
ActivityPoser: Activity driven Full-Body Pose Estimation from
Sparse IMU Configurations

Karan Ahuja
Carnegie Mellon University

Pittsburgh, PA, USA
kahuj@cs.cmu.edu

Eric Whitmire
Reality Labs Research, Meta

Redmond, WA, USA
ewhitmire@meta.com

Joseph D Greer
Reality Labs Research, Meta

Portland, OR, USA
jdgreer@meta.com

Wolf Kienzle
Reality Labs Research, Meta

Redmond, WA, USA
wkienzle@meta.com

Figure 1: Using the activity context of jumping jacks, walking and lunges and inertial data from a smartwatch, smartwatch and
AR headset and a consumer-grade VR headset and hand-held controllers respectively our system predicts the full-body pose.

ABSTRACT
On-body IMU-based pose tracking systems have gained prevalence
over their external tracking counterparts due to their mobility,
ease of installation and use. However, even in these systems, an
IMU sensor placed on a particular joint can only estimate the pose
of that particular limb. In contrast, activity recognition systems
contain insights into the whole body’s motion dynamics. In this
work, we present ActivityPoser, which uses the activity context
as a conditional input to estimate the pose of limbs for which we
do not have any direct sensor data. ActivityPoser compensates for
impoverished sensing paradigms by reducing the overall pose error
by up to 17%, compared to a model bereft of activity context. This
highlights a pathway to high-fidelity full-body digitization with
minimal user instrumentation.
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1 INTRODUCTION
In recent years, on-body sensing systems have gained prevalence
over their external tracking counterparts due to their mobility, ease
of setup and use. In particular, Inertial Measurement Unit (IMU)
based systems have gained a lot of traction due to their affordable
cost, low power consumption and ubiquity in consumer devices
such as smartphones and smartwatches. However, even in such
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systems, a sensor placed on a particular joint can generally only
estimate the pose of that particular body keypoint. For example, a
contemporary VR system such as the Oculus Quest can only track
the user’s instrumented head and hands.

In contrast, a user’s activity contains information about the
whole body’s motion dynamics. Furthermore, Human Activity
Recognition (HAR) techniques that make use of IMU data from a
single sensor such as a smartphone or a smartwatch, or an array of
on-body devices have become increasingly prevalent. In such cases,
making use of the activity context inferred from the instrumented
joint can help narrow down the pose of the non-instrumented joints.
In response, we present ActivityPoser, a learning framework that
takes the activity context as a conditional input for a higher fidelity
full-body pose inference. Using activity as a prior, we create a cus-
tom neural network pose model that can compensate for the lack
of sensors placed on the body and affords high-fidelity pose with
minimal user instrumentation.

2 METHODS
There aremany plausible configurations for placing the IMU sensors
around the body, each unique in terms of their device placement,
the number of sensors employed and the fidelity of captured pose.
We consider 6 placement scenarios showcased in Figure 2.

We make use of a priori activity context and its corresponding
inertial data as the system input. To encode our full-body pose
output, we make use of the SMPL [2] body framework (72 pose
angles representing 24 joints). For our learning framework, make
use of a conditional bi-directional Recurrent Neural Network (RNN)
with 128 long short-term memory (LSTM) cells. We initialize the
states of our LSTM with a learned representation of the conditional
input, in this case, the activity prior.

While it is intuitive that there exist multiple possible body poses
for a given input - especially for cases where only a handful of joints
are instrumented - our method aims to recover the best fitting full-
body pose in a least-square sense, weighting joints inversely to
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Figure 2: On-body inertial sensor placements.

their Euclidean distance from the point of instrumentation. We
train a separate model for each 5 form factors. For model training,
we use a batch size of 64 and update the weights using RMSProp
solver with a learning rate of 0.001 for training. We train our model
for 1000 epochs with TensorFlow on an NVIDIA Titan X GPU.

Our model outputs the rotations as 72 SMPL axis-angle pose
parameters. We can perform forward kinematics to estimate the
full-body pose in cartesian space from these rotations. However, a
problem with such rotation-based regressors is that the rotation of
a joint for which we have direct orientation data may differ from
the predicted value. To account for this we make use of an inverse
kinematic solver that adjusts the joint rotation along the kinematic
chain according to the known rotation provided directly from the
IMU sensor. This further allows us to animate an avatar and correct
for unnatural poses.

3 EVALUATION
In order to study the relationship between different sensor con-
figurations and placements, we need data with activity context,
precise acceleration and orientations of each joint, along with the
corresponding full-body pose. For our first dataset, we make use of
the AMASS Dataset [3] which provides a large collection of MoCap
data across a multitude of human activities. Similar to prior work
[1], we synthesize synthetic inertial data from the AMASS dataset
by placing virtual IMUs on the corresponding vertices of the SMPL
mesh to generate acceleration and orientation data.

For preliminary evaluation, we make use of Deep Inertial Poser’s
(DIP) [1] IMU-based MoCap, to test the performance of our model
on real-world data. It consists of real-world IMU data spanning
across 5 activity classes: upper-body, lower-body, interaction, freestyle

Figure 3: Mean Per Joint Rotation Error (in degrees) on DIP-
IMU dataset across different sensor configurations.

Figure 4: Predicted pose with activity and without.

and locomotion. Consistent with prior work [1] we fine-tune our
model trained on the AMASS dataset on the DIP-IMU dataset mak-
ing use of data from the first 8 participants as training, with the
last 2 participants used for testing.

Figure 3 shows accuracy across different IMU configurations.
The activity-driven model outperforms the pose-only model by
17.1% for the Watch scenario (1 sensor). For the AR (2 sensors)
and Consumer VR (3 sensors) scenario, the accuracy increase is
14.9% and 11.2% respectively. This accuracy difference is negligible
(1%) for the sparse MoCap (6 sensors) and full-body MoCap (17
sensors) scenario. Thus, as the sensor instrumentation of the whole
body increases, we get a more holistic picture of the full-body pose.
However, for impoverished sensing paradigms, the use of activity
context helps compensate for the lack of sensors present.

This benefit of the activity context for pose prediction can further
be seen in Figure 4. In the Consumer VR configuration, when we do
not take the activity context into account, the motion of the lower
body cannot be estimated when the user is squatting. The use of
activity also produces more temporally coherent motions. This can
be seen in the Locomotion example in the AR configuration, where
the temporal gait of the hands corresponds to the walking motion
and animates the corresponding legs. The same can be seen in
the freestyle motion example when the person is skipping (Watch
scenario). With activity context, the sensor placed on the right hand
can glean insights about the position of the left hand despite having
no direct sensor data for the same.
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