
Federated Learning with Buffered Asynchronous Aggregation

John Nguyen Kshitiz Malik Hongyuan Zhan Ashkan Yousefpour
Mike Rabbat Mani Malek Dzmitry Huba

Meta AI

Abstract

Scalability and privacy are two critical con-
cerns for cross-device federated learning (FL)
systems. In this work, we identify that syn-
chronous FL — synchronized aggregation of
client updates in FL — cannot scale efficiently
beyond a few hundred clients training in par-
allel. It leads to diminishing returns in model
performance and training speed, analogous
to large-batch training. On the other hand,
asynchronous aggregation of client updates in
FL (i.e., asynchronous FL) alleviates the scal-
ability issue. However, aggregating individual
client updates is incompatible with Secure Ag-
gregation, which could result in an undesirable
level of privacy for the system. To address
these concerns, we propose a novel buffered
asynchronous aggregation method, FedBuff,
that is agnostic to the choice of optimizer, and
combines the best properties of synchronous
and asynchronous FL. We empirically demon-
strate that FedBuff is 3.3× more efficient than
synchronous FL and up to 2.5× more efficient
than asynchronous FL, while being compati-
ble with privacy-preserving technologies such
as Secure Aggregation and differential privacy.
We provide theoretical convergence guaran-
tees in a smooth non-convex setting. Finally,
we show that under differentially private train-
ing, FedBuff can outperform FedAvgM at low
privacy settings and achieve the same utility
for higher privacy settings.

1 Introduction

Federated Learning (FL) is a distributed learning
paradigm that aims to train a shared model across

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

participants while training data stays on the partici-
pant devices. In this work, we focus on cross-device
FL where participants are edge devices (Kairouz et al.
(2019)), and in particular, aim to address the following
two challenges:

Challenge 1: Scalability. In large-scale cross-device
FL settings, the number of clients can be in the millions,
and only a small fraction of the client population may
be available at any given time for training (Wang et al.
(2021)). Additionally, client devices may have limited
communication bandwidth and compute power. In
these settings, an important parameter is concurrency :
the number of clients training concurrently (i.e., clients-
per-round or cohort size). There is a fundamental
limitation when increasing concurrency in synchronous
FL training: a diminishing return in the speed and
quality of training. In this paper, we propose a novel
buffered asynchronous aggregation optimization that
makes it possible to train using significantly higher
concurrency, improving the performance and efficiency
of FL.

Challenge 2: Privacy. Inference attacks, meth-
ods trying to recover information from gradients, can
expose sensitive information about the participating
clients (Melis et al., 2019; Geiping et al., 2020). Given
this privacy concern, secure aggregation (SecAgg) (Karl
et al. (2020); Bonawitz et al. (2016)) and differential
privacy (DP) (Kairouz et al. (2021); McMahan et al.
(2018)) provide protection against inference attacks
(Watson et al., 2021; Carlini et al., 2020). Using SecAgg,
an honest-but-curious server cannot see the individual
client updates, while DP can protect clients’ data from
observations based on the inputs and the output of
the computation. With SecAgg, DP clipping and noise
addition can be performed on server, providing a better
privacy-utility trade-offs. For many real-world cross-
device FL applications, compatibility with such privacy
enhancing technologies is vital.

Our proposal: FedBuff. Motivated by these chal-
lenges, we propose and analyze FedBuff, a novel
asynchronous federated optimization framework us-
ing buffered asynchronous aggregation. In FedBuff,

Federated Learning with Buffered Asynchronous Aggregation

clients train and communicate asynchronously with the
server. Unlike other asynchronous methods, the server
aggregates K client updates in a secure buffer before
performing a server update. This secure buffer can be
implemented by using Trusted Execution Environments
(TEEs) (Karl et al., 2020; Mo et al., 2021).

Contributions. We highlight the main contribution:

• We propose FedBuff, a novel asynchronous federated
optimization framework with buffered asynchronous
aggregation to achieve scalability and privacy against
the honest-but-curious threat model through secure
aggregation and differential privacy.

• We provide a convergence analysis for FedBuff in
the smooth non-convex setting. When clients take Q
local SGD steps, FedBuff requires O

(
1/(ε2Q)

)
server

iterations to reach ε accuracy (Section 4).

• Empirically, we show that FedBuff is up to 3.8× more
efficient than competing synchronous FL algorithms,
even without penalizing synchronous FL algorithms
for stragglers. We also demonstrate that FedBuff is up
to 2.5× more efficient than the closest asynchronous
FL algorithm in the literature, FedAsync (Xie et al.,
2019). Our extensive empirical evaluation finds that
K = 10 is a good setting across benchmarks and does
not require tuning.

• To the best of our knowledge, we are the first to
propose an asynchronous federated optimization frame-
work that is compatible with SecAgg and global user-
level DP. Under differentially private training, FedBuff
can outperform both synchronous FL with amplified
DP-SGD and DP-FTRL (differentially private Follow-
the-Regularized-Leader) at low privacy settings, and
be competitive for high privacy settings.

2 Background

Synchronous FL. Significant attention has been paid
towards synchronous FL methods (SyncFL), as they
are perhaps easier to analyze and implement. SyncFL
methods are also better suited for privacy – train-
ing and aggregating updates over a large number of
clients render most inference attacks ineffectual (Melis
et al., 2019; Zhu and Han, 2020; Geiping et al., 2020;
Lam et al., 2021). However, synchronous FL methods
are prone to stragglers, proceeding at the pace of the
slowest client. Bonawitz et al. (2019) proposed using
over-selection to tap 30% more clients than the target
cohort size and wait for the fastest replies to overcome
this issue. However, over-selection comes at the cost of
wasting clients’ resources and introduces selection bias.
We study these problems in Appendix C.2 and C.3.

In SyncFL optimization, FedAvg, a generalization of

local SGD, has been shown to work well empirically
(McMahan et al., 2016). FedProx (Li et al., 2018) im-
proves upon FedAvg by adding a proximal term µ to
the local SGD optimizer. FedAvgM (Hsu et al., 2019)
further improves convergence by adding server-side mo-
mentum. Adaptive methods such as FedAdam (Reddi
et al., 2020) are effective in cross-device FL settings
and have comparable performance to FedAvgM. These
optimizers often focus on heterogeneity, asymptotic
convergence, and communication efficiency in low con-
currency settings. In this paper, we focus on high
concurrency settings. In these settings, SyncFL is not
scalable and is inefficient. Typically, the optimal server
learning rate increases with concurrency; aggregating
over more users has a variance-reducing effect, enabling
the server to take larger steps. Consequently, higher
concurrency reduces the number of rounds needed to
reach a target accuracy because of a larger server learn-
ing rate. However, to have stable, convergent training
dynamics, the server learning rate cannot be increased
indefinitely; eventually it saturates, resulting in a sub-
linear speed-up similar to in large-batch training (Goyal
et al. (2017); Ott et al. (2018); You et al. (2019, 2018,
2017); Shallue et al. (2018)). As a result, SyncFL sys-
tems cannot accelerate training through parallelism
beyond a few hundred clients and exhibit decreasing
efficiency with increasing concurrency (Figure 1).

Asynchronous FL. Asynchronous FL methods are a
good match for cross-device FL settings, where clients
have different compute power and intermittent avail-
ability (Wang et al., 2021). Most asynchronous FL
(AsyncFL) works, such as the works (Xie et al., 2019;
van Dijk et al., 2020; Chai et al., 2020; Chen et al.,
2019; Wu et al., 2020; Li et al., 2021) have been fo-
cused on solving the straggler problem by designing
asynchronous FL algorithms. However, these proposals
include aspects that make them impractical for real-
world at-scale FL settings. For instance, Chai et al.
(2020); Li et al. (2021) profile client speed, Chen et al.
(2019) broadcast the model updates to all clients, Xie
et al. (2019) update the server model on every client,
placing a significant burden on the clients and server,
and van Dijk et al. (2020) assume all clients have the
same speed.

In “fully” AsyncFL methods (e.g., Xie et al. (2019)), ev-
ery client update results in a server model update. This
has implications for privacy and scalability. Consider-
ing privacy, when every client update forces a server
update, SecAgg cannot be used; secure aggregation’s
benefit is in hiding individual updates by combining
them in an aggregate. Additionally, providing user-level
DP in AsyncFL is only feasible with local differential
privacy (LDP), where the client clips the model up-
date and adds noise locally to it before sending it to

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

0 200 400 600 800 1000
Concurrently Training Users

0
600

1200
1800
2400
3000
3600
4200
4800
5400
6000
6600

Co
m

m
un

ica
tio

n
Ro

un
ds

Sent140

FedAvgM 69% Accuracy

0 200 400 600 800 1000

Concurrently Training Users
40

80

120

160

200

240

280

320

360

400

Co
m

m
un

ica
tio

n
Ro

un
ds

CelebA

FedAvgM 90% Accuracy

0 200 400 600 800 1000

Concurrently Training Users
100

200

300

400

500

600

700

800

900

1000

Co
m

m
un

ica
tio

n
Ro

un
ds

CIFAR-10

FedAvgM 60% Accuracy

Figure 1: The number of communication rounds to reach a target accuracy with varying levels of concurrency.
SyncFL algorithms such as FedAvgM (Hsu et al., 2019) shows diminishing returns from increasing concurrency
beyond 100. For example, increasing concurrency by 10x (100 –> 1000) decreases the number of communication
rounds by less than 2x. This is analogous to large-batch training, where increasing the batch size eventually gives
diminishing returns.

29

FL as we know it (Synchronous FL) Overview

Waiting for
cohort

Waiting for
straggler

Server Update t

SyncFL
concurrency
at time t

Maximum
concurrency

AsyncFL
concurrency
at time t

AsyncFL SyncFL

Figure 2: Training progress for asynchronous and syn-
chronous FL, and the associated delays. Synchronous
FL proceeds in rounds. The number of active clients
increases at the beginning of a round as clients join
the cohort, and it falls gradually towards the end of
the round due to stragglers. In asynchronous FL, the
number of active clients stays relatively constant over
time; as clients finish training and upload their results,
other clients take their place.

the server. LDP for high dimensional data has been
criticized for poor privacy-utility trade-off (Erlingsson
et al. (2020); Bittau et al. (2017)).

Secure Aggregation. SecAgg is a privacy enhanc-
ing technology based on cryptographic primitives
(Bonawitz et al., 2016; Bell et al., 2020; So et al.,
2021) or hardware-based Trusted Execution Environ-
ment (TEE) (Karl et al., 2020). SecAgg enhances
privacy by obfuscating a client’s update with many
other clients’ updates, protecting against the honest-
but-curious server threat model (Bonawitz et al., 2016).
FedBuff is compatible with SecAgg.

Differential Privacy. DP (Dwork et al., 2014) pro-
vides a rigorous formulation of the release of infor-
mation derived from private data. In the context of
machine learning, differentially private training (Abadi
et al., 2016) limits what can be learned about the
original training data.

Definition 1. A randomized mechanism M: U 7→ R
satisfies (ε, δ)-DP if for all adjacent datasets D,D′ ∈ U
and for any subset of outputs S ⊆ R, the following
holds:

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ.

The definition of adjacent datasets D,D′ is domain
and application dependent. In the context of cross-
device FL, we consider D,D′ to be two datasets of
training examples, where each example is associated
with a client. Then, D and D′ are adjacent if D′ can
be formed by adding or removing all of the examples
associated with a single client from D (i.e., user-level
privacy (McMahan et al., 2018)). In this paper, we
consider the global DP (GDP) setting, where a trusted
server collects, clips, aggregates the client updates.
The server then adds noise to the aggregated updates.
Compared to LDP, GDP provides a better privacy-
utility trade-off for high dimensional data. This setting
of DP relies on a SecAgg on the server, as server is
responsible for operation of DP.

3 FedBuff: Federated Learning with
Buffered Asynchronous Aggregation

We consider the following optimization problem:

min
w∈Rd

f(w) :=
1

m

m∑
i=1

piFi(w) (1)

where m is the total number of clients and the function
Fi measures the loss of a model with parameters w on
the ith client’s data, and pi > 0 weighs the importance
of the data from client i. The goal is to find a model
that fits all clients’ data well on (weighted) average. In
FL, Fi is only accessible by client i. For simplicity, in
this paper, we focus on the unweighted setting, pi = 1
for all i, although the analysis is easily extendable to
the more general case with non-uniform weights.

Federated Learning with Buffered Asynchronous Aggregation

SyncFL methods need to aggregate and synchronize
clients after each round. Hence, concurrency in SyncFL
is equal to the number of clients who participate in a
given round. In asynchronous methods, concurrency
is the number of clients training at a given point in
time (Figure 2). In FedBuff (Algorithm 1), clients enter
and finish local training asynchronously. However, the
server model is not updated immediately upon receiving
every client update. Instead, client updates are stored
in a buffer. A server update only takes place once K
client updates are in the buffer, where K is the size of
the buffer and is a tunable parameter. However, we
find that K = 10 is a good choice and does not require
tuning. The buffer can be implemented by using a
Trusted Execution Environment (TEE) (Karl et al.,
2020; Mo et al., 2021). Note that K is independent of
concurrency — the extra degree of freedom introduced
by the buffer allows the server to choose the model
update frequency instead of coupling concurrency with
the server model update as in SyncFL. The extra degree
of freedom allows FedBuff to achieve data efficiency at
high concurrency while being compatible with secure
aggregation and DP.

FedBuff is compatible with SecAgg, because withK > 1
updates in the buffer, SecAgg provides its promise
by hiding individual updates in the aggregate. Since
FedBuff supports SecAgg, it can be easily extended to
provide global DP. In asynchronous FL settings, the
server has no control over which clients participate
in a particular model update and client availability is
dynamic. For such settings, privacy amplification by
sampling is not feasible. DP-FTRL (Kairouz et al.,
2021) has emerged as a suitable solution to address this
issue. FedBuff with DP-FTRL is straightforward and
we show in Algorithm 1 how one can extend FedBuff to
provide global DP. The three functions, InitializeTree,
AddToTree, and GetSum in Algorithm 1 correspond
to those of the DP-FTRL algorithm. We defer to
Section B.1 in (Kairouz et al., 2021) for more in-depth
descriptions of the functions.

4 Convergence Analysis

In this section, we provide a convergence guarantee
for FedBuff in the smooth, non-convex setting. Most
previous works analyze synchronous federated learning
methods, such as the works in (Lin et al., 2018; Li
et al., 2018; Reddi et al., 2020; Li et al., 2020; Stich,
2019; Yu et al., 2019b; Li et al., 2019; Haddadpour and
Mahdavi, 2019; Karimireddy et al., 2020). In contrast,
in FedBuff, clients train asynchronously, and the client
updates are first aggregated in a buffer before produc-
ing a server model update. Hence, it is essential to
understand the relationship between client computa-
tion and server communication under asynchrony with

Algorithm 1 FedBuff-server
Input: server learning rate ηg, client learning

rate η`, client SGD steps Q, buffer size K

n dataset size, noise scale σ2, clip norm L (DP)
Output: FL-trained global model
1: T ← InitializeTree(n, σ2, L) (DP)
2: repeat
3: c← sample available clients . async
4: run FedBuff-client(wt, η`, Q) on c . async
5: if receive client update then
6: ∆i ← received update from client i
7: ∆i ← Clip(∆i, L) (DP) . in TEE

8: ∆
t ← ∆

t
+ ∆i . in TEE

9: k ← k + 1

10: if k == K then
11: ∆

t ← ∆
t

K

12: T ← AddToTree(T , t,∆t
) (DP) . in TEE

13: ∆
t ← ∆

t
+ GetSum(T , t) (DP) . in TEE

14: wt+1 ← wt − ηg∆
t

15: ∆
t ← 0, k ← 0, t← t+ 1 . reset buffer

16: until Convergence

Algorithm 2 FedBuff-client
Input: server model w, client learning rate η`, number

of client SGD steps Q
Output: client update ∆
1: y0 ← w
2: for q = 1 : Q do
3: yq ← yq−1 − η`gq(yq−1)

4: ∆← y0 − yq
5: Send ∆ to server

buffered aggregation.

Notation. We use the following notation throughout:
[m] represents the set of all client indices, ∇Fi(w) de-
notes the gradient with respect to the loss on client
i’s data, f∗ denotes the minimum of f(w), gi(w; ζi)
denotes the stochastic gradient on client i, K is the
buffer size for aggregation before producing each server
update, and Q denotes the number of local steps taken
by each client. We make the following assumptions
throughout.

Assumption 1. (Unbiasedness of client stochastic gra-
dient) Eζi [gi(w; ζi))] = ∇Fi(w).

Assumption 2. (Bounded local and global variance)
for all clients i ∈ [m],

Eζi|i[‖gi(w; ζi)−∇Fi(w)‖2] ≤ σ2
` ,

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

and

1

m

m∑
i=1

‖∇Fi(w)−∇f(w)‖2 ≤ σ2
g .

Assumption 3. (Bounded gradient) ‖∇Fi‖2 ≤ G for
all i ∈ [m].

Assumption 4. (Lipschitz gradient) for all client i ∈
[m], the gradient is L-smooth,

‖∇Fi(w)−∇Fi(w′)‖
2 ≤ L ‖w − w′‖2 .

Assumptions 1–4 are commonly made in analyzing
federated learning algorithms (Reddi et al. (2020); Li
et al. (2020); Stich (2019); Yu et al. (2019b)). We
make an additional assumption on the staleness under
asynchrony.

Assumption 5. (Bounded Staleness when K = 1)
For all clients i ∈ [m] and for each server step t,
the staleness τi(t) between the model version in which
FedBuff-client uses to start local training, and the
model version in which ∆i is used to modify the global
model is not larger than τmax,1 when K = 1.

Remark. More generally, the staleness upper-bound
depends on the buffer size K. When the buffer size in-
creases, the server iterates are updated less frequently,
hence reducing the number of server steps in between
the initialization of client training and when the client
updates are used for modifying the server model. Specif-
ically, if Assumption 5 holds, then for any execution of
FedBuff with K > 1, the maximum delay τmax,K is at
most dτmax,1/Ke; see Appendix A.

Theorem 1. Let η(q)
` be the local learning rate of client

SGD in the q-th step, and define α(Q) :=
∑Q−1
q=0 η

(q)
` ,

β(Q) :=
∑Q−1
q=0 (η

(q)
`)2. Choosing ηgη

(q)
` Q ≤ 1

L for all
local steps q = 0, · · · , Q−1, the global model iterates in
Algorithm 1 achieves the following ergodic convergence
rate

1

T

T−1∑
t=0

∥∥∇f(wt)
∥∥2 ≤

2
(
f(w0)− f∗

)
ηgα(Q)T

+
L

2

ηgβ(Q)

α(Q)
σ2
`

+3L2Qβ(Q)
(
η2
gτ

2
max,K + 1

)(
σ2
` + σ2

g +G
)

(2)

The proof of Theorem 1 is provided in Appendix D.

Corollary 1. Choosing constant local learning rate η`
and ηg such that ηgη`Q ≤ 1

L , the global model iterates

in FedBuff (Algorithm 1) are bounded by

1

T

T−1∑
t=0

E
[∥∥∇f(wt)

∥∥2
]
≤ 2F ∗

ηgη`QT
+
L

2
ηgη`σ

2
`

+ 3L2Q2η2
`

(
η2
gτ

2
max,K + 1

)
σ2,

(3)
where F ∗ := f(w0)−f∗ and σ2 := σ2

` +σ2
g+G. Further,

choosing η` = O
(
1/
(
K
√
TQ
))
, ηg = O (K), for all

ηg, η` satisfying ηgη`Q ≤ 1
L and sufficiently large T ,

we have

1

T

T−1∑
t=0

E
[∥∥∇f(wt)

∥∥2
]
≤ O

(
F ∗√
TQ

)

+O
(

σ2
`√
TQ

)
+O

(
Qσ2

TK2

)
+O

(
Qσ2τ2

max,1

TK2

)
,

(4)
where we use the relation τmax,K ≤ dτmax,1/Ke.

Corollary 1 yields several insights:

Worst-case iteration complexity. Theorem 1
bounds the ergodic norm-squared of the gradient, a
standard quantity studied in non-convex stochastic op-
timization. If this becomes small as T grows, then
it must be that the norm-squared of the gradient at
later iterations is vanishing, implying the algorithm is
converging towards a first-order stationary point. The
bound in equation (4) contains three terms. The first
is standard, expressing how the initialization impacts
convergence, and it decreases at a rate of O (1/T) as
is standard for SGD. The second two terms depend
on different sources of variance, due to heterogeneity
of functions at different clients (σ2

g), stochasticity of
gradients (σ2

` +G), and stale gradients due to delays
in asynchronous execution (τmax,K). Corollary 1 is de-
rived from Theorem 1 under a specific choice of constant
learning rate, and yields interpretation of trade-offs be-
tween the convergence of loss, local and global variance,
effect of client drift due to local steps, effect of stale-
ness and effect of buffer size. We summarize the these
trade-offs next.

Total communication cost. Since each server
step in FedBuff involves K client trips between the
server and the clients, the total communication cost
is O

(
K/ε2Q

)
+O

(
Qσ2/Kε

)
+O

(
KQσ2τ2

max,K/ε
)
in

order to achieve 1
T

∑T−1
t=0 E

[
‖∇f(wt)‖2

]
≤ ε. This sug-

gests a trade-off in the communication cost introduced
by the effect of the buffer. We empirically investigate
different values of K in Section 6 and observe this
tradeoff in Table 2.

Relation between communication and local
computation. Note that in equation (4), increasing
the number of local steps Q improves the first term

Federated Learning with Buffered Asynchronous Aggregation

related to F ∗ and the second term related to the lo-
cal variance σ2

` , but increases the third and fourth
term. The first term with constant F ∗ characterizes
the distance to optimal loss. Hence, increasing local
computation Q reduces the loss faster, but it also leads
to more drift, enlarging the effect of the local and global
variance sum σ2 and the impact of the worst-case stal-
eness τmax,K .

Effect of staleness. The effect of staleness between
the initialization of FedBuff-client and the server
update dissipates at the rate of O (1/T) according
to the fourth term in equation (4). In addition, the
maximum staleness τmax,K reduces as the buffer size
K grows. (see Appendix A)

5 Practical Improvements

Staleness scaling. To control the effect of staleness
τi(t) in client i’s contribution to the t-th server update,
we down-weight stale updates using the following func-
tion: s(τi(t)) := 1/(1 + τi(t))

0.5, similar to (Xie et al.
(2019)).

Learning rate normalization. In practical FL im-
plementations, each client is typically asked to perform
a fixed number of epochs over their local training data,
rather than a fixed number Q of steps, using a server-
prescribed batch size B which is the same for all clients.
Because different clients have different amounts of data,
some clients may only have a fraction of a batch. Previ-
ous work has suggested that increasing batch size and
learning rate are complementary (Goyal et al., 2017;
Smith et al., 2017; Jastrzebski et al., 2017). When a
client performs a local update with a batch size smaller
than B, we have it linearly scale the learning rate used
for that local step; i.e., ηLRN := η` · nti,q/B, where
nti,q ≤ B is actual batch size used for the step. We
find that this small change can improve FedBuff. A
theoretical justification is provided in Appendix C.6.

6 Experiments

In this section, we compare the efficiency and scalability
of FedBuff with other synchronous and asynchronous
FL methods from the literature via simulation. We
wish to understand how FedBuff behaves under different
values of K, its scalability, and data efficiency.

Evaluation metrics. The standard evaluation met-
ric for FL is the number of communication rounds to
reach a target accuracy. However, asynchronous and
synchronous methods do not have the same notion
of rounds. For this reason, we compare different syn-
chronous and asynchronous methods by the number
of client trips needed to reach a target accuracy. One

client trip corresponds to one client round-trip com-
munication. A client trip involves a client pulling the
latest model from the server (download communica-
tion), performing one epoch of training on the local
dataset (computation), then communicating the model
update to the server (upload communication). Since
the number of client trips measures both communica-
tion and computation costs, we use this as a proxy
for wall-clock training time. We show wall-clock time
simulation with stragglers in Appendix C.2.

Datasets, models, and tasks. We run experiments
on three datasets: CelebA (Liu et al. (2015)), Sent140
(Go et al. (2009)), and CIFAR-10 (Krizhevsky et al.
(2009)). Sent140 is a text classification dataset (binary
sentiment analysis), whereas CelebA and CIFAR-10 are
image classification datasets (multi-class classification).
For Sent140 and CelebA, we use the natural non-iid
client partitions , and similar models from LEAF bench-
mark (Caldas et al. (2018)). For Sent140, we train an
LSTM classifier over 660,120 clients, where each Twit-
ter account corresponds to a client. For CelebA, we
train the same convolutional neural network classifier
as LEAF over 9,343 clients, but with batch normaliza-
tion layers replaced by group normalization layers (Wu
and He (2018)) as suggested in (Hsieh et al. (2020)).
For CIFAR-10, we generate 5000 non-iid clients us-
ing a Dirichlet distribution with parameter 0.1, the
same approach as in (Hsu et al. (2019)). More de-
tails about datasets, models, and tasks are provided in
Appendix B.1.

Experimental setup. We implement all algorithms
in PyTorch (Paszke et al. (2017)). We repeat each
experiment with three different seeds and report the
average. For asynchronous FL methods, we assume
that clients arrive at a constant rate. We sample the
delay distribution, the time delay between a client’s
download and upload operation, from a half-normal
distribution. We choose this distribution because it
best matches the delay distribution observed in our
production FL system (See Appendix C.1). We also
report results with two other delay distributions (uni-
form and exponential) in Appendix C.1. We find that
FedBuff’s performance improvements are consistent
across different delay distributions.

Baselines. We compare FedBuff with three SyncFL
baselines, namely FedAvg (McMahan et al. (2016)),
FedProx (Li et al. (2018)), FedAvgM (Hsu et al. (2019)),
and one AsyncFL baseline, FedAsync (Xie et al. (2019)).
For more details about the algorithms used and the
experimental setup, see Appendix B.2.

Hyperparameters. For all algorithms, we run hy-
perparameter sweeps to tune client and server learning
rates η` and ηg, server momentum β, and the proxi-

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

Figure 3: Number of client trips to reach target validation accuracy for FedBuff + SGD with momentum at the
server and FedAvgM. At low concurrency, FedBuff and FedAvgM perform similarly. However, as concurrency
increases, FedBuff outperforms FedAvgM by increasingly larger amounts. In contrast to FedAvgM, FedBuff’s
data-efficiency and communication-efficiency degrade less with concurrency.

Table 1: Average (speedup) number of client trips to reach target validation accuracy on CelebA and Sent140
(lower is better. Units = 1000 updates). We set concurrency = 1000 for all methods, K = 10 for FedBuff and ran
all methods for 600k client trips. “> 600” indicates the target accuracy was not reached.

Dataset Accuracy FedBuff FedAsync FedAvgM FedAvg FedProx

CelebA 90% 31.9 37.1 (1.2×) 104 (3.3×) 231 (8.5×) 228 (8.4×)
Sent140 69% 124.7 308.9 (2.5×) 216 (1.7×) > 600 > 600
CIFAR-10 60% 67.5 73.3 (1.1×) 122.7 (1.8×) 386.7 (5.7×) 292.7 (4.3×)

mal term µ for FedProx. We set β = 0 for FedAvg.
Each client update entails running one local epoch with
batch size B = 32, rather than a fixed number of lo-
cal steps. See Appendix B.3 for additional details on
hyperparameter tuning.

Concurrency and K. In at-scale cross-device FL,
only a small fraction of all clients participate in training
at any point in time. As discussed earlier, concurrency
— the maximum number of clients that train in par-
allel — significantly impacts the performance of FL
algorithms. For a fair comparison between synchronous
and asynchronous algorithms, we keep concurrency the
same across all configurations. Recall the example in
Figure 2 where concurrency=100. For synchronous
algorithms, this implies that 100 clients are training
and contributing in each round. For asynchronous
algorithms, this implies that 100 clients can train con-
currently, and we can still vary the buffer size K, which
will control how frequently updates occur.

6.1 Results

Comparison of Methods. Table 1 shows the num-
ber of client trips needed to converge to the target
accuracy on Sent140, CelebA and CIFAR-10 for each
method considered. In Table 2, we show results with
other values of K and present the learning curves in Ap-
pendix C.7. Compared to the best synchronous method
in the experiments (FedAvgM), FedBuff converges to

target accuracy 1.7-3.3× more efficient. Compared
to FedAsync, FedBuff converges to target accuracy
1.1-2.5× more efficient.

Scalablility of FedBuff. Figure 3 shows that Fed-
Buff scales much better to larger values of concurrency
than FedAvgM. FedBuff with K = 10 scales better
because it updates the server model more frequently
than FedAvgM in high concurrency. When concurrency
is 10, both FedAvgM and FedBuff update the server
model after every 10 client updates. However, when
concurrency is 1000, FedBuff with K = 10 updates
the server model after every 10 client updates, while
FedAvgM updates the server model after 1000 client
updates. One might argue that FedAvgM should run
at lower concurrency, e.g. 10. However, that leads to
longer wall-clock training time because less parallelism
is exploited. We discuss this problem in Appendix
C.2. For synchronous FL methods, larger concurrency
reduces training time but is also less efficient. On the
other hand, taking server model steps more frequently
is not free; FedBuff has to deal with staleness as a
consequence. Our empirical results show, the benefits
from frequent advancing the server model outweigh the
cost of staleness in client model updates.

Choice of K. Table 2 presents the number of client
trips to reach validation accuracy for different values
of K, with fixed concurrency. We find that K=10 is a
good setting across benchmarks. We analyze FedBuff

Federated Learning with Buffered Asynchronous Aggregation

Table 2: Average ± standard deviation number
of client trips to reach validation accuracy on CelebA
(90%), Sent140 (69%) and CIFAR-10 (60%) (lower is
better, Units = 1000 updates) in FedBuff. We set
concurrency = 1000 for all methods.

Dataset K Client trips
1 32.4 ± 2.0

CelebA 10 31.9 ± 8.9
100 71.6 ± 6.8
1 190.0 ± 11.9

Sent140 10 124.7 ± 25.8
100 178.2 ± 13.1

1 76.7 ± 9.6
CIFAR-10 10 67.5 ± 7.4

100 102.5 ± 2.0

with even larger values of K in Table 6, and show
the training curves of FedBuff and other algorithms in
Appendix C.7.

FedBuff with Differential Privacy. To evaluate
the privacy-utility trade-off of FedBuff, we present the
final test accuracy of FedBuff against synchronous base-
lines after 600 thousands client trips, one pass over the
dataset. Figure 4 illustrates that FedBuff can out-
perform both FedAvgM with amplified DP-SGD and
FedAvgM with DP-FTRL at high values of ε, and be
competitive for lower values of ε. This result illustrates
the FedBuff’s flexibility to be adapted for privacy. Even
with DP, we find that K = 10 is good setting. We find
that a small L can counteract the additional noise from
taking more steps. For more details see Appendix C.5.

7 Related Work

In addition to the discussion in Section 2 on related
works, we discuss the other efforts in related domains.

Asynchronous stochastic optimization. Asyn-
chronous stochastic optimization in shared-memory
and distributed-memory systems has been extensively
studied (Bertsekas and Tsitsiklis (1989); Chaturapruek
et al. (2015); Niu et al. (2011); Lian et al. (2015, 2018);
Chen et al. (2016); Zheng et al. (2017); Mania et al.
(2017); Leblond et al. (2017); Reddi et al. (2015); Ass-
ran et al. (2020)). Asynchronous training is resilient
to stragglers in both centralized and federated settings.
The idea of aggregating K asynchronous updates for
convex objectives has been studied in (Dutta et al.,
2018). However, Dutta et al. (2018) provide a guarantee
for non-convex objectives, but their assumption on the
relationship between staleness and gradient moments
is difficult enforce, in contrast to bounded staleness

Figure 4: Accuracy on Sent140 under different levels of
privacy (δ = 1e−7) for FedBuff with DP-FTRL versus
FedAvgM with DP-FTRL and FedAvgM with amplified
DP-SGD. For all methods, we use momentum at the
server and fix the communication cost at 600 thousands.
For FedBuff, we use K = 10. As for FedAvgM we use
clients-per-round = 1000.

which can be easily enforce. In this work, we consider
heterogeneous objectives and show that in a federated
environment with a large number of clients, the source
of speed-up is not only due to avoiding stragglers but
also achieving better efficiency at high concurrency.

Large-batch training. Many proposals aim to un-
derstand and characterize conditions under which linear
speed-up for distributed SGD and local SGD is achiev-
able (Lin et al. (2018); Yu et al. (2019a); Woodworth
et al. (2020); Haddadpour et al. (2019)). It is well ac-
cepted that increasing concurrency eventually saturates
beyond a certain batch size in synchronous methods
(Yin et al. (2017); Ott et al. (2018); Goyal et al. (2017);
Ott et al. (2018); You et al. (2019, 2018, 2017); Shallue
et al. (2018)). However, most existing research focuses
on scalability across tens of server workers, each having
iid-data - very different from the FL setting.

8 Conclusions

In this paper, we propose FedBuff, an asynchronous FL
training scheme with buffered aggregation. Compared
to SyncFL proposals, FedBuff scales to large values of
concurrency. We analyze the convergence behavior of
FedBuff in the non-convex setting. Empirical evalua-
tion shows that FedBuff is up to 3.3× more efficient
than FedAvgM, and up to 2.5× more efficient than
FedAsync. As for future work, we are aware that Fed-
Buff relies on TEE for SecAgg and TEE has a limited
memory. Moreover, our analyses is on standard SGD.
We leave extending the analysis to include momentum
or adaptive learning rates as future work.

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

Acknowledgements

We would like to thank Ilya Mironov, Maziar Sanjabi,
Graham Cormode, Samuel Horvath and Luca Melis for
the meaningful discussions and their valuable sugges-
tions which significantly improved the quality of this
paper. We would like to also thank our anonymous
reviewers for their insightful feedback.

References

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang. Deep learn-
ing with differential privacy. In Proceedings of the
2016 ACM SIGSAC conference on computer and
communications security, pages 308–318, 2016.

M. Assran, A. Aytekin, H. R. Feyzmahdavian, M. Jo-
hansson, and M. G. Rabbat. Advances in asyn-
chronous parallel and distributed optimization. Pro-
ceedings of the IEEE, 108(11):2013–2031, 2020.

J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and
M. Raykova. Secure single-server aggregation with
(poly) logarithmic overhead. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 1253–1269, 2020.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Dis-
tributed Computation: Numerical Methods. Prentice-
Hall, 1989.

A. Bittau, Ú. Erlingsson, P. Maniatis, I. Mironov,
A. Raghunathan, D. Lie, M. Rudominer, U. Kode,
J. Tinnes, and B. Seefeld. Prochlo: Strong privacy
for analytics in the crowd. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages
441–459, 2017.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba,
A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ,
S. Mazzocchi, H. B. McMahan, et al. Towards feder-
ated learning at scale: System design. arXiv preprint
arXiv:1902.01046, 2019.

K. A. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone,
H. B. McMahan, S. Patel, D. Ramage, A. Segal, and
K. Seth. Practical secure aggregation for federated
learning on user-held data. In NIPS Workshop on
Private Multi-Party Machine Learning, 2016. URL
https://arxiv.org/abs/1611.04482.

S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ,
H. B. McMahan, V. Smith, and A. Talwalkar. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

N. Carlini, F. Tramèr, E. Wallace, M. Jagielski,
A. Herbert-Voss, K. Lee, A. Roberts, T. B. Brown,
D. Song, Ú. Erlingsson, A. Oprea, and C. Raffel.
Extracting training data from large language mod-

els. CoRR, abs/2012.07805, 2020. URL https:
//arxiv.org/abs/2012.07805.

Z. Chai, Y. Chen, L. Zhao, Y. Cheng, and H. Rangwala.
Fedat: A communication-efficient federated learning
method with asynchronous tiers under non-iid data.
arXiv preprint arXiv:2010.05958, 2020.

Z. Charles, Z. Garrett, Z. Huo, S. Shmulyian, and
V. Smith. On large-cohort training for federated
learning. arXiv preprint arXiv:2106.07820, 2021.

S. Chaturapruek, J. C. Duchi, and C. Ré. Asynchronous
stochastic convex optimization: the noise is in the
noise and sgd don’t care. Advances in Neural Infor-
mation Processing Systems, 28:1531–1539, 2015.

J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Re-
visiting distributed synchronous sgd. In International
Conference on Learning Representations Workshop
Track, 2016. URL https://arxiv.org/abs/1604.
00981.

Y. Chen, Y. Ning, M. Slawski, and H. Rangwala. Asyn-
chronous online federated learning for edge devices
with non-iid data. arXiv preprint arXiv:1911.02134,
2019.

S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nag-
purkar. Slow and stale gradients can win the race:
Error-runtime trade-offs in distributed sgd. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 803–812. PMLR, 2018.

C. Dwork, A. Roth, et al. The algorithmic foundations
of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014.

Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghu-
nathan, S. Song, K. Talwar, and A. Thakurta. En-
code, shuffle, analyze privacy revisited: Formal-
izations and empirical evaluation. arXiv preprint
arXiv:2001.03618, 2020.

J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller.
Inverting gradients–how easy is it to break privacy in
federated learning? arXiv preprint arXiv:2003.14053,
2020.

A. Go, R. Bhayani, and L. Huang. Twitter sentiment
classification using distant supervision. CS224N
project report, Stanford, 1(12):2009, 2009.

P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and
K. He. Accurate, large minibatch SGD: training
imagenet in 1 hour. CoRR, abs/1706.02677, 2017.
URL http://arxiv.org/abs/1706.02677.

F. Haddadpour and M. Mahdavi. On the convergence
of local descent methods in federated learning. arXiv
preprint arXiv:1910.14425, 2019.

F. Haddadpour, M. M. Kamani, M. Mahdavi, and
V. R. Cadambe. Local sgd with periodic averaging:

https://arxiv.org/abs/1611.04482
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/1604.00981
https://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1706.02677

Federated Learning with Buffered Asynchronous Aggregation

Tighter analysis and adaptive synchronization. arXiv
preprint arXiv:1910.13598, 2019.

K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons.
The non-iid data quagmire of decentralized machine
learning. In International Conference on Machine
Learning, pages 4387–4398. PMLR, 2020.

T.-M. H. Hsu, H. Qi, and M. Brown. Measur-
ing the effects of non-identical data distribution
for federated visual classification. arXiv preprint
arXiv:1909.06335, 2019.

S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fis-
cher, Y. Bengio, and A. J. Storkey. Three factors
influencing minima in SGD. CoRR, abs/1711.04623,
2017. URL http://arxiv.org/abs/1711.04623.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet,
M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, et al. Advances and
open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

P. Kairouz, B. McMahan, S. Song, O. Thakkar,
A. Thakurta, and Z. Xu. Practical and private
(deep) learning without sampling or shuffling. arXiv
preprint arXiv:2103.00039, 2021.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich,
and A. T. Suresh. Scaffold: Stochastic controlled
averaging for federated learning. In International
Conference on Machine Learning, pages 5132–5143.
PMLR, 2020.

R. Karl, J. Takeshita, and T. Jung. Cryptonite: A
framework for flexible time-series secure aggregation
with online fault tolerance. 2020. https://eprint.
iacr.org/2020/1561.

A. Krizhevsky, G. Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

M. Lam, G.-Y. Wei, D. Brooks, V. J. Reddi, and
M. Mitzenmacher. Gradient disaggregation: Break-
ing privacy in federated learning by reconstruct-
ing the user participant matrix. arXiv preprint
arXiv:2106.06089, 2021.

R. Leblond, F. Pedregosa, and S. Lacoste-Julien.
ASAGA: Asynchronous Parallel SAGA. In A. Singh
and J. Zhu, editors, Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine
Learning Research, pages 46–54, Fort Lauderdale,
FL, USA, 20–22 Apr 2017. PMLR. URL http://
proceedings.mlr.press/v54/leblond17a.html.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and
K. Ramchandran. Speeding up distributed machine
learning using codes. IEEE Transactions on Infor-
mation Theory, 64(3):1514–1529, 2017.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar,
and V. Smith. Federated optimization in heteroge-
neous networks. arXiv preprint arXiv:1812.06127,
2018.

X. Li, W. Yang, S. Wang, and Z. Zhang. Communi-
cation efficient decentralized training with multiple
local updates. 2019.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang.
On the convergence of fedavg on non-iid data. 2020.

X. Li, Z. Qu, B. Tang, and Z. Lu. Stragglers are not
disaster: A hybrid federated learning algorithm with
delayed gradients. arXiv preprint arXiv:2102.06329,
2021.

X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous par-
allel stochastic gradient for nonconvex optimization.
Advances in neural information processing systems,
2015.

X. Lian, W. Zhang, C. Zhang, and J. Liu. Asyn-
chronous decentralized parallel stochastic gradient
descent. In International Conference on Machine
Learning, pages 3043–3052. PMLR, 2018.

T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi. Don’t
use large mini-batches, use local sgd. arXiv preprint
arXiv:1808.07217, 2018.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning
face attributes in the wild. In Proceedings of Inter-
national Conference on Computer Vision (ICCV),
December 2015.

H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ram-
chandran, and M. I. Jordan. Perturbed iterate anal-
ysis for asynchronous stochastic optimization. SIAM
Journal on Optimization, 27(4):2202–2229, 2017.

H. B. McMahan, E. Moore, D. Ramage, and B. A.
y Arcas. Federated learning of deep networks using
model averaging. arXiv preprint arXiv:1602.05629,
2016.

H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang.
Learning differentially private recurrent language
models. In International Conference on Learning
Representations, 2018.

L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov.
Exploiting unintended feature leakage in collabora-
tive learning. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 691–706. IEEE, 2019.

F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino,
and N. Kourtellis. Ppfl: privacy-preserving federated
learning with trusted execution environments. arXiv
preprint arXiv:2104.14380, 2021.

F. Niu, B. Recht, C. Re, and S. J. Wright. Hogwild!: A
lock-free approach to parallelizing stochastic gradient
descent, 2011.

http://arxiv.org/abs/1711.04623
https://eprint.iacr.org/2020/1561
https://eprint.iacr.org/2020/1561
http://proceedings.mlr.press/v54/leblond17a.html
http://proceedings.mlr.press/v54/leblond17a.html

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

M. Ott, S. Edunov, D. Grangier, and M. Auli. Scal-
ing neural machine translation. arXiv preprint
arXiv:1806.00187, 2018.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. 2017.

J. Pennington, R. Socher, and C. D. Manning. In
EMNLP.

S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush,
J. Konečnỳ, S. Kumar, and H. B. McMahan.
Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola.
On variance reduction in stochastic gradient descent
and its asynchronous variants. Advances in neural
information processing systems, 2015.

A. Reisizadeh, I. Tziotis, H. Hassani, A. Mokhtari,
and R. Pedarsani. Straggler-resilient federated learn-
ing: Leveraging the interplay between statistical
accuracy and system heterogeneity. arXiv preprint
arXiv:2012.14453, 2020.

C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein,
R. Frostig, and G. E. Dahl. Measuring the effects of
data parallelism on neural network training. arXiv
preprint arXiv:1811.03600, 2018.

S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le.
Don’t decay the learning rate, increase the batch size.
arXiv preprint arXiv:1711.00489, 2017.

J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
Advances in neural information processing systems,
25:2951–2959, 2012.

J. So, B. Güler, and A. S. Avestimehr. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure
federated learning. IEEE Journal on Selected Areas
in Information Theory, 2(1):479–489, 2021.

S. U. Stich. Local sgd converges fast and communicates
little. 2019.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karam-
patziakis. Gradient coding: Avoiding stragglers in
distributed learning. In International Conference on
Machine Learning, pages 3368–3376. PMLR, 2017.

M. van Dijk, N. V. Nguyen, T. N. Nguyen, L. M.
Nguyen, Q. Tran-Dinh, and P. H. Nguyen. Asyn-
chronous federated learning with reduced num-
ber of rounds and with differential privacy from
less aggregated gaussian noise. arXiv preprint
arXiv:2007.09208, 2020.

J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan,
M. Al-Shedivat, G. Andrew, S. Avestimehr, K. Daly,
D. Data, et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021.

L. Watson, C. Guo, G. Cormode, and A. Sablayrolles.
On the importance of difficulty calibration in mem-
bership inference attacks. CoRR, abs/2111.08440,
2021. URL https://arxiv.org/abs/2111.08440.

B. Woodworth, K. K. Patel, S. Stich, Z. Dai, B. Bullins,
B. Mcmahan, O. Shamir, and N. Srebro. Is local
sgd better than minibatch sgd? In International
Conference on Machine Learning, pages 10334–10343.
PMLR, 2020.

W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. A.
Jarvis. Safa: a semi-asynchronous protocol for fast
federated learning with low overhead. IEEE Trans-
actions on Computers, 2020.

Y. Wu and K. He. Group normalization. In Proceed-
ings of the European conference on computer vision
(ECCV), pages 3–19, 2018.

C. Xie, S. Koyejo, and I. Gupta. Asynchronous feder-
ated optimization. arXiv preprint arXiv:1903.03934,
2019.

D. Yin, A. Pananjady, M. Lam, D. S. Papailiopou-
los, K. Ramchandran, and P. L. Bartlett. Gradi-
ent diversity empowers distributed learning. CoRR,
abs/1706.05699, 2017. URL http://arxiv.org/
abs/1706.05699.

Y. You, I. Gitman, and B. Ginsburg. Large batch
training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and
K. Keutzer. Imagenet training in minutes. In Proceed-
ings of the 47th International Conference on Parallel
Processing, pages 1–10, 2018.

Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bho-
janapalli, X. Song, J. Demmel, K. Keutzer, and
C.-J. Hsieh. Large batch optimization for deep learn-
ing: Training bert in 76 minutes. arXiv preprint
arXiv:1904.00962, 2019.

H. Yu, R. Jin, and S. Yang. On the linear speedup
analysis of communication efficient momentum sgd
for distributed non-convex optimization. In Inter-
national Conference on Machine Learning, pages
7184–7193. PMLR, 2019a.

H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd with
faster convergence and less communication: Demys-
tifying why model averaging works for deep learning.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 5693–5700, 2019b.

Q. Yu, S. Li, N. Raviv, S. M. M. Kalan,
M. Soltanolkotabi, and S. A. Avestimehr. Lagrange
coded computing: Optimal design for resiliency, se-
curity, and privacy. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages
1215–1225. PMLR, 2019c.

https://arxiv.org/abs/2111.08440
http://arxiv.org/abs/1706.05699
http://arxiv.org/abs/1706.05699

Federated Learning with Buffered Asynchronous Aggregation

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr. Strag-
gler mitigation in distributed matrix multiplication:
Fundamental limits and optimal coding. IEEE Trans-
actions on Information Theory, 66(3):1920–1933,
2020.

S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M.
Ma, and T.-Y. Liu. Asynchronous stochastic gradient
descent with delay compensation. In International
Conference on Machine Learning, pages 4120–4129.
PMLR, 2017.

L. Zhu and S. Han. Deep leakage from gradients. In
Federated learning, pages 17–31. Springer, 2020.

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

Appendix

A Relationship Between Maximum Staleness and K

Recall Assumption 5, that the staleness when executing FedBuff with K = 1 is always bounded as τi(t) ≤ τmax,1.
In this section we will show that this implies the staleness bound τi(t) ≤ dτmax,Ke ≤ dτmax,1/Ke when running
FedBuff with K > 1.

Consider an execution of FedBuff. Let ri denote the time when the i’th client update is received by the server,
and let si < ri denote the time when the client downloaded the serve model before performing local steps that
resulted in the model update received at ri.

When K = 1, the staleness τ (1)
i of the i’th update corresponds to the number of updates that occurs between

when the client downloaded the model and when it completed local training and uploaded the model to the server,

τ
(K=1)
i = |{j : si < rj < ri}|.

If Assumption 5 holds, then maxi τ
(1)
i ≤ τmax,1.

When K > 1, the server waits to aggregate K client updates before stepping the global model. Thus, if τ (K=1)
i

client updates are received between the times si and ri, then at most τ (1)
i /K server updates occur during this

time. Hence τ (K)
i ≤ dτ (1)

i /Ke, and therefore

τmax,K = max
i
τ

(K)
i ≤ max

i
dτ (1)
i /Ke ≤ dτmax,1/Ke.

Note that the times si and ri only depend on the number of clients training concurrently, and the distribution of
client execution times (the time it takes a client to complete one round of local updates; i.e., the distribution
of ri − si). These times are not impacted by the choice of K; rather K only affects how frequently the server
performs an update. Thus, the arguments above hold regardless of the distribution of client execution times, and
only depend on Assumption 5.

We also remark that the same relationship holds for the average delay; i.e., increasing K reduces average delay.
In particular, let

τ1 = lim
N→∞

1

N

N∑
i=1

τ
(1)
i ,

and suppose the limit exists. Clearly, if the limit exists and Assumption 5 holds, then τ1 ≤ τmax,1. Furthermore,
then

τK = lim
N→∞

1

N

N∑
i=1

τ
(K)
i

≤ lim
N→∞

1

N

N∑
i=1

τ
(1)
i /K

= τ1/K.

B Experiment Details

B.1 Datasets and Models

Sent140. We train a sentiment classifier on tweets from the Sent140 dataset (Caldas et al., 2018; Go et al., 2009)
with a two-layer LSTM binary classifier. The dataset has 660,120 clients where each client is a Twitter account.
The LSTM binary classifier contains 100 hidden units with a top 10,000 pretrained word embedding from 300D
GloVe (Pennington et al.). The model has a max sequence length of 25 characters. The model first embeds each
of the characters into a 300-dimensional space by looking up GloVe, passes through 2 LSTM layers and a 128
hidden unit linear layer to output labels 0 or 1. We set the dropout rate to 0.1. We split the data into 80%

Federated Learning with Buffered Asynchronous Aggregation

Table 3: The best performing hyperparameters for fig. 4
FedBuff + DP-FTRL SyncFL + DP-SGD SyncFL + DP-FTRL
η` = 1.0 η` = 1.0 · 10−1 η` = 1.0 · 10−3

ε = 6 ηg = 4.3 ηg = 5.9 · 102 ηg = 2.6 · 104

β = 9.9 · 10−1 β = 3.0 · 10−1 β = 1.0 · 10−1

L = 1.2 · 10−4 L = 1.1 · 10−2 L = 2.7 · 10−4

η` = 1.0 · 10−2 η` = 1.0 η` = 1.0
ε = 12 ηg = 5.4 · 101 ηg = 1.0 · 104 ηg = 1.0 · 102

β = 0 β = 5.0 · 10−1 β = 9.0 · 10−1

L = 1.1 · 10−3 L = 7.6 · 10−3 L = 2.7 · 10−1

η` = 1.0 · 10−1 η` = 1.0 · 10−1 η` = 1.0
ε = 24 ηg = 8.7 · 102 ηg = 5.1 · 102 ηg = 8.0 · 103

β = 3.0 · 10−1 β = 3.0 · 10−1 β = 5.0 · 10−1

L = 1.0 · 10−4 L = 1.4 · 10−2 L = 1.0 · 10−4

training set, 10% validation set, and 10% test set using script provided by Caldas et al. (2018). Due to memory
constraint, we use 15% of the entire dataset using the script provided by Caldas et al. (2018), with split seed =
1549775860.

CelebA. We study an image classification problem on the CelebA dataset (Liu et al., 2015; Caldas et al., 2018)
using a four layer CNN binary classifier with dropout rate of 0.1, stride of 1, and padding of 2. As it is standard
with image datasets, we preprocess train, validation, and test images; we resize and center crop each image to
32× 32 pixels, then normalize by 0.5 mean and 0.5 standard deviation. The dataset has 9,343 clients where each
client is a unique celebrity.

CIFAR-10. We evaluate a multi-class image classification problem on CIFAR-10 (Krizhevsky et al., 2009) using
a four layer CNN binary classifier with dropout rate of 0.1, stride of 1, and padding of 2. We normalize the
images by the dataset mean and standard deviation. Following Hsu et al. (2019), we partition the dataset into
5,000 clients using a Dirichlet distribution with parameter 0.1 and split seed = 0.

B.2 Implementation Details

We implemented all algorithms in Pytorch (Paszke et al., 2017) and evaluated them on a cluster of machines, each
with eight NVidia V100 GPUs. Independently, we built a simulator to simulate large-scale federated learning
environments. The simulator can realistically simulate clients, server, communication channels between clients
and server, model aggregation schemes, and local training of clients. We intend to open-source the simulator,
making it available for the research community.

For our experiments, we assume clients arrive to the FL system at a constant rate. To simulate device heterogeneity,
we sample each client training duration from a half-normal, uniform, or exponential distribution. Moreover, our
implementation has two other important distinctions. First, each client does one epoch of training over its local
data; this distinction stems from two observations in our production stack: that our FL production stack has
plenty of users to train on, and that we train small capacity models in FL (e.g., less than 10 million parameters)
because of bandwidth and client compute. Second, we use the weighted sum of the client updates instead of the
weighted average. This is because each client update has different levels of staleness; taking the average cannot
capture the true contribution for each client.

B.3 Hyperparameters

For all experiments, we tune hyperparameters using Bayesian optimization (Snoek et al., 2012). For optimizer on
clients, we use minibatch SGD for all tasks. We select the best hyperparameters based on the number of rounds
to reach target validation accuracy for each dataset.

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

Table 4: The best performing hyperparameters for Table 1
FedBuff FedAsync FedAvgM FedAvg FedProx
η` = 4.7 · 10−6 η` = 5.7 η` = 1.1 · 10−1 η` = 1.0 · 102 η` = 4.9 · 10−4

CelebA ηg = 1.0 · 103 ηg = 2.8 · 10−3 ηg = 2.4 · 10−1 ηg = 1.6 · 10−3 ηg = 1.0 · 102

β = 3.0 · 10−1 β = 8.3 · 10−1 µ = 1.0 · 10−2

η` = 1.3 · 101 η` = 1.7 · 101 η` = 1.5 η` = 2.6 · 10−3 η` = 2.0 · 10−3

Sent140 ηg = 4.9 · 10−2 ηg = 1.5 · 10−2 ηg = 3.4 · 10−1 ηg = 1.0 · 103 ηg = 1.03

β = 5.0 · 10−1 β = 9.0 · 10−1 µ = 1.0 · 10−3

η` = 1.95 · 10−4 η` = 1.0 · 102 η` = 1.0 · 101 η` = 1.0 · 101 η` = 1.0 · 101

CIFAR-10 ηg = 4.09 · 101 ηg = 6.4 · 10−5 ηg = 1.02 · 10−3 ηg = 1.02 · 10−3 ηg = 1.02 · 10−3

β = 0 β = 9.0 · 10−1 µ = 1.0 · 10−3

Table 5: Speed up of FedBuff over FedAvgM and FedAsync with regards to number of client trips to reach target
validation accuracy, for different delay distributions. We set concurrency = 1000 for all methods and K = 10 for
FedBuff. FedBuff’s speed up is consistent across delay distributions.

Dataset Delay Distribution Speedup over FedAvgM Speedup over FedAsync
Uniform 4.7× 1.6×

CelebA Half-Normal 3.3× 1.2×
Exponential 4.3× 1.1×
Uniform 1.3× 1.2×

Sent140 Half-Normal 1.7× 2.5×
Exponential 1.4× 2.0×

B.3.1 Hyperparameter Ranges

Below, we show the range for the client learning rate (η`), server learning rate (ηg), server momentum (β),
proximal term (µ) sweep ranges.

β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}
η` ∈ [1 · 10−8, 10000]

ηg ∈ [1 · 10−8, 10000]

µ ∈ {0.001, 0.01, 0.1, 1}

B.3.2 Best Performing Hyperparameters

Table 4 illustrates the best value for client and server learning rates (η`, ηg), server momentum (β), and proximal
term (µ) for tasks in Table 1. For experiments in Table 6, we set staleness exponent α = 10. We set α = 0.5 for
all other experiments.

C Additional Experiments

C.1 Robustness to Delay Distributions.

In this section, we analyze the sensitivity of FedBuff to different staleness distributions. We compare FedBuff
against other competing algorithms with different staleness distributions. Table 5 demonstrates that FedBuff
is robust and FedBuff’s speed up is consistent. To have an accurate view of real-world delays, we observe the
delays and their resulting staleness distribution in our production stack when training over millions of clients
with concurrency = 1000 and K = 100. Figure 5 demonstrates that a half-normal is a suitable delay distribution.

Federated Learning with Buffered Asynchronous Aggregation

Figure 5: Delay and staleness distributions observed in production when training over millions of real clients for
FedBuff.

C.2 Wall-Clock Time Simulation

In this section, we study the speed up of FedBuff over FedAvgM in terms of wall-clock time for various concurrency
levels. The results for Sent140 are in Figure 6.

In cross-device FL, each client is a mobile phone with limited compute power and communication bandwidth
(Kairouz et al., 2019). Moreover, clients can have vastly different number of examples. Recall, SyncFL methods
wait for all the participating clients in a round to finish before updating the server model – a round proceeds at
the pace of the slowest client, the straggler effect. To mitigate the straggler problem, over-selection proposed in
Bonawitz et al. (2019), which selects 30% more clients than the target number of clients to participate and waits
for the fastest replies.

To confirm the speedup gain by FedBuff in terms of wall-clock time, we simulate training time of FedAvgM and
FedBuff using a random exponential time model from Lee et al. (2017). The random exponential time model has
been widely used to simulate the straggler effect in federated learning, e.g. in Reisizadeh et al. (2020); Tandon
et al. (2017); Yu et al. (2020, 2019c); Charles et al. (2021).

We assume the time a client requires to perform local training is proportional to the number of examples the
client has, same as the assumption in Charles et al. (2021). Formally, let ni be the number of examples held by
client i, and let Ti be the amount of time required by client i to perform local training. Also assume that there is
a constant λ > 0 such that

Ti ∼ Exp(
1

λni
).

In this context, λ is the straggler parameter. The larger the λ, the longer the expected client training time. For a
given round t, let Ct be number of clients required to close a round, and let M be the total number of clients
training concurrently with over-selection. If T1, . . . , TM denote the raw times when clients complete the round
and T(1) ≤ · · · ≤ T(M) denote order statistic of the client training time, then Rt for SyncFL is

Rt = T(Ct).

If T is the number of rounds to reach a target accuracy, the expected total training time for SyncFL is

E[TSyncFL] =

T∑
t=0

Rt.

In the case of FedBuff, the total wall-clock time is when the last client required to reach a target accuracy finishes
training. Formally, let N be the number of clients required to reach a target accuracy and T(1) ≤ · · · ≤ T(N)

denotes the order statistic of the client training time. Then the expected total training time for FedBuff is

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

Figure 6: (left) The total run time required to reach a target accuracy on Sent140 with λ = 1 under a random
exponential time model. (right) The number of client trips required to reach a target accuracy. This measures the
resource efficiency of the three algorithms. In all three configurations, increasing concurrency lowers wall-clock
convergence time. However, SyncFL uses much more resources compared with AsyncFL. This highlights the
importance of scalability, the ability to efficiently utilize increasing number of clients training in parallel. Both
figures illustrates that FedBuff is faster than SyncFL (e.g., FedAvgM) even with over-selection with increasing
concurrency, while being up to 3 times more resource efficient.

E[TFedBuff] = T(N).

C.3 Bias

In this section, we show the diversity of participating clients in FedBuff and FedAvgM. We should that SyncFL
methods can introduce bias in their selection process while FedBuff does not. We use the same random exponential
time model in Appendix C.2. The result is given in Figure 7. We find that in all levels of λ, FedBuff can
incorporate clients with large local datasets. On the other hand, SyncFL (e.g., FedAvgM) with over-selection
drops these clients leading to bias in the selection process. FedBuff does not drop the slowest clients, and can
incorporate these clients with many examples.

C.4 Large values of K

In this section, we study the performance of FedBuff with large values of K. In Table 2, we observe that FedBuff
trains fast when running with small values of K, relative to the concurrency. However, large values of K are
useful when providing user-level differential privacy, as essentially the noise is divided among larger number of
clients (larger values of K) (Kairouz et al., 2021; McMahan et al., 2018).

We compare the training speed of FedBuff and FedAvgM in a setting where both algorithms produce a server
update from the same number of aggregated client updates. We fix concurrency at 1000, and have both FedAvgM
and FedBuff perform updates after aggregating responses from K = 1000 clients. In this setting, FedBuff’s main
advantage is robustness to stragglers. It cannot take advantage of frequent server updates, yet still needs to deal
with staleness.

The synchronous FL system described in Bonawitz et al. (2019) uses over-selection, typically by 30%, to address
stragglers. For example, if 1000 users are needed to produce a server model update, 1300 users are selected. The
round will finish when the fastest 1000 users finish training. Results from the slowest 300 users will be thrown
away. Over-selection makes synchronous FL more robust to stragglers, but at the cost of wasting some clients’
compute and bandwidth.

Federated Learning with Buffered Asynchronous Aggregation

0 50 100 150 200 250 300
Number of Examples

10 6

10 5

10 4

10 3

10 2

10 1

De
ns

ity

 = 0.1
FedBuff
FedAvgM 30% over-selection

0 50 100 150 200 250
Number of Examples

10 6

10 5

10 4

10 3

10 2

10 1

De
ns

ity

 = 1
FedBuff
FedAvgM 30% over-selection

0 50 100 150 200 250 300
Number of Examples

10 6

10 5

10 4

10 3

10 2

10 1

De
ns

ity

 = 10
FedBuff
FedAvgM 30% over-selection

Sent140 Client Diversity

Figure 7: The distribution of Number of examples held by each participating client on Sent140 with varying
λ. We fix concurrency = 1000 and buffer size K = 10. Since FedBuff does not drop the slowest clients, it can
incorporate a more diverse set of clients.

Table 6: Wall-clock time to reach target validation accuracy on CelebA and Sent140 when K is large (Units for
wall-clock time: mean training time for one client. Units for client trips updates: 1000 updates). For FedBuff,
K=1000. FedAvgM with over-selection throws away results from the slowest 30% of users in each round. These
users are included when calculating the number of client trips

Dataset Algorithm Concurrency Wall-Clock Time client trips
FedBuff (K=1000) 1000 124 124

CelebA FedAvgM 1000 446 (3.6×) 104
FedAvgM, over-selection 1300 155 (1.25×) 135

FedBuff (K=1000) 1000 228 228
Sent140 FedAvgM 1000 927 (4.06×) 216

FedAvgM. over-selection 1300 322 (1.41×) 281

Table 6 reports the wall-clock training time and number of client trips to reach target accuracy for FedBuff and
FedAvgM with and without over-selection. We assume a half-normal training duration distribution since that
matches the behavior observed in our production system (see Figure 5). We find that over-selection reduces the
impact of stragglers significantly. However, even with over-selection, FedBuff is 25%-41% faster than FedAvgM,
despite using 30% lower concurrency.

C.5 FedBuff with Differential Privacy

Figure 8 shows the training curves of FedBuff with DP-FTRL, SyncFL with DP-SGD and DP-FTRL. At low values
of ε, FedBuff can achieve the same utility as SyncFL with amplified DP-SGD at the cost of slower convergence.
At the same ε, FedBuff with DP-FTRL achieves better utility and faster convergence compared to SyncFL with
DP-FTRL. We find the source for this speed-up is from FedBuff’s ability to tolerate much lower clipping norm
value L. We repeat each experiment for 3 different seeds and take the average. The seeds are 0, 1, and 2.

C.6 Learning Rate Normalization (LR-Norm)

C.6.1 Theoretical Justification

Recall that LR-Norm described in Section 5 aims to address the situation where a client performing local updates
may need to perform an update using a batch size b smaller than the server-prescribed batch size B. This may
occur when processing a batch at the end of one epoch, including the first batch if the client has fewer than B
samples in total. Since this only pertains to the local updates performed at clients, let us simply write such an

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

Figure 8: Training curves for different values of ε for three FL configurations.

update as
yq = yq−1 − ηqg(bq)

q , (5)

without referring to any specific client index i or global iteration index t. Here g(bq)
q denotes a stochastic gradient

of F (the client’s local objective) evaluated at yq using batch size bq.

Assume that F is L-smooth, i.e.,
‖∇F (y)−∇F (y′)‖ ≤ L ‖y − y′‖ .

Also assume that the stochastic gradients are unbiased and have variance satisfying a weak growth condition.
Specifically, assume that with batch size bq = 1,

E[g(1)
q |yq] = ∇F (yq),

E[
∥∥∥g(1)
q −∇F (yq)

∥∥∥2

] ≤ σ2
` +M ‖∇F (yq)‖2 .

Note that in the proof of Theorem 1, we make the stronger assumption of bounded variance, corresponding to
M = 0.

Furthermore, suppose that a mini-batch stochastic gradient g(n)
q with batch size bq > 1 is obtained by averaging

the gradients evaluated at bq independent and identically distributed samples. Thus,

E[g(bq)
q |yq] = ∇F (yq),

E[
∥∥∥g(bq)
q −∇F (yq)

∥∥∥2

] ≤ σ2
`

bq
+
M

bq
‖∇F (yq)‖2 .

Uniform batch sizes. If all steps use the same batch size bq = B with constant step-size ηq = η` satisfying

0 < η` ≤
1

L(M/B + 1)
,

then it is well-known that the SGD iterates satisfy

E

[
1

Q

Q∑
q=1

‖∇F (yq)‖2
]
≤ 2(F (y1)− F ∗)

η`Q
+
η`Lσ

2
`

B
;

see, for example, Theorem 4.8 in L. Bottou, F. Curtis, and J. Nocedal, “Optimization methods for large-scale
machine learning,” SIAM Review, 2019.

Non-uniform batch sizes. Now suppose that some steps will use batch size 1 < bq ≤ B. In this case one can
show the following result.

Theorem. Consider updates as in equation 5 with per-iteration batch size

ηq = η`
bq
B
,

Federated Learning with Buffered Asynchronous Aggregation

and let AQ =
∑Q
q=1 ηq = η`

B

∑Q
q=1 bq. Suppose that η` satisfies

0 < η` ≤
1

L(M/B + 1)
.

Then

E

[
1

AQ

Q∑
q=1

‖∇F (yq)‖2
]
≤ 2(F (y1)− F ∗)

AQ
+
η`Lσ

2
`

B
.

First, note that AQ is strictly increasing in Q, since 1 ≤ bq ≤ B. In the special case where bq = B for all q
we exactly recover the result above for uniform batch sizes. More generally, when bq < B for some steps, the
asymptotic residual is identical to the case with uniform-batch size. This justifies using the LR-Norm step-size
rule ηq = η`bq/B when encountering batches of size bq < B. The proof follows from similar arguments to those of
Theorem 4.8 in L. Bottou, F. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learning,”
SIAM Review, 2019.

Proof. Let Eq denote expectation with respect to all randomness up to step yq. Because F is L-smooth,

Eq[F (yq+1)]− F (yq) ≤ −ηq
〈
∇F (yq),Eq[g(bq)

q]
〉

+
η2
qL

2
Ek[
∥∥∥g(bq)
q

∥∥∥2

].

From the weak growth assumption, it follows that

Ek[
∥∥∥g(bq)
q

∥∥∥2

] ≤ σ2
`

bq
+

(
M

bq
+ 1

)
‖∇F (yq)‖2 ,

and thus

Eq[F (yq+1)]− F (yq) ≤ −ηq ‖∇F (yq)‖2 +
η2
qL

2

(
σ2
`

bq
+

(
M

bq
+ 1

)
‖∇F (yq)‖2

)
= −ηq

(
1− ηqL

2

(
M

bq
+ 1

))
‖∇F (yq)‖2 +

η2
qLσ

2
`

2bq
.

Based on the relationship ηq = η`bq/B and the upper-bound assumed on η`, we have

ηqL

2

(
M

bq
+ 1

)
≤ 1

2
.

Consequently,

Eq[F (yq+1)]− F (yq) ≤ −
ηq
2
‖∇F (yq)‖2 +

η2
qLσ

2
`

2bq
.

Rearranging, we get

ηq
2
‖∇F (yq)‖2 ≤ F (yq)− Eq[F (yq+1)] +

η2
qLσ

2
`

2bq
.

Summing both sides over q = 1, . . . , Q and taking the total expectation yields

Q∑
q=1

ηq
2
E[‖∇F (yq)‖2] ≤ F (y1)− E[F (yQ)] +

Q∑
q=1

η2
qLσ

2
`

2nq

≤ F (y1)− F ∗ +

Q∑
q=1

η2
qLσ

2
`

2nq
.

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

Table 7: Number of client updates (lower is better) to reach validation accuracy on CelebA (90%) and Sent140
(69%). We set M = 1000 for all methods. We compare LR-Norm against two other popular weighting schemes.
Example weight is when the weight is the number of training examples for each client. Uniform weight is where
all clients have weights of 1. (Units = 1000 updates.)

Dataset K LR-Norm Example Weight Uniform Weight
1 20.8 23.9 20.7

CelebA 10 27.1 25.5 28.7
100 57.6 57.6 54.4
1 190.0 201.9 201.9

Sent140 10 124.7 207.9 136.6
100 178.2 570.3 231.7

Now, multiplying both sides by 2/AQ, we obtain

1

AQ

Q∑
q=1

ηqE[‖∇F (yq)‖2] ≤ 2(F (y1)− F ∗)
AQ

+
1

AQ

Q∑
q=1

η2
qLσ

2
`

nq

=
2(F (y1)− F ∗)

AQ
+
η`Lσ

2
`

B
.

C.6.2 Empirical Evaluation

In Table 7, we compare LR-Norm against two other weighting schemes: Example Weight where the weight is
the number of training examples for each client, and Uniform Weight where all clients have weight of 1. We see
that LR-Norm performs competitively on CelebA. For CelebA, all weighting schemes, Uniform, Example, and
LR-Norm perform similarly. This is because all clients in CelebA have one batch of data and number of examples
per client is fairly centered around the mean. On the other hand, LR-Norm significantly outperforms Example
Weight and Uniform Weight on Sent140. LR-Norm is beneficial when there is a high degree of data imbalance
across clients, as in Sent140. Sent140 is more representative of real world FL applications where there is a long
tail in the number of examples and number of batches per client.

C.7 Learning Curves

In this section, we show the learning curves for each algorithm in Figures 9, 10, and 11. These figures demonstrate
FedBuff’s robustness to different staleness distributions. Synchronous FL algorithms, FedAvgM, FedAvg and
FedProx, are unaffected by the change in staleness distribution because they simply wait for all clients in the
round.

For both CelebA and Sent140, FedBuff with K = 10 can reach the target validation accuracy quicker than other
values of K. At K = 10, FedBuff appears to have the optimal balance between speed and variance reduction.

Federated Learning with Buffered Asynchronous Aggregation

Figure 9: Training accuracy for FedAsync, FedAvgM and FedBuff on Sent140.

Figure 10: Training accuracy for FedAsync, FedAvgM and FedBuff on CelebA.

Figure 11: Training accuracy for FedAsync, FedAvgM and FedBuff on CIFAR-10.

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

Table 8: Summary of notation

Description Symbol

number of server updates, server update index T , t
set of clients updates used in server update t St

number of clients, client index m, i or k
number of local steps per round, round index Q, q

server model after t steps wt

stochastic gradient at client i gi(w; ζi) := gi(w)
local learning rate ηl

global learning rate ηg
number of clients in update K

local and global gradient variance σ2
` , σ

2
g

delay/staleness of client i’s model update for the tth server update τi(t)
maximum staleness for buffer of size K τmax,K

D Proof of Convergence Rate

In this appendix, we prove the main convergence result for FedBuff. A summary of the notation used is provided
in Table 8.

Observe that FedBuff updates can be described succinctly as

wt+1 = wt + ηg∆
t

= wt + ηg
1

K

∑
k∈St

(
−η`

Q∑
q=1

gk(y
t−τk(t)
k,q)

)
,

where St denotes the set of clients that contribute to the t’th server update, and τk(t) ≥ 1 is the staleness of an
update contributed by client k to the t’th server update. Specifically, when k ∈ St, the update returned by client
k was computed by starting from wt−τk(t) and performing Q local gradient steps. When τk(t) = 1 there is no
staleness in the update, and more generally τk(t) > 1 corresponds to some staleness; i.e., t− τk(t) server updates
have taken place between when the client last pulled a model from the server and when the client’s update is
being incorporated at the server.

In addition to the assumptions stated in Section 4, in the proof below we assume that St is a uniform subset [n];
i.e., in any given round any client is equally likely to contribute. This can be justified in practice as follows. To
avoid having any client contribute more than once to any update, after the client returns an update contributing
to ∆

t
, the server can only sample that client after the server has performed another update.

We first state a useful lemma.

Lemma 1. E
[
‖gk‖2

]
≤ 3(σ2

` + σ2
g +G), where the total expectation E[·] is evaluated over the randomness with

respect to client participation and the stochastic gradient taken by a client.

Proof. From the law of total expectation we have E = Ek∼[m]Eζk|k. Hence,

E
[
‖gk(w)‖2

]
= Ek∼[m]Eg|k

[
‖gk(w)−∇Fk(w) +∇Fk(w)−∇f(w) +∇f(w)‖2

]
≤ 3Ek∼[m]Eg|k

[
‖gk(w)−∇Fk(w)‖2 + ‖∇Fk(w)−∇f(w)‖2 + ‖∇f(w)‖2

]
= 3(σ2

` + σ2
g +G)

(6)

Federated Learning with Buffered Asynchronous Aggregation

D.1 Proof of Theorem 1

Theorem 2. Let η(q)
` be the local learning rate of client SGD in the q-th step, and define α(Q) :=

∑Q−1
q=0 η

(q)
` ,

β(Q) :=
∑Q−1
q=0 (η

(q)
`)2. Choosing ηgη

(q)
` Q ≤ 1

L for all local steps q = 0, · · · , Q − 1, the global model iterates in
Algorithm 1 achieves the following ergodic convergence rate

1

T

T−1∑
t=0

∥∥∇f(wt)
∥∥2 ≤

2
(
f(w0)− f(w∗)

)
ηgα(Q)T

+ 3L2Qβ(Q)
(
η2
gτ

2
max,K + 1

)(
σ2
` + σ2

g +G
)

+
L

2

ηgβ(Q)

α(Q)
σ2
` (7)

Proof. By L-smoothness assumption,

f(wt+1) ≤ f(wt)− ηg〈∇f(wt),∆
t〉+

Lη2
g

2

∥∥∥∆
t
∥∥∥2

≤ f(wt)−ηg
K

∑
k∈St

〈
∇f(wt),∆t−τk

k

〉
︸ ︷︷ ︸

T1

+
Lη2

g

2K2

∥∥∥∥∥∑
k∈St

∆t−τk
k

∥∥∥∥∥
2

︸ ︷︷ ︸
T2

(8)

where ∆t−τk
k is the client delta which is trained from using the global model after t− τk updates as initialization.

We will next derive the upper bounds on T1 and T2.

T1 = −ηg
K

∑
k∈St

〈
∇f(wt),

Q−1∑
q=0

η
(q)
` gk(yt−τkk,q)

〉
= −ηg

K

∑
k∈St

Q−1∑
q=0

η
(q)
`

〈
∇f(wt), gk(yt−τkk,q)

〉
(9)

Using conditional expectation, the expectation operator can be written as

E[·] := EHEi∼[m]Egi|i,H[·]

where EH is the expectation over the history of the iterates, Ei∼[m] is evaluated over the randomness over the
distribution of clients i ∼ [m] checking in at time-step t, and the inner expectation operates over the stochastic
gradient of one step on a client. Hence, following unbiasedness,

E[T1] =− E

[
ηg
K

∑
k∈St

Q−1∑
q=0

η
(q)
`

〈
∇f(wt), gk(yt−τkk,q)

〉]

=− ηgEH

[
1

m

m∑
i=1

Q−1∑
q=0

η
(q)
` Egi|i∼[m]

〈
∇f(wt), gi(y

t−τi
i,q)

〉]

=− ηg
m

EH

[
m∑
i=1

Q−1∑
q=0

η
(q)
`

〈
∇f(wt),∇Fi(yt−τii,q)

〉]

=− ηgEH

[
Q−1∑
q=0

η
(q)
`

〈
∇f(wt),

1

m

m∑
i=1

∇Fi(yt−τii,q)
〉]

From the identity

〈a, b〉 =
1

2
(‖a‖2 + ‖b‖2 − ‖a− b‖2)

we have

E[T1] = −ηg
2

(
Q−1∑
q=0

η
(q)
`

)∥∥∇f(wt)
∥∥2

+

Q−1∑
q=0

ηgη
(q)
`

2

(
− EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(yt−τii,q)

∥∥∥∥∥
2

+ EH

∥∥∥∥∥∇f(wt)− 1

m

m∑
i=1

∇Fi(yt−τii,q)

∥∥∥∥∥
2

︸ ︷︷ ︸
T3

) (10)

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

Now for T3, from the definition f(wt),

EH[T3] = EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(wt)−
1

m

m∑
i=1

∇Fi(yt−τii,q)

∥∥∥∥∥
2

≤ 1

m

m∑
i=1

EH
∥∥∇Fi(wt)−∇Fi(yt−τii,q)

∥∥2

(11)

Further, by telescoping, T3 can be decomposed as

E[T3] =
1

m

m∑
i=1

EH
∣∣∣∣∣∣∇Fi(wt)−∇Fi(wt−τi) +∇Fi(wt−τi)−∇Fi(yt−τii,q)

∣∣∣∣∣∣2
≤ 2

m

m∑
i=1

EH
(∣∣∣∣∣∣∇Fi(wt)−∇Fi(wt−τi)∣∣∣∣∣∣2︸ ︷︷ ︸

staleness

+
∣∣∣∣∣∣∇Fi(wt−τi)−∇Fi(yt−τii,q)

∣∣∣∣∣∣2︸ ︷︷ ︸
local drift

)

≤ 2

m

m∑
i=1

(
L2EH

∥∥wt − wt−τi∥∥2
+ L2EH

∥∥wt−τi − yt−τii,q

∥∥2
)

(12)

The upper bound on T3 can be understood as sums of bounds on the effect of staleness and local drift during
client training, and local variance induced by client-side SGD. Further, we need to produce upper bound on the
staleness of initial model from which the client models are trained.

∥∥wt − wt−τi∥∥2
=

∥∥∥∥∥
t−1∑

ρ=t−τi

(wρ+1 − wρ)

∥∥∥∥∥
2

=

∥∥∥∥∥∥
t−1∑

ρ=t−τi

ηg
K

∑
jρ∈Sρ

∆ρ
jρ

∥∥∥∥∥∥
2

=
η2
g

K2

∥∥∥∥∥∥
t−1∑

ρ=t−τi

∑
jρ∈Sρ

Q−1∑
l=0

η
(l)
` gjρ(y

ρ
jρ,l

)

∥∥∥∥∥∥
2

(13)

Taking expectation in terms of H,

EH
∥∥wt − wt−τi∥∥2 ≤

η2
gQτi

K

t−1∑
ρ=t−τi

∑
jρ∈Sρ

Q−1∑
l=0

(η
(l)
`)2E

∥∥∥gjρ(yρjρ,l)∥∥∥2

≤ 3η2
gQmax

τi
τ2
i

(Q−1∑
l=0

(η
(l)
`)2

)(
σ2
` + σ2

g +G
)

≤ 3η2
gQτ

2
max,K

(Q−1∑
l=0

(η
(l)
`)2

)(
σ2
` + σ2

g +G
)

(14)

where the last inequality follows from the assumption on maximal delay and apply Lemma 1. Similarly, the local
drift term can be upper-bounded by

E
∥∥wt−τi − yt−τii,q

∥∥2
= E

∥∥yt−τii,0 − yt−τii,q

∥∥2 ≤ E

∥∥∥∥∥
q−1∑
l=0

η
(l)
` gi(y

t−τi
i,l)

∥∥∥∥∥
2

≤ 3q

(
q−1∑
l=0

(η
(l)
`)2

)(
σ2
` + σ2

g +G
)

(15)

Thus, the upper bound on T3 becomes:

Federated Learning with Buffered Asynchronous Aggregation

E[T3] ≤ 6

(
L2η2

gQτ
2
max,K

(Q−1∑
i=0

(η
(i)
`)2

)(
σ2
` + σ2

g +G
)

+ L2q

(
q−1∑
i=0

(η
(i)
`)2

)(
σ2
` + σ2

g +G
))

≤ 6L2
(Q−1∑
i=0

(η
(i)
`)2

)
(η2
gQτ

2
max,K + q)

(
σ2
` + σ2

g +G
)

≤ 6L2Q
(Q−1∑
i=0

(η
(i)
`)2

)
(η2
gτ

2
max,K + 1)

(
σ2
` + σ2

g +G
)

(16)

Inserting the upper bound on T3 into (10), we have,

E[T1] ≤ −ηg
2

(
Q−1∑
q=0

η
(q)
`

)∥∥∇f(wt)
∥∥2

+

Q−1∑
q=0

ηgη
(q)
`

2
E[T3]−

Q−1∑
q=0

ηgη
(q)
`

2
EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(yt−τii,q)

∥∥∥∥∥
2

(17)

Let α(Q) :=
∑Q−1
q=0 η

(q)
` , β(Q) :=

∑Q−1
q=0 (η

(q)
`)2,

E[T1] ≤ −ηgα(Q)

2

∥∥∇f(wt)
∥∥2

+3ηgL
2Qα(Q)β(Q)

(
η2
gτ

2
max,K+1

)(
σ2
`+σ2

g+G
)
−
Q−1∑
q=0

ηgη
(q)
`

2
EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(yt−τii,q)

∥∥∥∥∥
2

︸ ︷︷ ︸
T4

(18)

To derive the upperbound on the R.H.S. of (8), we now need to upper bound E[T2].

E[T2] = E

[
Lη2

g

2K2

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
` gk(yt−τkk,q)

∥∥∥∥∥
2]

= E

[
Lη2

g

2K2

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
`

(
gk(yt−τkk,q)−∇Fk(yt−τkk,q)

)
+
∑
k∈St

Q−1∑
q=0

η
(q)
` ∇Fk(yt−τkk,q)

∥∥∥∥∥
2]

(A.)
=

Lη2
g

2K2
E

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
`

(
gk(yt−τkk,q)−∇Fk(yt−τkk,q)

)∥∥∥∥∥
2

+
Lη2

g

2K2
E

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
` ∇Fk(yt−τkk,q)

∥∥∥∥∥
2

(B.)
=

Lη2
g

2

∑
k∈St

Q−1∑
q=0

(η
(q)
`)2E

∥∥∥(gk(yt−τkk,q)−∇Fk(yt−τkk,q)
)∥∥∥2

+
Lη2

g

2K2
E

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
` ∇Fk(yt−τkk,q)

∥∥∥∥∥
2

≤
Lη2

gβ(Q)σ2
`

2
+
LQη2

g

2K

∑
k∈St

Q−1∑
q=0

(η
(q)
`)2EHEk∼[m]|H

∥∥∥∇Fk(yt−τkk,q)
∥∥∥2

=
Lη2

gβ(Q)σ2
`

2
+
LQη2

g

2K

∑
k∈St

Q−1∑
q=0

(η
(q)
`)2EH

[
1

m

m∑
i=1

∥∥∇Fi(yt−τii,q)
∥∥2

]

=
Lη2

gβ(Q)σ2
`

2
+
LQη2

g

2m

Q−1∑
q=0

m∑
i=1

(η
(q)
`)2EH

[∥∥∇Fi(yt−τii,q)
∥∥2

]
︸ ︷︷ ︸

T5

(19)

where (A.) follows the unbiasedness of gk, and (B.) follows from the fact that gk −∇Fk are independent and

J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba

unbiased for k ∼ [m]. To produce an upperbound on E[T1 + T2], we need to make sure T4 + T5 ≤ 0.(
T4 + T5

)
=−

Q−1∑
q=0

ηgη
(q)
`

2
EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(yt−τii,q)

∥∥∥∥∥
2

+
LQη2

g

2m

Q−1∑
q=0

m∑
i=1

(η
(q)
`)2EH

∥∥∇Fi(yt−τii,q)
∥∥2

=−
Q−1∑
q=0

m∑
i=1

ηgη
(q)
`

2m
EH
∥∥∇Fi(yt−τii,q)

∥∥2
+
LQη2

g

2m

Q−1∑
q=0

m∑
i=1

(η
(q)
`)2EH

∥∥∇Fi(yt−τii,q)
∥∥2

=

Q−1∑
q=0

m∑
i=1

(
−
ηgη

(q)
`

2m
+
LQη2

g(η
(q)
`)2

2m

)
EH
∥∥∇Fi(yt−τii,q)

∥∥2

(20)

To ensure T4 + T5 ≤ 0, it is sufficient to choose ηgη
(q)
` Q ≤ 1

L for all local steps q = 0, · · · , Q− 1.

Now, plugging (18), (19) and (20) into (8),

E[f(wt+1)] ≤ E[f(wt)]− ηgα(Q)

2

∥∥∇f(wt)
∥∥2

+3ηgL
2Qα(Q)β(Q)

(
η2
gτ

2
max,K+1

)(
σ2
`+σ2

g+G
)

+
L

2
η2
gβ(Q)σ2

` (21)

Summing up t from 1 to T and rearrange, yields

T−1∑
t=0

ηgα(Q)
∥∥∇f(wt)

∥∥2 ≤
T−1∑
t=0

2
(
E[f(wt)]− E[f(wt+1)]

)
+ 3

T−1∑
t=0

ηgL
2Qα(Q)β(Q)

(
η2
gτ

2
max,K + 1

)(
σ2
` + σ2

g +G
)

+
L

2
η2
gβ(Q)σ2

`

≤ 2
(
f(w0)− f(w∗)

)
+ 3

T−1∑
t=0

ηgL
2α(Q)β(Q)

(
η2
gτ

2
max,K +Q

)(
σ2
` + σ2

g +G
)

+
L

2
η2
gβ(Q)σ2

`

(22)
Thus we have

1

T

T−1∑
t=0

∥∥∇f(wt)
∥∥2 ≤

2
(
f(w0)− f(w∗)

)
ηgα(Q)T

+ 3L2Qβ(Q)
(
η2
gτ

2
max,K + 1

)(
σ2
` + σ2

g +G
)

+
L

2

ηgβ(Q)

α(Q)
σ2
` (23)

	Introduction
	Background
	FedBuff: Federated Learning with Buffered Asynchronous Aggregation
	Convergence Analysis
	Practical Improvements
	Experiments
	Results

	Related Work
	Conclusions
	Relationship Between Maximum Staleness and K
	Experiment Details
	Datasets and Models
	Implementation Details
	Hyperparameters
	Hyperparameter Ranges
	Best Performing Hyperparameters

	Additional Experiments
	Robustness to Delay Distributions.
	Wall-Clock Time Simulation
	Bias
	Large values of K
	FedBuff with Differential Privacy
	Learning Rate Normalization (LR-Norm)
	Theoretical Justification
	Empirical Evaluation

	Learning Curves

	Proof of Convergence Rate
	Proof of Theorem 1

