
Hardware Acceleration of Video Quality Metrics   
Deepa Palamadai Sundar, Visala Vaduganathan, Xing C. Chen 

Facebook Inc, 1 Hacker Way, Menlo Park, CA, USA 94025  

ABSTRACT  

Quality Metrics (QM) provide an objective way to measure perceived video quality. These metrics are very compute 
intensive and are currently done in software. In this paper, we propose an accelerator that can compute metrics like single 
scale and multi-scale Structural Similarity Index (SSIM, MS_SSIM) and Visual Information Fidelity (VIF). The proposed 
accelerator offers an energy efficient solution compared to traditional CPUs. It improves memory bandwidth utilization 
by computing multiple Quality metrics simultaneously.  

Keywords: Video transcoding, accelerator, SSIM, MS-SSIM, VIF, PSNR, ASIC 
 

1. INTRODUCTION  
 
With the advancement in digital media and growing demand for video content, objective quality metrics is becoming 
increasingly important. Video transcoding is a very common use-case in many data centers and deploying video 
transcoding at scale requires on the fly computation of objective quality metrics to serve optimal videos to the users. This 
process often requires these objective metrics to be computed at a variety of viewport resolutions. These objective metrics 
are often corelated with subjective opinion scores on test data sets that represent the target use-cases. Over the last several 
years, several objective metrics evolved to closely represent subjective video quality. SSIM (Structural Similarity Index 
Measure) [1], MS-SSIM (Multi-Scale SSIM) [2], and VMAF (Video Multimethod Assessment Fusion) [3] are some of the 
better-known and most widely used objective metrics being used in the industry. Our work also includes the more 
traditional image/video pixel quality metrics, PSNR (Peak Signal-to-Noise Ratio), but because of its simple and 
straightforward nature, we will make limited reference to it throughout this manuscript. 

Objective image and video quality measurements fall under three main categories. They are: 

(1) Full reference metric     - A complete reference image is available to compute the distorted image quality 

(2) Partial reference metric - Partial information like a set of parameters of reference image is available 

(3) No-reference metric       - No reference image is available 

These metrics can be very compute intensive and sometimes consume lot more resources than the encoding process itself 
– a topic that was discussed extensively at the Video@Scale-2019 event [4]. For example, the SSIM metric consumes a 
comparable amount of CPU resource to that of H.264 encoding process on traditional CPUs. 

Although the CPU processing power has increased tremendously in recent years, the video usage has also grown 
exponentially. In response to the tremendous growth, on May 14, 2019, Facebook publicly announced a video transcoding 
custom-chip design, codenamed ``Mount Shasta'', to be deployed in our datacenters for the acceleration and compute 
optimization of our various video products [5]. 

The main functional blocks offered by this video transcoding ASIC (application-specific integrated circuit) are: 
 

- Decoder – Accepts uploaded video; outputs uncompressed RAW video stream 
- Scaler – Block to resize (shrink) the uncompressed video 
- Encoders – Outputs compressed (encoded) video 
- Quality measurement – Logic to measure the degradation in video quality after the encoding step 

 

Video quality computations are very power hungry and can quickly limit the amount of processing that can be performed 
along with transcoding process. Moreover, the data transfer between HW transcoding to SW metrics calculation introduces 



 
 

 
 

significant overhead that can severely limit the efficiency of the whole system. Thus, offloading video quality metrics 
calculation to an accelerator would offer an energy efficient solution. In this paper, we propose a hardware architecture 
that offers support for full reference as well as no-reference metric computation. 

The paper is organized as follows. Section 2 covers supported full reference and no-reference metrics in hardware. Section 
3 goes over the proposed hardware architecture in detail. Section 4 covers experimental results. Section 5 covers future 
enhancements and Section 6 concludes the paper. 

 

2. SUPPORTED ALGORITHMS IN HARDWARE 
 
Below are the quality metric algorithms supported by the proposed hardware.  

(1) PSNR (Peak Signal-to-Noise Ratio) 

(2) SSIM (Structural Similarity Index)  

(3) MS-SSIM (Multi Scale SSIM) 

(4) VIF (Visual Information Fidelity) 

(5) No-reference blurriness metric 

 

All the floating-point operations used in the above algorithms are modified to fixed-point equivalents for efficient hardware 
implementation. As it will be shown later, experiments have been conducted and verified that the error margin in 
calculating these metrics between the floating point and its fixed-point equivalent implementation is within acceptable 
limits.  

 

2.1.1 SSIM/MS-SSIM 

SSIM is one of the most popular full reference metrics that is used to measure perceptual image quality [1]. To do this, 
three components – luminance (l), contrast (c) and structure(s) – are calculated, and these are combined to obtain the 
overall similarity measure. Single and multi-scale computations are both available. MS-SSIM [2] offers better flexibility 
than single scale for accounting the variations in viewing conditions. 

The overall SSIM index is given by: 

   	SSIM(x, y) = [l(x, y)]!	. [c(x, y)]". [s(x, y)]#	 	 	 	 (1)	

where 

l(x, y) = !"!""#$#
"!$#	""$#$#

			 	 	 	 	 	 (2)	

c(x, y) = !&!&"#$$
&!$#	&"$#$$

	 	 	 	 	 	 (3)	

s(x, y) = &!"#$&
&!&"#$&

	 	 	 	 	 	 (4)	

 

µx,  µy,  sx, sy and sxy are the local means, standard deviations and cross-covariance for images x, y. C1, C2 and C3 are 
constants added to avoid instability when the denominator is very close to zero. Typically, α, β, γ parameters are set to 1 
and C3 = C2 /2. This results in a specific form of SSIM index  

			SSIM(x, y) =
'!"!""#$()'!&!"#$!)

'"!$#	""$#$()'&!$#	&"$#$!)
	 	 	 	 	 (5)	



 
 

 
 

The SSIM index is computed locally over a window size M. To obtain the global SSIM index for an image, local SSIM 
values are averaged across all pixel locations. Similarly, for a video sequence, SSIM values are calculated per frame and 
then averaged temporally. 

Several adaptations of SSIM algorithm are available. In this paper, we support the computation of two such adaptations. 

(1) FFMPEG SSIM   - This uses an overlapped 8x8 approximation algorithm [6] 

(2) LIBVMAF SSIM – This implements the algorithm as described in [1][7] 

 

2.1.2 VIF 

Visual Information Fidelity is yet another full reference metric to compute image quality. It determines how much 
information about the reference frame can be extracted from the distorted frame [8]. We propose a mechanism to extend 
the current hardware by reusing the SSIM/MS-SSIM pipeline to compute VIF with minor modifications. 

 

2.1.3 No-reference blurriness metric 

No-reference metric is an approach to compute quality when the reference frame is not available. This is used in 
applications where the upload (source) quality of a video needs to be established. A number of no-reference metric 
algorithms have been developed. In this paper, we provide a mechanism to compute the blurriness metric in hardware. 
Similar to full reference metrics, the fixed-point equivalent of the algorithm is implemented in hardware. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 

3. ACCELERATOR ARCHITECTURE 
 
The proposed HW accelerator architecture is shown in Figure 1. The reference and distorted frames are read from memory 
and sent to the compute kernel for calculating the quality score. The accelerator can be programmed to compute any one 
of the supported full reference metrics. An operational mode to compute no-reference blurriness metric along with the full 
reference metric is provided in the accelerator.   

Each of these components are described in detail below.  

 

 
     Fig 1. Architecture of Quality Metrics accelerator 

 

3.1.1 DMA controller 

The DMA (Direct Memory Access) controller block is responsible for reading video input frames from memory. It reads 
both the reference and distorted frames from DDR and loads them into local input buffers. A ping/pong buffer to hide 
memory read latency is used at the input. The data is read from memory in units of a predefined input block size. The 
block size is a factor of both the input buffer size and the bandwidth supported by the on-chip network chosen. 

All these metrics compare reference and distorted frames pixel by pixel. This requires input blocks of both frames be 
spatially aligned while feeding into the kernel. The controller ensures that the input reads of both frames are synchronized 
and reads it in a raster scan order from memory. 

Memory bandwidth is an important resource that can be both limited and expensive in terms of power. By performing 
computation of multiple metrics simultaneously (full and no-reference) we are avoiding the need to re-read frames multiple 
times saving bandwidth and power. 



 
 

 
 

 

3.1.2 Compute kernel 

The kernel is the heart of the accelerator and computes the programmed quality metric. Once the reference and distorted 
frames are read from memory and scaled to the desired resolution, the kernel starts processing pixels.  

Three kernels are used to implement the different algorithms. 

(1) FFMPEG kernel - This computes PSNR and the SSIM index as per the FFMPEG [6] implementation 

(2) SSIM kernel       - This is a unified kernel to compute single-scale and multi-scale SSIM and VIF 

(3) Blur kernel         - This computes the blurriness score used in no-reference metrics.  

Often times, while determining video encoding quality, there is a need to compute the quality loss when it is viewed at 
different viewport resolutions. This means that the reference and distorted frames have to be scaled to the chosen viewport 
resolution. 

Our proposed architecture offers scaler support to upscale or downscale both the reference and distorted frames. This not 
only allows inline processing but further optimizes memory bandwidth, thereby avoiding the need to write/read the scaled 
output to/from memory. The choice of scaler also plays an important role and should not introduce more quality loss during 
the scaling process. The accelerator uses a set of programmable filters with 10 taps for scaling input frames. 

All filter operations involved in these kernels are separable. The hardware implements 1D filters performing filtering in 
horizontal followed by vertical direction. This significantly reduces the number of compute operations thereby reducing 
area and power. 

For any of these metrics, block level scores can also be easily calculated. Block level information is very useful in 
identifying the regions that have higher impact on quality in a frame. Support is also added to compute PSNR in parallel 
with other metrics. 

 

3.1.3 FFMPEG Kernel 

As the name suggests, this kernel is used to compute SSIM index using 8x8 overlapped approximation algorithm. Figure 
2 shows the compute operations to obtain LCS (Luma, Contrast, Structurer) components and combine them to get the 
SSIM Index. 

 
     Fig 2. LCS compute logic 

 

The cost (area and power) of the kernel is directly proportional to the number of multipliers and dividers used. This dictates 
how many pixels can be processed per cycle based on the area/power budget available. The hardware is scalable, that is, 
the number of kernels that run in parallel enhances the compute speed. The number of paths that can be added is again a 
tradeoff between performance and area/power consumption. 

 

 

 

 



 
 

 
 

 

3.1.4 SSIM Kernel 

The SSIM kernel is a unified kernel that computes the SSIM index for both single scale as well as multi-scale operation. 
Figure 3 shows the internal details of the kernel.  

The first step is to perform a Gaussian blur operation to smoothen the input frames. Five components similar to FFMPEG 
SSIM are computed. Each of these components are sent through a 11 tap gaussian blur filter before LCS values are 
calculated. For single scale (LIBVMAF SSIM), input pixels are sent once through the kernel. For MS-SSIM, the gaussian 
blurred output of both frames (the ‘a’ and ‘b’ component) are sent through a dyadic downsampler and looped back to the 
same kernel to process the higher scales. This process is repeated ‘M’ times where M is the number of scales supported. 
This feedback path helps us reuse the same hardware to compute all scales.  

For a given input block, all scales are computed before processing the next input block read from memory. If the frame 
width or height is not a multiple of input block size, at the frame boundaries the kernel operates only on those pixels that 
lie within the frame. 

 
     Fig 3. SSIM Kernel 

 

The use of a dyadic down sampler on the gaussian blurred output is to ease hardware implementation. This is a 
simplification from the algorithm which uses an averaging filter iteratively to obtain the input for higher scales.  

VIF metric is computed by reusing the same kernel, since it relies on the same fundamentals natural-scene statistics 
framework that SSIM is based upon. The kernel is enhanced to compute the logarithm operation as detailed in [8] on the 
variance/covariance (σ) components, which are calculated as part of LCS compute, and thus provide VIF scores as well. 
The VIF algorithm dictates varied filter taps for the different levels. The hardware accelerator simplifies this to reuse the 
same 11 tap gaussian filter across all levels. 

 

3.2.3 Blur kernel 

The blur kernel computes the blurriness metric that is used in the no-reference metric algorithms. Figure 4 shows the 
various stages involved in computing the metric. 

 
     Fig 4. Blur kernel 

 

The first step is to smoothen the input using a 5-tap gaussian blur filter. The smoothened output is then sent through a 
Sobel filter [9] [10], to compute the pixel gradients (Gx, and Gy), as follows. 

 
The edge width block then determines the spread of the edge for each pixel, which are then used to compute the final blur 
scores. 



 
 

 
 

To compute the edge width (spread), for each pixel we search in the direction computed by Sobel operator for a certain 
search window size (NXN). This also involves searching along diagonal directions as shown in Figure 5, which are natively 
not hardware friendly. We use a preload mechanism to load the diagonal neighbors upfront and reuse the memory read 
data during the search process. This saves multiple reads from memory for the same neighbor block. 

 
     Fig 5. Edge width search  

 

4. RESULTS 
 
As described in earlier sections, fixed point version of the quality metrics algorithm is what the hardware implements. To 
validate our HW algorithm and implementation, we created a floating-point SW reference model which we call A-model 
to compare with the bit accurate C-model that models our HW implementation. The A-model was created by 
directly  taking  the core metric computation functions from the open-source software packages ffmpeg [6] (for FFMPEG 
ssim) and Libvmaf [7] (for SSIM_libvmaf, MS-SSIM and VIF), and putting them in the same test harness as our C-model 
so both A-model and C-model will take the same input images. 

The main difference between A-model and C-model is that wherever A-model uses floating point representation which 
uses many more bits per value, C-model (our HW) will be using fixed point representation with fewer bits due to HW 
resource limitations, such as for Gaussian filtering coefficients or intermediate results inside score calculation. For VIF 
score calculation which involves log2() computation, C-model will need to also use some hardware viable approximations. 
We then feed images from about 400 real input streams of 4 input resolutions to both models. We report the average 
absolute difference between the A-model scores and C-model scores in Table 1, which is a measure of the effect of HW 
approximation from SW reference implementation. 

 
     Table 1. Average absolute error/difference between floating- and fixed-point model for different metrics  

QP VALUE RESOLUTION SSIM 

FFMPEG 

SSIM 

LIBVMAF 

MS_SSIM VIF 

 

 

         23  

360p 0.00004 0.00023 0.00079 0.01352 

480p 0.00004 0.00062 0.00102 0.01358 

720p 0.00004 0.00032 0.00081 0.01387 

1080p 0.00004 0.00050 0.00087 0.01258 

 

 
         31 

360p 0.00005 0.00024 0.00084 0.01409 

480p 0.00004 0.00063 0.00108 0.01436 

720p 0.00004 0.00035 0.00092 0.01451 

1080p 0.00004 0.00052 0.00093 0.01307 

 



 
 

 
 

The memory bandwidth consumed while computing PSNR, no-reference blurriness and FFMPEG SSIM was also 
compared for different encoded resolutions. Figure 6 shows the comparison between what we see on traditional 
CPU vs proposed accelerator. 

 

 
     Fig 6. Memory bandwidth – CPU vs Accelerator 

 

Some of the metrics, like VIF and MSSSIM, are very compute intensive and often consume significant power when 
run on servers. However, the HW Implementation can improve performance per unit of power (perf/W) by 100x 
magnitude. 

 

5. FUTURE ENHANCEMENTS 
 
In this paper, the proposed architecture implements all image/video quality algorithms for the luminance (luma) 
component. The hardware itself is agnostic to the component being processed and it can process either luma or chroma 
planes. We can do this either as separate passes where each plane is read and processed separately or have some additional 
pre-processing hardware to split these planes and feed it to the kernel in a specific order. 

We intend to experiment with the usefulness of such color metrics and balance the benefits against the resulting increase 
in power usage to establish a good tradeoff, perhaps coupled with subjective testing for validation. 

In our current approach, we are using the VIF scale features to approximate VMAF scores; yet, the architecture is also 
extensible with programmable support on filter and scaler coefficients. We can also enhance the accelerator to extend the 
VIF computation by making the gaussian blur coefficients programmable per level and include additional metrics like 
DLM [11] to eventually provide full VMAF scores. 

 

6. CONCLUSION 
 
In this paper, we proposed an architecture to accelerate video quality metrics. This can tremendously improve the 
performance compared to CPUs and help quality metrics serve as a tool in improving parameter selection in transcoding 
process. This being a first step in enhancing the quality compute operations, more complex algorithms can be investigated 
to explore the possibility of offloading them to hardware processing.  



 
 

 
 

 

REFERENCES 

[1] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural 
similarity,” lEEE Transactions on Image Processing, vol.13, April (2004) 

[2] Z.Wang, E. P. Simoncelli and A. C. Bovik, “Multi-Scale Structural Similarity For Image Quality Assessment”, 37th 
IEEE Asilomar Conference on Signals, Systems and Computers, Nov. (2003) 

[3] Li, Z., Aaron, A., Katsavounidis, I., Moorthy, A., and Manohara, M., “Toward a practical perceptual video quality 
metric,” https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652 (2016)  

[4] Ioannis Katsavounidis, “Video quality keynote”, https://atscaleconference.com/videos/video-scale-2019-video-
quality-keynote/, Oct. 16, (2019) 

[5] Lee, K. and Rao, V., “Accelerating facebook’s infrastructure with application-specific hardware.” 
https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/ (2019) 

[6] FFmpeg Developers. (2020). ffmpeg tool [Software]. Available from http://ffmpeg.org 
[7] LIBVMAF, < https://github.com/Netflix/vmaf/tree/master/libvmaf> 
[8] H. R. Sheikh,  A. C. Bovik, “Image Information and Visual Quality”, lEEE Transactions on Image Processing, vol.15, 

February (2006)  
[9] Kanopoulos, N., Vasanthavada, N., & Baker, R. L. (1988). Design of an image edge detection filter using the Sobel 

operator. IEEE Journal of Solid-State Circuits, 23(2), 358–367 
[10] Sobel, I., Feldman, G., "A 3x3 Isotropic Gradient Operator for Image Processing", presented at the Stanford Artificial 

Intelligence Project (SAIL) in (1968) 
[11] S. Li, F. Zhang, L. Ma, and K. Ngan, “Image Quality Assessment by Separately Evaluating Detail Losses and Additive 

Impairments,” IEEE Transactions on Multimedia, vol. 13, no. 5, pp. 935–949, Oct. (2011) 
[12] G. Chaudhari, H. Lalgudi, H. Reddy, “Cross-codec encoding optimizations for video transcoding”, SPIE, Applications 

of Digital Image Processing XLIII, volume 11510, August (2020) 
 

 
 

 


