA

sherief_reda@brown.edu

ABSTRACT
The need for faster Systems on Chip (SoCs) has accelerated scaling
trends, leading to a considerable power density increase and raising
critical power and thermal challenges. The ability to measure power
consumption of different hardware units is essential for the opera-
tion and improvement of mobile SoCs, as well as the enhancement
of the power efficiency of the software that runs on them. SoCs
are usually enabled with embedded thermal sensors to measure
the temperature at the hardware unit level; however, they lack the
ability to sense the power. In this paper we introduce an Alternating
Blind Identification of Power sources (Alternating-BPI), a technique
that accurately estimates the power consumption of individual SoC
units without the use of any design based models. The proposed
technique uses a novel approach to blindly identify the sources of
power consumption, by relying only on the measurements from the
embedded thermal sensors and the total power consumption. The
accuracy and applicability of the proposed technique was verified
using simulation and experimental data. Alternating-BPI is able to
estimate the power at the SoC hardware unit level with up to 98.1%
accuracy. Furthermore, we demonstrate the applicability of the
proposed technique on a commercial SoC and provide a fine-grain
analysis of the power profiles of CPU and GPU Apps, as well as Arti-
ficial Intelligence (AI), Virtual Reality (VR) and Augmented Reality
(AR) Apps. Additionally, we demonstrate that the proposed tech-
nique could be used to estimate the power consumption per-process
by relying on the estimated per-unit power numbers and per-unit
hardware utilization numbers. The analysis provided by the pro-
posed technique gives useful insights about the power efficiency of
the different hardware units on a state-of-the-art commercial SoC.

CCS CONCEPTS
• Hardware→ Chip-level power issues; Power estimation and
optimization; Temperature monitoring; Digital signal processing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’22, April 9–13, 2022, Bejing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9143-6/22/04. . . $15.00
https://doi.org/10.1145/3489525.3511676

KEYWORDS
Power modeling, Power characterization, Mobile SoCs, Power con-
sumption, Power efficiency

ACM Reference Format:
Sofiane Chetoui, Michael Chen, Abhinav Golas, Farrukh Hijaz, Adel Be-
louchrani, and Sherief Reda. 2022. Alternating Blind Identification of Power
Sources for Mobile SoCs. In Proceedings of the 2022 ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’22), April 9–13, 2022, Be-
jing, China. ACM, Beijing, China, 12 pages. https://doi.org/10.1145/3489525.
3511676

1 INTRODUCTION
The leaps that Systems on Chip (SoCs) have taken in the past decade
led to an explosive growth of mobile devices. Mobile SoCs have
become the leading product in the semiconductor industry, due to
its continually improving performance and decreasing cost. Their
designs have rapid design iteration, at least a new design is released
each year, and new designs tend overshadow the older ones. Thus,
it is important to understand the current design trends and their
implications on future designs [18].

Technology scaling and heterogeneous multiprocessor designs
are among the main factors enabling the performance increase
[39]. The increasing processing capability has been also driven by
ambitious user requirements, like performance, energy efficiency
and thin form factors. This has enabled new applications that re-
quire intensive computation, raising critical power and thermal
challenges [40]. For instance, the higher power density and lim-
ited cooling solutions for mobile SoCs is pushing mobile devices
towards a major performance bottleneck [19]. Additionally, despite
the fact that battery powered devices have become the mainly used
computing devices in daily life, their battery lifetime is still one of
the top usability concerns [38].

Thus, devising techniques and tools that help in profiling at
a fine-grain level the existing SoCs, and the software that runs
on SoCs, is a major step towards implementing efficient power
and thermal management techniques, as well as, designing the
architecture of the next generation Mobile SoCs.

Sensing the power and temperatures of the different hardware
units in modern SoCs is a key to enable efficient and optimal power
and thermalmanagement techniques. Additionally, a fine-grainmap
of the power consumption of modern SoCs across different soft-
ware applications would provide valuable insights to improve the
performance of SoCs at the hardware and software level. However,

https://doi.org/10.1145/3489525.3511676
https://doi.org/10.1145/3489525.3511676
https://doi.org/10.1145/3489525.3511676

modern processors provide only coarse-grain power measurements
of all cores using the running average power limit (RAPL) [11].

Various techniques from the literature relying on different as-
sumptions and offering different levels of accuracy, practicality,
and feasibility have been proposed [5, 7, 12, 26]. The availability
of thermal sensors on a per-hardware unit basis on SoCs, makes it
possible to estimate the power consumption at the unit level using
blind identification techniques. Blind Power Identification (BPI)
[30, 31, 33] was proposed to estimate the power at the SoC unit
level, based on the individual thermal measurements and the total
power consumption. However, BPI [30] relies on the thermal steady
state data to estimate the power model parameters, which is hard
to generate in practice and might affect the accuracy.

The reliance on certain tools and assumptions, the insufficient
accuracy and the lack of practicality of the available power identifi-
cation techniques has led to the lack of techniques that provide a
fine-grain power measurements of modern SoCs.

Thus, in this contribution, we investigate the use of a new ap-
proach that relies on an Alternating-BPI algorithm to blindly esti-
mate the power at the SoC unit level.We use the proposed technique
to develop a plug and play tool that allows to identify the power
consumption of the different SoC units. Using the proposed tech-
nique, we provide a fine-grain power analysis of a commercial
SoC and provide useful insights about its power efficiency. The
contributions of this paper are as follows:

• We introduce the first Alternating Blind Identification of
Power sources (Alternating-BPI). The new approach allows
a better accuracy and practicality than previous blind iden-
tification techniques, and works on both simulation and
experimental data, as it does not require steady thermal
states.

• The proposed technique substantially decreases the power
estimation error, especially for heterogeneous SoCs with
multiple hardware units. Simulation data has shown that the
proposed technique decreases the power estimation error
as low as 1.9%, as compared to 11.2% for BPI [30]. Further-
more, we show that the accuracy of the proposed technique
remains stable when moving from homogeneous to hetero-
geneous architectures, and remains stable when the number
of hardware units increase. As opposed to BPI [30] and BPISS
[33], whose accuracy dropped when increasing the number
of units and moving to heterogeneous architectures.

• The technique is used to design a plug and play tool, that is
made publicly available [9], and that allows to estimate the
power consumption of SoC units.

• The proposed technique is demonstrated using simulated and
experimental data. Then it is used to characterize the power
profile of several benchmarking Apps on a commercial SoC,
including : CPU, GPU, Artificial Intelligence (AI) , Virtual
Reality (VR), Augmented Reality (AR) Apps. The power char-
acterization provides insights about the the power efficiency
of the different hardware units on a state-of-the-art commer-
cial SoC. Some of the insights include: (1) Even with the new
integrated computing units to modern Mobile SoCs, like the
GPU, the image signal processor and neural engine, the CPU
is still the main source of power consumption, representing

around 60% to 75% of the total SoC power. (2) The little CPU
cluster plays a major role in saving power, with a power
consumption that is 5x less than the big CPU cluster. (3) The
GPU power consumption for AR Apps, represents only 9% of
the total SoC power consumption, while the CPU represents
75% of the total SoC power consumption.

• Using the proposed technique and the hardware utilization
numbers of the different processes, we show that the pro-
posed technique could be used to get the power consumption
per process. Applying the approach on AR apps, we show
that the sensor fusion, tracking and mapping computation
performed through the SLAM algorithm represents 53% of
the total power consumption for AR apps.

The rest of the paper is organized as follows: Section 2 intro-
duces related work and provides some background about power
modeling. Section 3 describes the proposed technique and the un-
derlying physical and mathematical concepts, and it introduces the
Alternating-BPI tool. Section 4 presents the evaluation results of
our technique compared against state-of-the-art techniques, as well
as the power characterization of different benchmarking Apps on a
commercial SoC. Section 6 concludes the paper.

2 RELATEDWORK
Various studies investigated a wide range of methods for thermal
and powermodeling of heterogenuous SoCs. The standard approach
used by these techniques try to identify the state space model that
links temperature to power [3, 10, 30, 33, 37] :

t(𝑘) = At(𝑘 − 1) + Bp(𝑘), (1)

where t(k) an p(k) are vectors that denote the temperature and
power of the SoC hardware units at time k, respectively. Both A and
B are two modeling matrices that capture the physical relationship
between power and temperature. More precisely, the A matrix
represents the thermal conductance matrix, which describes the
natural response of the system, in the absence of power. The B
matrix represents the forced response matrix, and it is function
of the thermal capacitance and the thermal conductance matrices.
Both the A and B are square matrices, whose dimension is equal to
the number of power sources. In our case, the power sources are the
hardware units for which we have the thermal measurements, and
for which we would like to identify the power consumption. Being
able to compute the state space modeling matrices would make
it possible to estimate and predict the power consumption, at the
same level of granularity as the available thermal measurements. In
the case where thermal measurements are unavailable, and power
measurements are available, being able to compute the modeling
matrices would make it possible to predict the temperature, at the
same level of granularity as the available power measurements.

The state space model in Equation 1 is derived from the heat
diffusion equation [25], which describes the power-thermal inter-
action by taking into consideration the thermal conductivity, the
density and the specific heat of the material. The model in Equation
1 is derived by applying a spatial discretization on the heat diffu-
sion equation [25] , followed by a temporal discretization. There
are three general approaches to identify the state space model:

• Design based approach: it is usually based on pre-silicon data
and requires access to the design proprietary information,
such as its layout and gate level netlist, its materials and heat
sink configuration [7, 20, 26]. Thus, this approach assumes
the availability of A and B and attempts to estimate p(k).
Skadron et al. [35] designed an approach that models thermal
behavior of the die and its package as a circuit of thermal
resistances and capacitances, that correspond to functional
blocks at the architecture level, which helps in capturing
the physical relationship that relates power to temperature,
which is similar to finding the A and B matrices. However,
this is not a practical solution, since it is design specific, and it
is prone to errors related to variability in the semiconductor
manufacturing process. Additionally, it is computationally
challenging to conduct large-scale gate-level simulation.

• Runtime based approach: it considers the processor as a gray
box, and it identifies the state-spacemodels based on physical
measurements. Most of these techniques use system identifi-
cation techniques andmainly rely on the existence of sensors
for the power sources [3, 5, 24]. Thus, this approach assumes
the availability of p(k) and attempts to estimate A and B.
However, such fine-grain power sensors are unavailable on
mobile SoCs. Another type of runtime approach, relies on
the usage of infrared imaging and performance counter mea-
surements [12, 32], however, performing infrared imaging
might be invasive and prone to noisy measurements. Other
runtime based techniques focus on the usage of performance
counters to model the power, for instance, Min et al. pro-
posed a general approach to build system power estimation
models based on hardware performance counters. Karan et
al. [34] derive functions for real time estimation of system
power consumption using performance counters. Kim et al.
[22] proposed a statistical approach for building power mod-
els using performance counters as effective proxies for x86
systems. However, all the previous techniques assume the
existence of power sensors and do not perform their power
modeling at the fine-grain level.

• The blind identification approach: it makes no assumption
about the availability of modelingmatrices and the fine-grain
power sensors. This approach relies on the total power and
the fine-grain thermal sensors to estimate both the modeling
matrices and the power sources [30]. This technique relies
on the steady state thermal data to estimate the B matrix,
However, usually in practice it is not possible to reach steady
thermal state on modern SoCs. This affects the accuracy of
the model and makes it less convenient to use in practice.

The challenging task of getting fine-grain power measurements
has led to the existence of only few studies that provide useful
insights about the power consumption and efficiency of the different
SoC hardware units while stressed by various software applications
[8, 27, 33].

In this paper, we introduce the first Alternating Blind Identifica-
tion technique of Power sources (Alternating-BPI). The proposed
approach achieves a better accuracy than previous blind identifica-
tion techniques. It is verified and used to characterize the power

Algorithm 1: Alternating Blind Identification of Power
Sources
Input: Temperatures t(k) , Total power of p(k)
Output: Natural Response Matrix A, Forced Response

Matrix B, Power Profiles p(k)

1 Find the Natural Response Matrix A through the least
square minimization:

min |t(𝑘) − At(𝑘 − 1) |2

under the constraint A ⪰ 0

2 Initialize the B matrix :

R = (J + I)/3

B = (I − A)R
where I is the identity matrix, J is an all ones matrix, and R
is the thermal transfer matrix

3 Repeat Power and B-Matrix estimation steps for n times:

4 P-step: Using quadratic programming find p(k) ⪰ 0 such
that:

min ∥Bp(𝑘) − (t(𝑘) − At(𝑘 − 1))∥2

∥p(𝑘)∥1 = ptot (k)
where ptot (k) is the measured total power at time k

5 B-step: Using least square minimization find B given p(k)
and A :

min |Bp(𝑘) − (t(𝑘) − At(𝑘 − 1)) |2

6 Runtime estimation: Given the A and B, and the target
thermal and total power data, solve the quadratic
programming of the P step.

profile of several benchmarking Apps on a commercial SoC, in-
cluding : CPU, GPU, Artificial Intelligence (AI) , Virtual Reality
(VR), Augmented Reality(AR) Apps. Finally, the paper provides in-
sights about the main sources of power consumption and the power
efficiency of the different hardware units.

3 ALTERNATING BLIND IDENTIFICATION OF
POWER SOURCES

3.1 The proposed approach
The proposed technique consists of two steps: Off-line Training step
and Runtime Estimation step. The Off-line Training step needs to
be run only once for each SoC, to capture the modeling matrices.
The Runtime Estimation needs to be run each time the per-SoC unit
power needs to be identified, its little computation overhead allows
it to run on the device in runtime.

In the Off-line Training step a training data is required as input.
It consists of the per-unit SoC thermal measurements and the to-
tal power consumption. The thermal measurements are generated
while stressing the SoC hardware units using different patterns sep-
arated by sleep periods. This allows to capture thermal transients,

Thermal
Transients

Identification

(Target Data)

Thermal
Transients

“A”

“B”

(Training
Data)

Identification
of the Power

Sources

“A” Matrix

Identification

“A” Matrix

Alternating-BPI Tool

Power
per-SoC Unit

Total power + Temp. per-SoC Unit

Total power +
Temp.

per-SoC Unit
 Runtime

Estimation Off-line Training

“B” Matrix

Identification

Figure 1: The Alternating-BPI tool

and the contribution of the different units to the total power. The
output of the Off-line Training is the state space model matrices A
and B. On Algorithm 1, the Off-line Training step is shown through
lines 1 to 5, which shows how the A and B matrices of model (1)
are identified.

First, the natural response matrix is estimated using the transient
temperature traces. After stressing the cores with a workload, the
power is forced to p(k)=0. In practice, this could be achieved by
stopping the running workload, and turning-off the target hardware
units. Thus from Equation 1, we get:

t(𝑘) = At(𝑘 − 1), (2)

Equation 2 is used to determine theAmatrix through least square
minimization, as shown in line 1 of Algorithm 1. This minimization
is solved under the positivity constraint of the A matrix, since the
A matrix represents the thermal conductance matrix, as explained
earlier in Section 2.

Next, the goal is to make an initial guess about the B matrix.
During a steady temperature state, there is no thermal variation, so
the temperature at time 𝑘 would be equal to temperature at time
𝑘 − 1, i.e. t(𝑘) ≈ t(𝑘 − 1) = t𝑠 , which gives the following using
Equation 1:

t𝑠 ≈ At𝑠 + Bp𝑠 , (3)

t𝑠 ≈ (I − A)−1Bps, (4)

ts ≈ Rps, (5)

where ts and ps represent the temperature and the power at the
steady-state, and the R matrix represents the steady-state thermal
transfer matrix. The previous equations help in defining the thermal
transfer matrix R as:

R = (I − A)−1B, (6)

based on the physical relationship between power and temperature
on a multi-unit configuration, the R matrix should be a symmetric

matrix with maximum values on the diagonal. Thus, the initializa-
tion shown in line 2 of Algorithm 1. The initial guess about the R
matrix is then used to initialize the B matrix using:

B = (I − A)R, (7)

after initializing the B matrix, in line 3 to 5 of Algorithm 1 we
determine the B matrix by alternating n times between two steps,
n being a hyperparameter:

• P-step: estimates p(k), the power consumption per-SoC unit,
given an initial guess of the B matrix. This is achieved by
solving the quadratic programming optimization shown in
line 4 of Algorithm 1. The optimization is solved under two
constraints. The first constraint is the positivity constraint of
p(k), since it represents power values. The second constraint
ensures that the sum of the power consumption of the SoC
units at time 𝑘 , is equal to ptot (k), the measured total power
at time 𝑘 . The number of unknowns in this step is equal
to the number of the target SoC units times the number of
timestamps.

• B-step: estimates the B matrix using least squares minimiza-
tion, as shown in line 5 of Algorithm 1, given p(k) from the
P-step and the Amatrix from line 1 of Algorithm 1. The num-
ber of unknowns in this step is equal to number of elements
of the B matrix, which is the square of the number of SoC
units, for which the power is identified.

After identifying the modeling matrices A and B, in the Runtime
Estimation step any thermal and power data can be given as input
to estimate the power per-SoC unit. The Runtime Estimation step
estimates the power per-SoC unit by solving the same quadratic
programming as in the P-step. The user will have to only provide the
temperature values per-SoC unit and the total power consumption,
this data will be used along with the A and B matrices determined
in the off-line training step, to determine the power consumption
per-SoC unit.

3.2 The Alternating-BPI tool
The goal of the Alternating-BPI tool is to make the fine-grain power
analysis under various devices seamless and straightforward. This
would enable the research community with a tool that helps in
providing useful insights, in order to improve modern SoCs. The
Alternating-BPI tool [9] , shown in Figure 1, puts under the same

Figure 2: The verification and testing flow of the Alternating-BPI

package Algorithm 1 and the necessary data processing techniques
to automate the whole process of the blind power identification.

As shown in Figure 1, the tool is composed of anOff-line Training
step and Runtime Estimation step. During the Off-line Training the
tool processes the data and estimates the A and B matrices. Then,
during the Runtime Estimation, it estimates the power per SoC unit
of any given data. The composing elements of the tool shown in
Figure 1 are explained below:

• The training data: is a matrix that includes the total power
consumption of the SoC on the first column, and the temper-
ature per-SoC unit on the remaining columns. The training
data should be generated by stressing the different SoC units
in different patterns, separated by idle states, where a pattern
is identified as a combination of active and idle SoC units.
The best results are obtained when the data is collected for all
the possible patterns, which requires going through all the
possible configurations of active and idle SoC units. Collect-
ing the thermal data for different patterns helps in estimating
the contribution of each SoC unit to the total power, while
the idle states help in creating transient thermal state data,
that is used to estimate the A matrix.

• The target data: this data does not have to follow any spe-
cific patterns as required for the training data. The target
data represents the data points for which the user wants to
identify the power consumption per-SoC unit. It consists of
the total power consumption and the temperature per-SoC
unit.

• Thermal transients identification: the goal of this step is to
identify the thermal transients on the training data. The ther-
mal transients correspond to a natural response temperature
variations that are described by Equation 2. The thermal
transients are identified by tracking the thermal variation
over a sliding window, if the thermal variation exceeds a
certain predefined threshold, it is considered as a thermal
transient. When a thermal transient is detected, the thermal
data points within a predefined range are considered as part
of the thermal transient trace and are saved in a matrix. This

process is applied to all the training data until all the tran-
sient states are detected and recorded. The output of this
step, is the thermal transient states.

• AMatrix identification: This step uses the thermal transients
identified in the previous step to identify the A matrix, as
shown on line 1 of Algorithm 1.

• B Matrix identification: This step estimates iteratively the B
Matrix using the training data given as input, by alternating
between the estimation of the B matrix and p(k), as shown
on line 2 to 5 of Algorithm 1.

• Identification of the power sources: This step is about the
identification of the power consumption per-SoC unit of the
target data, given the A and B matrices. This corresponds to
the runtime estimation step explained in Algorithm 1. This
step is fast enough to generate the power values in real-time,
for instance, using an Intel I5 CPU processor, it takes as low
as 1.5 ms to generate the power data of 8 SoC units for one
timestamp. This makes the proposed technique fast enough
to be deployed to generate power predictions in real-time.

4 EXPERIMENTS AND RESULTS
4.1 Experimental setup
Simulation setup: the accuracy of the proposed technique is veri-
fied using theHotSpot thermal simulator [20]. As shown on Figure 2,
for a given design layout, the HotSpot thermal simulator [20] takes
as input the per-unit power traces, and produces the corresponding
per-unit temperature traces. Figure 2 shows that the per-unit tem-
perature traces, from the HotSpot simulator [20], are then taken
as input by the proposed Alternating-BPI tool along with the to-
tal power. The estimated per-unit power, by the Alternating-BPI
tool, is then computed. Finally, the accuracy of Alternating-BPI is
computed by comparing the difference between the per-unit power
traces given to HotSpot [20] as input, and the estimated per-unit
power by the Alternating-BPI.

We follow the same methodology as in [31], and we choose three
different floorplan benchmarks:

• 2x2 mesh : a floorplan composed of 4 units with a total
maximum power budget of 80 W, and 1 cm x 1 cm as the
floorplan dimensions.

• 3x3 mesh : a floorplan composed of 3 units with a total
maximum power budget of 80 W, and 1 cm x 1 cm as the
floorplan dimensions. This floorplan was chosen to test how
the increase in the number of units could affect the per-unit
power accuracy.

• big.LITTLE+GPU : as shown on Figure 3, this floorplan is
composed of 6 units, with a total maximum power budget
of 15 W, and 1 cm x 1 cm as the floorplan dimensions. This
floorplan was chosen to test how the heterogeneity of the
architecture could affect the per-unit power accuracy. Addi-
tionally, this floorplan benchmark reflects better the existing
SoCs, which are mainly based on heterogeneous architec-
tures.

Development board setup: There is no way to verify the accu-
racy of the per-unit power estimation on a real device, due to the
lack of per-unit power sensors. Actually, the true motivation be-
hind the proposed Alternating-BPI technique is to provide per-unit
power estimations, based on the per-unit temperature measure-
ments, due to the non-existence of per-unit power sensors. Despite
this, a validation test could still be performed on a real device, by
running different workloads and contrasting the per-unit power
numbers based on the hardware specification of each unit, which
could validate the results. For instance, the power consumption of
the GPU should be significantly higher when running a GPU bench-
mark, as compared to running a CPU Benchmark. Additionally, we
know from the hardware specification that certain CPU cores are
designed for power efficiency, while other cores are designed to
provide maximum performance, based on this we would expect
the power numbers of the power efficient cores to be significantly
lower, after taking into consideration the hardware utilization num-
bers. However, the exact accuracy of the proposed technique would
still be verified based on the simulation data.

Thus, the applicability of the proposed Alternating-BPI is tested
on the Snapdragon-865 hardware development board [28], shown
on the left side of Figure 4, which runs using the state of the
art Snapdragon-865 SoC. It has a 4+3+1 CPU based on the ARM
big.LITTLE architecture. More precisely, the CPU is composed of
four "LITTLE" cores that are designed for energy efficient comput-
ing, they have a maximum frequency of 1.8 GHz, four "big" cores
that are designed to provide maximum performance, three of them
run at a maximum frequency of 2.42 GHz, and one big core that runs
at a maximum frequency of 2.84 GHz [2, 29]. The SoC integrates:
the Adreno 650 GPU, the Qualcomm Hexagon 698 DSP, which is
referred to as CDSP in this paper, and the Qualcomm Spectra 480
image signal processor, which is referred to as SDSP. We divide the
previously mentioned hardware blocks to six clusters, as shown in
Table 2, for which we try to identify the power. In order to get in-
sights that reflect the real behavior of mobile devices, the frequency
is dynamically scaled by the default governor of the device during
the experiments related to the power analysis .

The thermal traces are collected by reading the SoC embedded
thermal sensors using a C code that runs on the device. As shown
on the right side of Figure 4, we used the Monsoon HV power
monitor AAA10F to measure the total power.

Figure 3: Layout of the big.LITTLE+GPU SoC [16] used for
the testing of the Alternating-BPI

4.2 Results
Verification using simulation:We choose three different floor-
plans as benchmarks, including a big.LITTLE+GPUfloorplan, shown
on Figure 3, which is similar to the architecture of the Snapdragon-
865 SoC used later for the experimental validation of theAlternating-
BPI.

We compare against BPI [30], which is the first work to introduce
a blind approach for the identification of power sources. BPI [30]
relies on the non negative matrix factorization (NMF) [23] to iden-
tify the B matrix. However, the accuracy of the NMF [23] output is
sensitive to the initialization step. Thus, we additionally compare
against another version of BPI [33] that improved the initialization
step by relying on the steady state temperatures, which we refer to
as BPISS [33].

As shown in Table 1, the proposed technique was able to esti-
mate the power with a better accuracy than BPI [30] and BPISS
[33] for the three floorplan benchmarks. The power identification
is supposed to be more difficult for a higher number of clusters,
as well as, for heterogeneous systems like the big.LITTLE+GPU
architecture.

As shown in Table 1, contrasting the results of the 2x2 mesh
with the 3x3 mesh, we realize that as the number of units increased,
the estimation error of both BPI [30] and BPISS [33] increased
to 9.92% and 6.5%, respectively. On the other hand, the proposed
Alternating-BPI was able to estimate the power with a better accu-
racy, without any significant increase in the estimation error, as the
number of units increased. More precisely, the estimation error of
the Alternating-BPI for the 2x2 mesh and the 3x3 mesh was 2.44%
and 2.48%, respectively.

Contrasting the results of the 3x3 mesh to the big.LITTLE+GPU,
we notice that as we moved to a heterogeneous design,the estima-
tion error of both BPI [30] and BPISS [33] increased to 11.19% and
8.84%, respectively. On the other hand, the proposed Alternating-
BPI was able to estimate the power with a better accuracy, as low
as 1.92%, without any increase due to the heterogeneity of the
architecture.

Figure 5 shows the predicted power by Alternating-BPI and
BPISS [33], as compared to the actual power per-cluster for the

Figure 4: The used setup for the experimental verification
of Alternating-BPI: the 865-HDK on the left side, and the
Monsoon power monitor on the right side.

Table 1: The power estimation error of the Alternating-BPI
against BPI and BPISS using three floorplan benchmarks

BPI [30] BPISS [33] Alternating-BPI
2x2 mesh (4 units) 4.42 % 4.40 % 2.44 %
3x3 mesh (9 units) 9.92 % 6.5 % 2.48 %

big.LITTLE+GPU (6 units) 11.19 % 8.84 % 1.92 %

big.LITTLE+GPU floorplan benchmark. As shown, BPISS [33] abil-
ity to correctly estimate the power varies across the different power
pulses and clusters. On the other hand, Alternating-BPI was able
to predict with a high accuracy the power of the different clusters,
and maintain such level of accuracy across the different power
pulses and clusters. For instance, BPISS [33] was able to achieve a
much better accuracy for Cluster 3, as compared to the estimation
accuracy for Cluster 1 and Cluster 2. On the other hand, the power
estimation of the proposed Alternating-BPI for the three clusters
was equally accurate, while out-performing the accuracy of the
other technique significantly.

The accuracy improvement of the per-unit power estimation
of the Alternating-BPI, as compared to BPI [30] and BPISS [33], is
mainly due to the better estimation of the B matrix. Both BPI [30]
and BPISS [33] rely on the steady state-thermal data to estimate
the B matrix. On the other hand, the Alternating-BPI relies on the
iterative process introduced in Algorithm 1, that uses the whole
data to improve the accuracy across the different iterations.

Development board testing: We used the Snapdragon-865
HDK to test the proposed technique by identifying the state space
model matrices and estimating the power per cluster. As previously
mentioned, we divide the SoC to 6 clusters. As shown on Table 2:

• Cluster 1: "LIT" is composed of the four little cores of the
CPU. The four cores run at the same frequency and they
could reach a maximum frequency of 1.80 GHz.

• Cluster 2: "Big" is composed of the first three cores of the
big CPU cluster. The three cores run at the same frequency
and they could reach a maximum frequency of 2.42 GHz.

Table 2: The hardware blocks composition of each cluster

Clus. 1:
LIT

Clus. 2:
Big

Clus. 3:
Big4

Clus. 4:
GPU

Clus. 5:
CDSP

Clus. 6:
SDSP

Hardware
Blocks

Core 1 Lit.
Core 2 Lit.
Core 3 Lit.
Core 4 Lit.

Core 1 Big
Core 2 Big
Core 3 Big

Core 4 Big GPU CDSP SDSP

• Cluster 3: "Big4" is composed of the fourth core of the big
CPU cluster. This core runs at a different frequency than the
"Big" cluster, and could reach a maximum frequency of 2.84
GHz.

• Cluster 4: "GPU" is composed of the Adreno 650 GPU and
could reach maximum frequency of 587 MHz.

• Cluster 5: "CDSP" is composed of the Qualcomm Hexagon
698 DSP, which is supposed to be the neural engine of the
865 SoC.

• Cluster 6: "SDSP" the Qualcomm Spectra 480 image signal
processor.

The training data for the Snapdragon-865 HDKwas generated by
coding software kernels that stress the different SoC units in various
patterns, while collecting thermal and power data, around 80 pulses
were collected. The training data was used to train BPI [30], as
well as the proposed Alternating-BPI technique. Even though in
practice we can not verify the accuracy of the results, analysing the
per-SoC unit power traces as compared to the stress patterns helps
in making a guess about the validity of the results. The BPI [30]
results for 80 pulses seemed to be invalid, because of the existence
of various red-flags. For instance, for the same hardware utilization,
the power consumption of the little cluster was predicted by BPI
[30] to be higher than the power of the Big cluster. This implies
that BPI [30] needs much more data to start converging towards
more reasonable results.

On the other hand, Figure 6 shows the temperature per cluster,
the total power and the estimated power per-cluster, as estimated
by the proposed Alternating-BPI, using 80 pulses, knowing that
more data would help in making better power estimation. It has
to be mentioned that a hardware SoC unit could highly affect the
temperature of other units, based on their location in the layout,
and the amount of power being dissipated. In the following we
show an analysis of Figure 6:

• [0 s - 500 s]: we stress the Little, the Big, the Big4 and the
GPU clusters, and we can see their estimated power profile
increase accordingly. The Big cluster has the highest power
profile, which makes sense, because it is composed of 3 big
ARM cores. On the other hand, the little cluster shows a low
power profile as compared to the big cores and the GPU,
which is due to the fact that the little cores are designed to
be power efficient and they run at a lower frequency.

• [500 s - 1000 s]:we stress only the Big cluster, and as shown
in Figure 6, Alternating-BPI predicted the Big cluster power
to increase to the same level as in the first 500 seconds. The
minor power increase for the other clusters might be related
to leakage power and some minor computation triggered by
the OS.

0 200 400 600 800 1000 1200 1400 1600 1800
samples

0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 1

0 200 400 600 800 1000 1200 1400 1600 1800

samples
0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 2Actual BPISS Alternating-BPI

0 200 400 600 800 1000 1200 1400 1600 1800
samples

0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 3

0 200 400 600 800 1000 1200 1400 1600 1800

samples
0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 4

0 200 400 600 800 1000 1200 1400 1600 1800

samples
0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 5

0 200 400 600 800 1000 1200 1400 1600 1800

samples
0

1

2

3

4

5

Po
w

er
 (W

)

Cluster 6

Figure 5: The accuracy of BPISS vs Alternating-BPI in predicting the power per-cluster for the big.LITTLE+GPU floorplan

Figure 6: The Alternating-BPI estimated power per-SoC Unit of the Snapdragon-865

• [1000 s - 1700 s]:we stress the Big and the Big 4 clusters, and
as shown in Figure 6, Alternating-BPI was able to predict that
the highest power dissipation is coming from the stressed
clusters.

Per-unit power characterization ofmobile apps:we perform
a fine-grain power characterization of various mobile Apps on the

Snapdragon-865 SoC using Alternating-BPI. The used benchmark-
ing apps and the clusters they use are shown on Table 3. The chosen
list includes : CPU, GPU, Virtual Reality (VR), Artificial Intelligence
(AI) and Augmented Reality (AR) Apps. These benchmarks stress
all the clusters in different patterns and different utilization levels.
The bar graph in Figure 6 shows the average power per cluster, per
benchmarking app:

Table 3: The clusters used by the set of benchmarking apps

Clus. 1:
LIT

Clus. 2:
Big

Clus. 3:
Big4

Clus. 4:
GPU

Clus. 5:
CDSP

Clus. 6:
SDSP

Geekbench [15] Yes Yes Yes No No Yes
3DMark [1] Yes Yes No Yes No No
VRMark [36] Yes Yes No Yes No No

AI Benchmark [4] Yes Yes Yes No Yes Yes
AR Civilisations [17] Yes Yes Yes Yes No Yes

• Geekbench [15]: includes 25 multi-threaded workloads
of four different sections: cryptography, integer, floating
point and memory workloads. As shown in Figure 7, the Big
and Big4 clusters consume up to 5 Watts, as compared to
less than 3 watts for most of the other benchmarking apps.
Geekbench relies as well on the little cluster and the SDSP
with a combined power consumption of 2 watts. The results
show that the little cluster, which is designed for low-power
computing, consumes 5x less power than the Big and Big4
clusters. Additionally, the Big4 cluster consumes up to 2x
more power than the four cores of the little cluster, which is
due to the power-hungry architecture and high operational
frequency, that can reach 2.84 GHz. Figure 8 shows that the
power consumption of the CPU (Little + Big + Big4 clusters)
account for more than 75% of the power consumption of the
Snapdragon-865 SoC.

• 3DMark [1]: is a GPU-CPU intensive benchmark that tries
to mimic gaming apps. As shown in Figure 7, the main power
goes to the GPU and the Big clusters, with a combined power
of 3.6 Watts, representing more than 65% of the total power
consumption. Additionally, even when the GPU is highly
utilized, its power consumption is 2.5x less than the power
consumption of the Big + Big4 clusters. Thus, the CPU Big
cluster remains the biggest source of power consumption in
the SoC.

• VRMark [36]: is a virtual reality benchmark that is mainly
CPU intensive. Figure 7 shows that VRMark [36] has the
same power profile as 3DMark [1], except for the GPU that
consumes 2x less power the VR benchmark, as compared to
the GPU benchmark. Figure 8 shows that for VRMark more
than 65% of the power consumption is coming from the CPU.

• AI Benchmark [4]: runs 46 AI computer vision tests, that
mainly run on the CPU. Figure 7 shows that AI Benchmark
[4] has lowest power profile amongst the benchmarking
Apps, with 3x less power consumption than Geekbench on
the CPU. Figure 8 shows that 70% of the power consumption
is coming from the CPU.

• ARCivilisations [17]: is an Augmented Reality (AR) educa-
tional app. Figure 7 shows that the AR App is CPU-hungry,
with up to 3 watts consumed by the Big + Big4 clusters,
which represents 50% of the total power consumption. Even
if it is an AR App, Figure 8 shows the GPU represents only
10% of the total power consumption, while the little cluster,
which is designed for low-power computing, consumes up to
20% of the total power consumption. This should be related

LIT Big Big4 GPU CDSP SDSP
0

0.5

1

1.5

2

2.5

3

3.5

Po
w

er
 (W

)

Geekbench
3DMark
VRMark
AI Benchmark
AR Civilisations

Figure 7: The Alternating-BPI estimated power per-SoC Unit
of the Snapdragon-865 for the benchmarking apps

the low 3D rendering utilization of AR Apps, as compared
to Gaming Apps.

The main insights that Figures 7 and 8 show are:
• The CPU remains the main source of power consump-
tion: even with the new computing units that have been
integrated to modern Mobile SoCs, like the GPU, the image
signal processor and neural engine, the CPU is still the main
source of power consumption, representing around 60% to
75% of the total power for CPU, GPU, VR, AI or AR Apps.

• The little cluster plays a major role in saving power:
the four cores of the little cluster are highly utilized by most
Apps, yet the power consumption of the little cluster is 5x
less than the Big and Big4 clusters. The inclusion of more
than four cores, based on the LITTLE cores architecture,
would strongly enable power efficient computing.

• The CPU frequency boost has a very low power effi-
ciency: the 20% frequency boost of the Big4 core, as com-
pared to the cores of the Big cluster, increases the power
consumption of the Big4 core by almost 2x. Mathematically,
this makes sense because the dynamic power is proportional
to the voltage square multiplied by the frequency, knowing
that the frequency and the voltage on Mobile SoCs are scaled
dependently of one another, and this dependence is approxi-
mately linear. Thus, the dynamic power is proportional to
the cubic of the frequency [21]. This makes the frequency
boost highly costly from a power consumption perspective,
and makes the power efficiency drop drastically, because a
20% frequency boost will not translate to 2x performance
boost.

• The Augmented Reality Apps have a high CPU power
profile and a low GPU power profile: the Augmented
Reality (AR) App shows an average CPU power consumption
of 4.5 Watts, which accounts for 75% of the total power
consumption of the SoC. On the other hand, The GPU which
runs the 3D rendering, accounts for only 9% of the total
power consumption.

• The GPU is highly power efficient: 3DMark [1] is mainly
about 3D rendering and the GPU handles most of its com-
putation, however, it is average power consumption is only
1.85 Watts, which represents only 30% of the total power
consumption, and which is 2x less than the total CPU power

Geekbench 3DMark VRMark AI Bench. AR Civi.
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

LIT
Big
Big4
GPU
CDSP
SDSP

Figure 8: The Alternating-BPI estimated percentage power
consumption of per-SoC Unit of the Snapdragon-865 for the
benchmarking apps

when running GPU workloads, and 3.5X less than the total
CPU power when running CPU workloads.

Per-process power characterization: the enabled power char-
acterization at the hardware block level, using the proposed tech-
nique, could be used to take the power characterization to even a
more fine grain level. More precisely, estimating the power con-
sumption per process running on the device. The per-unit power
characterization allows to give insights that are more hardware
oriented. For instance, estimating the power efficiency of a cer-
tain SoC unit as compared to other units. On the other hand, the
per-process power characterization allows to give insights that are
more software oriented. For example, it allows to identify the most
power hungry processes and to improve their efficiency.

Estimating the per-process power consumption could be achieved
by measuring the hardware utilization per-block of the different
processes, then partitioning the per-block power values across the
different processes, based on the utilization numbers. For instance,
if a certain process is taking 30% of the hardware utilization of a
certain unit, while a second process is taking 70% utilization, then
the power consumption of the first process should represent 30%
of the total power consumption of the unit, while the power con-
sumption of the second process should account for 70% of it. It is
worth mentioning that the utilization that is being referred to in
here, is the normalized utilization, which takes into account both
the frequency and the utilization of the corresponding unit. More
precisely, the normalized utilization is computed by multiplying
the current frequency by the current utilization and dividing by the
maximum possible frequency of the unit.

In order to demonstrate this, we collect the hardware utilization
of the different Augmented Reality processes, using Snapdragon
Profiler, while running AR Civilisation on the 865 HDK. Using
the Alternating-BPI we get the power consumption per hardware
block, and then we partition the power across the different tasks.
The processes in question are:

• Operating system processes: this includes all system related
threads. Most of these threads are kernel threads, and they
usually run on the little cluster and the Big4 core, taking
around 19% of the little cluster utilization, and roughly 1%
of the Big4 core utilization.

Figure 9: The percentage power consumption of the Aug-
mented Reality processes, while running AR Civilisation on
the 865 HDK

• Image processing processes: this includes all the threads that
handle the camera sensor readings, and the image filtration
and calibration. These processes usually run on the little
cluster and the SDSP. They take around 54% of the utilization
of the little cluster, and 20% of the utilization of the SDSP.

• SLAM+Appworkload processes: these threads are related to
Simultaneous localization and mapping (SLAM) algorithm,
which includes computer vision and object tracking, posi-
tional and GPS data reading, synchronization and sensor
fusion. These threads usually run on the Big cluster, taking
around 26% of its utilization, and on the Big4 core, taking
10% of its utilization in average.

• 3D Rendering processes: this simply include the processes
that run on the GPU to execute the 3D rendering the Aug-
mented Object. This usually takes around 15% of the GPU
utilization in the case of AR Civilisation.

• Other: this includes all other threads that are not part of
the previously mentioned processes, and that get triggered
randomly.

Figure 9 shows the percentage power consumption of each Aug-
mented Reality process of AR Civilisation:

• Operating system processes: consume around 5% of the total
power, which ismainly due to the fact that the system threads
run on the little cluster, making it power efficient to run the
system tasks.

• Image processing processes: consume around 27% of the
total power, which is the second highest power hungry task
of the AR pipeline. The image processing is a substantial
component of the total power in AR civilisation, because
the App relies constantly on the camera feed. This power is
mainly consumed on the little cluster and the SDSP.

• SLAM + App workload processes: are the most power hun-
gry processes, representing around 53% of the total power
consumption. The localization and mapping computation is

quite intensive, and many papers from the literature have
been trying to improve the computational efficiency of SLAM
algorithms [6, 13, 14]. Most of the SLAM power is consumed
on the Big cluster cores.

• 3DRendering processes: consumes only 9% of the total power
consumption. This makes sense, because the hardware uti-
lization of the GPU is pretty low when using AR Civilisation,
which is due to the fact that only the AR object is being
rendered, while most pixels are just coming from the camera
feed, as opposed to 3D games or Virtual Reality Apps, where
the whole scene is being rendered.

These insights could be used to improve the power efficiency of
Augmented Reality Apps by focusing on the most power hungry
tasks, for instance, one direction could be to off-load the SLAM
algorithm to the cloud.

Most importantly, the previous experiments demonstrate that
the proposed tool could be used to conduct experiments and investi-
gations to characterize the power consumption at a fine grain-level,
which is an important step towards making, both the hardware and
the software, power-efficient.

5 ACKNOWLEDGEMENT
This research was supported by Meta Platforms.

6 CONCLUSION
Mobile SoCs lack the ability to sense the power at SoC unit level.
The existing power identification techniques rely on certain as-
sumptions, and they lack accuracy and practicality, which makes
it challenging to get useful insights about the fine-grain power
profiles of mobile SoCs, knowing that such insights are critical
for the design and improvement of these SoCs. In this work we
proposed a new technique for blind identification of power sources.
The technique relies on an Alternating-BPI approach, which allows
a faster convergence, a better accuracy and practicality than pre-
vious blind identification techniques, as it does not require steady
thermal states. The proposed approach decreases the estimation
error to 1.9%, as compared to 11.2% for BPI [30]. The accuracy of
proposed work was verified using simulation and validated using
experimental data on a commercial development board. Addition-
ally, the new approach was used to characterize the per-unit power
profile of several bencharmaking Apps on a commercial SoC, in-
cluding : CPU, GPU, Artificial Intelligence (AI) , Virtual Reality
(VR), Augmented Reality (AR) Apps. The power characterization
provides insights about the main sources of power consumption
and the power efficiency of the different hardware units. Some of
the insights include: (1) Even with the new computing units inte-
grated to modern Mobile SoCs, the CPU is still the main source of
power consumption, representing around 60% to 75% of the total
SoC power. (2) The little CPU cluster plays a major role in sav-
ing power, with a power consumption that is 5x less than the big
CPU cluster. (3) The GPU power consumption for AR Apps, repre-
sents only 9% of the total SoC power consumption, while the CPU
represents 75% of the total SoC power consumption. Furthermore,
using the hardware utilization of the different processes and the
per-unit power provided by the proposed technique, we perform
a per-process power characterization of the different processes of

an Augmented Reality application, and we show the percentage
power consumption of each process. Finally, the technique is used
to design a plug and play tool, that is made publicly available [9] ,
and that allows to estimate the per-unit power consumption.

REFERENCES
[1] Benchmark 3DMark. 2018. 3DMark GPU Benchmark. https:

//www.3dmark.com/
[2] Android Authority. 2019. Qualcomm Snapdragon 865 specs:

Everything you need to know. https://www.androidauthority.
com/qualcomm-snapdragon-865-specs-1058483/

[3] Andrea Bartolini, Matteo Cacciari, Andrea Tilli, and Luca
Benini. 2011. A distributed and self-calibrating model-
predictive controller for energy and thermal management
of high-performance multicores. In 2011 Design, Automation
& Test in Europe. IEEE, 1–6.

[4] AI benchmark. 2020. AI Benchmark. https://ai-benchmark.
com/

[5] Francesco Beneventi, Andrea Bartolini, Andrea Tilli, and Luca
Benini. 2012. An effective gray-box identification procedure
for multicore thermal modeling. IEEE Trans. Comput. 63, 5
(2012), 1097–1110.

[6] Kevin Brink, Ryan Sherrill, Jamie Godwin, Jincheng Zhang,
and Andrew Willis. 2020. Maplets: An Efficient Approach for
Cooperative SLAM Map Building Under Communication and
Computation Constraints. In 2020 IEEE/ION Position, Location
and Navigation Symposium (PLANS). IEEE, 367–374.

[7] David Brooks, Vivek Tiwari, and Margaret Martonosi. 2000.
Wattch: A framework for architectural-level power analysis
and optimizations. ACM SIGARCH Computer Architecture
News 28, 2 (2000), 83–94.

[8] Huixiang Chen, Yuting Dai, HaoMeng, Yilun Chen, and Tao Li.
2018. Understanding the characteristics of mobile augmented
reality applications. In 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE,
128–138.

[9] Sofiane Chetoui. [n. d.]. SCALE lab tools. https://scale.engin.
brown.edu/software/

[10] Ryan Cochran and Sherief Reda. 2010. Consistent runtime
thermal prediction and control through workload phase de-
tection. In Design Automation Conference. IEEE, 62–67.

[11] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul
Khanna, and Christian Le. 2010. RAPL: Memory power estima-
tion and capping. In 2010 ACM/IEEE International Symposium
on Low-Power Electronics and Design (ISLPED). IEEE, 189–194.

[12] Kapil Dev, Abdullah Nazma Nowroz, and Sherief Reda. 2013.
Power mapping and modeling of multi-core processors. In
International Symposium on Low Power Electronics and Design
(ISLPED). IEEE, 39–44.

[13] Taosha Fan, Hanlin Wang, Michael Rubenstein, and Todd Mur-
phey. 2020. CPL-SLAM: Efficient and certifiably correct planar
graph-based SLAM using the complex number representation.
IEEE Transactions on Robotics 36, 6 (2020), 1719–1737.

[14] Qiang Fu, Hongshan Yu, Xiaolong Wang, Zhengeng Yang,
Hong Zhang, and Ajmal Mian. 2020. FastORB-SLAM: A

https://www.3dmark.com/
https://www.3dmark.com/
https://www.androidauthority.com/qualcomm-snapdragon-865-specs-1058483/
https://www.androidauthority.com/qualcomm-snapdragon-865-specs-1058483/
https://ai-benchmark.com/
https://ai-benchmark.com/
https://scale.engin.brown.edu/software/
https://scale.engin.brown.edu/software/

fast ORB-SLAM method with Coarse-to-Fine descriptor in-
dependent keypoint matching. arXiv preprint arXiv:2008.09870
(2020).

[15] geekbench. 2020. Geekbench 4. https://www.geekbench.com/
geekbench4/

[16] Young-Ho Gong, Jae Jeong Yoo, and Sung Woo Chung. 2017.
Thermal modeling and validation of a real-world mobile ap.
IEEE Design & Test 35, 1 (2017), 55–62.

[17] Google. 2020. Civilisations AR. https://play.google.com/store/
apps/details?id=uk.co.bbc.civilisations&hl=en_US&gl=US

[18] Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi. 2016.
Mobile CPU’s rise to power: Quantifying the impact of gen-
erational mobile CPU design trends on performance, energy,
and user satisfaction. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 64–76.

[19] Yin Hang and Hussameddine Kabban. 2015. Thermal manage-
ment in mobile devices: challenges and solutions. In 2015 31st
Thermal Measurement, Modeling & Management Symposium
(SEMI-THERM). IEEE, 46–49.

[20] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik
Sankaranarayanan, Kevin Skadron, and Mircea R Stan. 2006.
HotSpot: A compact thermal modeling methodology for early-
stage VLSI design. IEEE Transactions on very large scale inte-
gration (VLSI) systems 14, 5 (2006), 501–513.

[21] Jae Min Kim, Young Geun Kim, and Sung Woo Chung. 2013.
Stabilizing CPU frequency and voltage for temperature-aware
DVFS in mobile devices. IEEE Trans. Comput. 64, 1 (2013),
286–292.

[22] Yeseong Kim, Pietro Mercati, Ankit More, Emily Shriver, and
Tajana Rosing. 2017. P 4: Phase-based power/performance
prediction of heterogeneous systems via neural networks. In
2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 683–690.

[23] Daniel D Lee and H Sebastian Seung. 1999. Learning the parts
of objects by non-negative matrix factorization. Nature 401,
6755 (1999), 788–791.

[24] Duo Li, Sheldon X-D Tan, Eduardo H Pacheco, and Murli Tiru-
mala. 2010. Parameterized architecture-level dynamic thermal
models for multicore microprocessors. ACM Transactions on
Design Automation of Electronic Systems (TODAES) 15, 2 (2010),
1–22.

[25] A Munier, JR Burgan, J Gutierrez, E Fijalkow, and MR Feix.
1981. Group transformations and the nonlinear heat diffusion
equation. SIAM J. Appl. Math. 40, 2 (1981), 191–207.

[26] Farid N Najm. 1995. Power estimation techniques for inte-
grated circuits. In Proceedings of IEEE International Conference
on Computer Aided Design (ICCAD). IEEE, 492–499.

[27] Edson Luiz Padoin, Laércio Lima Pilla, Márcio Castro, Fran-
cieli Z Boito, Philippe Olivier Alexandre Navaux, and Jean-
François Méhaut. 2015. Performance/energy trade-off in scien-
tific computing: the case of ARM big. LITTLE and Intel Sandy
Bridge. IET Computers & Digital Techniques 9, 1 (2015), 27–35.

[28] Snapdragon Qualcomm. 2020. Snapdragon 865 Mobile Hard-
ware Development Kit. https://developer.qualcomm.com/
hardware/snapdragon-865-hdk

[29] Robin Randhawa. 2013. Software Techniques for ARM big.
LITTLE Systems. ARM, Apr (2013).

[30] Sherief Reda and Adel Belouchrani. 2017. Blind identification
of power sources in processors. InDesign, Automation & Test in
Europe Conference & Exhibition (DATE), 2017. IEEE, 1739–1744.

[31] Sherief Reda, Kapil Dev, and Adel Belouchrani. 2017. Blind
identification of thermal models and power sources from ther-
mal measurements. IEEE Sensors Journal 18, 2 (2017), 680–691.

[32] Sherief Reda, Abdullah N Nowroz, Ryan Cochran, and Stefan
Angelevski. 2013. Post-silicon power mapping techniques for
integrated circuits. Integration 46, 1 (2013), 69–79.

[33] Mostafa Said, Sofiane Chetoui, Adel Belouchrani, and Sherief
Reda. 2018. Understanding the Sources of Power Consump-
tion in Mobile SoCs. In 2018 Ninth International Green and
Sustainable Computing Conference (IGSC). IEEE, 1–7.

[34] Karan Singh, Major Bhadauria, and Sally A McKee. 2009. Real
time power estimation and thread scheduling via performance
counters. ACM SIGARCH Computer Architecture News 37, 2
(2009), 46–55.

[35] Kevin Skadron, Mircea Stan, Marco Barcella, Amar Dwarka,
Wei Huang, Yingmin Li, Yong Ma, Amit Naidu, Dharmesh
Parikh, Paolo Re, et al. [n. d.]. Hotspot: Techniques for mod-
eling thermal effects at the processor-architecture level. Cite-
seer.

[36] VRMark VRMark. 2018. https://benchmarks.ul.com/vrmark
[37] Yefu Wang, Kai Ma, and Xiaorui Wang. 2009. Temperature-

constrained power control for chip multiprocessors with on-
line model estimation. ACM SIGARCH computer architecture
news 37, 3 (2009), 314–324.

[38] Kaige Yan, Xingyao Zhang, and Xin Fu. 2015. Characterizing,
modeling, and improving the QoE of mobile devices with low
battery level. In 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 713–724.

[39] Geoffrey Yeap. 2013. Smart mobile SoCs driving the semicon-
ductor industry: Technology trend, challenges and opportuni-
ties. In 2013 IEEE International Electron Devices Meeting. IEEE,
1–3.

[40] Ying-Ju Yu and Carole-Jean Wu. 2017. Understanding the
thermal challenges of high-performance mobile devices with
a detailed platform temperature model. In 2017 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). IEEE,
122–123.

https://www.geekbench.com/geekbench4/
https://www.geekbench.com/geekbench4/
https://play.google.com/store/apps/details?id=uk.co.bbc.civilisations&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=uk.co.bbc.civilisations&hl=en_US&gl=US
https://developer.qualcomm.com/hardware/snapdragon-865-hdk
https://developer.qualcomm.com/hardware/snapdragon-865-hdk
https://benchmarks.ul.com/vrmark

	Abstract
	1 Introduction
	2 Related Work
	3 Alternating Blind Identification of Power sources
	3.1 The proposed approach
	3.2 The Alternating-BPI tool

	4 Experiments and Results
	4.1 Experimental setup
	4.2 Results

	5 acknowledgement
	6 Conclusion
	References

