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Abstract

Most data is automatically collected and only ever “seen” by algorithms. Yet, data
compressors preserve perceptual fidelity rather than just the information needed by
algorithms performing downstream tasks. In this paper, we characterize the bit-rate
required to ensure high performance on all predictive tasks that are invariant under a
set of transformations, such as data augmentations. Based on our theory, we design
unsupervised objectives for training neural compressors. Using these objectives,
we train a generic image compressor that achieves substantial rate savings (more
than 1000× on ImageNet) compared to JPEG on 8 datasets, without decreasing
downstream classification performance.

1 Introduction

Progress in important areas requires processing huge amounts of data. For climate prediction, models
are still data-limited [1], despite the Natl. Center for Computational Sciences storing 32 million
gigabytes (GB) of climate data [2]. For autonomous driving, capturing a realistic range of rare events
with current methods requires around 3 trillion GB of data.1 At these scales, data are only processed
by task-specific algorithms, and storing data in human-readable formats can be prohibitive. We need
compressors that retain only the information needed for algorithmic execution of downstream tasks.

Source Standard rec. Our rec.
Figure 1: Our unsupervised coder improves
compression by only keeping information nec-
essary for typical tasks. (left) source aug-
mented MNIST digit; (center) a neural percep-
tual compressor achieves 130 bit-rate; (right)
our invariant compressor achieves 48 bit-rate.

Existing lossy compressors are not up to the chal-
lenge, because they aim to reconstruct the data for hu-
man perception [5–10]. However, much of perceptual
information is not needed to perform the tasks that
we care about. Consider classifying images, which
can require about 1 MB to store. Classification is typ-
ically invariant under small image transformations,
such as rescalings or rotations, and could instead be
performed using a representation that discards such
information (see Fig. 1). The amount of unnecessary
perceptual information is likely substantial, as illus-
trated by the fact that typical image classification can
be performed using a detailed caption, which requires
only about 1 kB to store (1000× fewer bits).

1Kalra and Paddock [3] estimated that autonomous vehicles would have to drive hundreds of billions of miles
to demonstrate reliability in rare events. At 1 TB / hour [4] and 30 miles / hour, this is 3e12 GB.
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Our goal is to quantify the bit-rate needed to ensure high performance on a collection of prediction
tasks. In the simple case of a single supervised task, the minimum bit-rate is achieved by compressing
predicted labels, and essentially corresponds to the Information Bottleneck (IB; [11]). Our challenge,
instead, is to ensure good performance on any future tasks of interest, which will rarely be completely
known at compression time, or might be too large to enumerate.

We overcome this challenge by focusing on sets of tasks that are invariant under user-defined
transformations (e.g., translation, brightness, cropping), as is the case for many tasks of interest to
humans [12, 13]. This structure allows us to characterize a worst-case invariant task, which bounds
the relative predictive performance on all invariant tasks. As a result, the bit-rate required to perform
well on all invariant tasks is exactly the rate to compress the worst-case labels. At a high level, the
worst-case task is to recognize which examples are transformed versions of one another, and rate
savings come from discarding information from those transformations.

We also provide two unsupervised neural compressors to target the optimal rates. One is similar
to a variational autoencoder [14] that reconstructs canonical examples (Fig. 1). Our second is a
simple modification of contrastive self-supervised learning (SSL; [15]), which allows us to convert
pre-trained SSL models into powerful, generic compressors. Our contributions are:

• We formalize the notion of compression for downstream predictive tasks.
• We characterize the bits needed for high performance on any task invariant to augmentations.
• We provide unsupervised objectives to train compressors that approximate the optimal rates.
• We show that our compressor outperforms JPEG by orders of magnitude on 8 datasets on which it

was never trained (i.e., zero-shot). E.g., on ImageNet [16], it decreases the bit-rate by 1000×.

2 Rate-distortion theory background

The goal of lossy compression theory is to find the number of bits (bit-rate) required to store outcomes
x of a random variable (r.v.) X , so that it can be reconstructed within a certain tolerance. This
is accomplished in Shannon’s [17] rate-distortion (RD) theory by mapping X into a r.v. Z with
low mutual information I[X;Z]. Specifically, given a distortion measure D[X,Z], the RD theory
characterizes the minimal achievable bit-rate for a distortion threshold δ by

Rate(δ) = min
p(Z|X)

I[X;Z] such that D[X,Z] ≤ δ . (1)

In lossy compression, Z is usually a reconstruction of X , i.e., it aims to faithfully approximate X . As
a result, typical distortions, e.g., the mean squared error (MSE), assume that the sample spaces X ,Z
of both r.v.s are the same. This assumption is not required. Indeed, any distortion d : X × Z → R≥0
of the form D[X,Z] = Ep(X,Z)[d(X,Z)], where there exists a z ∈ Z such that D[X, z] is finite, is a
valid choice [18]. This shows that RD theory can be used outside of reconstructions. In the following
we refer to Z as a compressed representation of X to distinguish it from a reconstruction.

3 Minimal bit-rate for high predictive performance

In this section, we characterize the bit-rate needed to represent X to ensure high performance on
downstream tasks. Our argument has three high-level steps: (i) define a distortion that controls
downstream performance when predicting from Z instead of X; (ii) simplify and validate this
distortion when desired tasks satisfy an invariance condition; (iii) apply RD theory with the valid
distortion. For simplicity, our presentation is relatively informal; formal proofs are in Apps. A and B.

3.1 A distortion for worst-case predictive performance

Suppose X is an image. Potential downstream tasks might include Ydog, whether the image displays
a dog; or Yhd, whether the image is hand-drawn. Formally, these and other downstream tasks are
expressed as T ={Ydog, Yhd, . . .}, a set of random variables that are jointly distributed with X . Let
R[Y |X] denote the Bayes (best possible) risk when predicting Y from X . For ease of presentation
in the main paper, we consider only classification tasks T and Bayes risk of the standard log loss
R[Y |X] := infq Ep(X,Y )[− log q(Y |X)]. We deal with MSE and regression in Appx. B.6.
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Figure 2: Maximal invariants M(X) are representatives of equivalence classes. Example Ms include
the: (a) Euclidean norm for rotations; (b) unit vector for scaling; (c) f when equivalence classes are
pre-images by f ; (d) empirical measure for permutations; (e) canonical graph for graph isomorphisms;
(f) unaugmented input for data augmentations.

In this setting, a meaningful distortion DT [X,Z] quantifies the difference between predicting any
Y ∈ T from the compressed Z, as opposed to using X . This is the worst-case excess risk,

DT [X,Z] := sup
Y ∈T

R[Y |Z]− R[Y |X] . (2)

If DT [X,Z] = 0, it is possible to achieve lossless prediction: performing as well using Z as using
X . More generally, bounding DT by δ ensures that R[Y |Z] − R[Y |X] ≤ δ for all tasks in T .
However, there are two issues that need to be addressed before Eq. (2) can be used. First, it is not
clear whether DT is a valid distortion for RD theory. Second, the worst excess-risk DT assumes
access to all downstream tasks of interest T during compression, which is unrealistic in general.

3.2 Invariant tasks

The tasks that we care about are not arbitrary, and often share structure. One such structure is
invariance to certain pre-specified transformations of input data. For example, computer vision tasks
are often invariant to mild transformations such as brightness changes. Such invariance structure is
common in realistic tasks, as seen by the wide-spread use of data augmentations [13] in machine
learning (ML), which encourage predictions to be the same for an unaugmented x and an augmented
x+. Motivated by this we focus on sets of invariant tasks T .

We consider a general notion of invariance, namely invariance specified by an equivalence relation
∼ on X .2 The equivalence induces a partition of X into disjoint equivalence classes, and we are
interested in tasks whose conditional distributions are constant within these classes.

Definition 1. The set of invariant tasks of interest with respect to an equivalence (X ,∼), denoted
T∼, is all random variables Y such that x ∼ x+ =⇒ p(Y |x) = p(Y |x+) for any x, x+ ∈ X .

3.3 Rate-distortion theory for invariant task prediction

The key to simplifying DT∼ is the existence of a (non-unique) worst-case invariant task, denoted
M(X). Such task contains all and only information to which tasks Y ∈ T∼ are not invariant; we call
them maximal invariants. A maximal invariant M( • ) with respect to ∼ is any function satisfying3

x ∼ x+ ⇐⇒ M(x) =M(x+) for any x, x+ ∈ X . (3)

2As a reminder, ∼ is an equivalence relation iff for all x, x′, x′′ ∈ X : (reflexivity) x ∼ x, (symmetry)
x ∼ x′ ⇐⇒ x′ ∼ x, and (transitivity) x ∼ x′ and x′ ∼ x′′ =⇒ x ∼ x′′.

3This extends the definition of maximal invariants [19] beyond invariances to group actions.
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A maximal invariant removes all information that tasks are invariant to, as it maps equivalent inputs
to the same output, i.e., M(x) =M(x+). Yet, it retains the minimal information needed to perform
invariant tasks, by mapping non-equivalent inputs x 6∼ x− to different outputs M(x) 6= M(x−).
In other words, M(x) indexes the equivalence classes. For example, the Euclidean norm is a
maximal invariant for rotation invariance, as all vectors that are rotated versions of one another can
be characterized by their radial coordinate. For data augmentations, the canonical (unaugmented)
version of the input is a maximal invariant. Other examples are shown in Fig. 2.

We prove in Appx. B.2 that under weak regularity conditions, maximal invariant tasks exist in T∼,
and that they achieve the supremum in Eq. (2). This allows us to show that DT∼ reduces to the Bayes
risk of predicting M(X) from Z and that it is a valid distortion measure. Crucially, this allows us to
quantify downstream performance without enumerating invariant tasks.

Proposition 1. Let (X ,∼) be an equivalence relation and M a maximal invariant that takes at most
countably many values, with H[M(X)] <∞. Then DT∼ (2) with log loss is a valid distortion and

DT∼ [X,Z] = R[M(X) |Z] . (4)

Here we used R[M(X) |X] = 0, as M is a deterministic function. Also, note that the countable
requirement holds when tasks are invariant to some rounding of the input, as is typically the case due
to floating-point storage. We accommodate the uncountable case for squared-error loss in Appx. B.6.

With a valid distortion in hand, we invoke the RD theorem with DT∼ to obtain our “Rate-Invariance”
(RI) theorem. The RI theorem characterizes the bit-rate needed to store X while ensuring small
log-loss on invariant tasks. We obtain analogous results for squared-error loss.

Theorem 2 (Rate-Invariance). Assume the conditions of Prop. 1. Let δ ≥ 0, and Rate(δ) denote
the minimum achievable bit-rate for transmitting Z such that for any Y ∈ T∼ we have R[Y |Z]−
R[Y |X] ≤ δ. Then Rate(δ) = 0 if δ ≥ H[M(X)] and otherwise it is finite and

Rate(δ) = H[M(X)]︸ ︷︷ ︸
information needed

to predict T∼

− δ︸︷︷︸
acceptable decrease

in predictive loss

= H[X]︸ ︷︷ ︸
standard

compression

− H[X |M(X)]︸ ︷︷ ︸
gains due to
invarainces

− δ. (5)
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Figure 3: Rate-Invariance function.

To ensure lossless prediction, i.e., Rate(0), our theorem
states that we require a bit-rate of H[M(X)]. Intuitively,
this is because M(X) contains the minimal information
needed to predict losslessly any Y ∈ T∼.4 Furthermore,
the theorem relates compression and prediction by show-
ing that allowing a δ decrease in log-loss performance on
all tasks can save exactly δ bits. Intuitively, this is a linear
relationship, because expected log-loss is measured in bits.
On the right of Eq. (5) we further decompose H[M(X)]
into two terms to provide another interpretation: (i) H[X],
which, for discrete X , is the bit-rate required to losslessly
compress X , and (ii) H[X |M(X)], which quantifies the
information removed due to the invariance of desired tasks.
Importantly, removing this information does not impact
the best possible predictive performance. See Fig. 3.

The bit-rate gains can be substantial, depending on the invariances. Consider compressing a sequence
of n i.i.d. fair coin flips. Suppose one is only interested in predicting permutation invariant labels.
Then instead of compressing the entire sequence in H[Xn] = nH[X] = n bits, one could compress
the number of heads, which is a maximal invariant for permutation invariance, in O(log n) bits.5 As
more interesting examples, we recover in Appx. B.4 results from (i) unlabeled graph compression
[20]; (ii) multiset compression [21]; (iii) single task compression (IB; [11]). The equivalence ∼ can
be induced by any transformations, such as transforming an image to its caption. We use this idea in
Sec. 5.3 to obtain >1000× compression on ImageNet without sacrificing predictive performance.

4We prove in Appx. B.5 that Rate(0) = H[M(X)] for any losses used in ML.
5The number of heads K follow a binomial distribution so H[K] ∈ O(logn). Here K is also a minimal

sufficient statistic for Xn. More generally, if P (X ′) is invariant to ∼ and ∼ is the coarsest such relation, then
minimal sufficiency coincides with maximal invariance. In practice, however, P (X ′) will rarely be ∼ invariant.
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Figure 4: Our unsupervised objectives for invariant image compression under data augmentation use
the same encoder, but differ in their approximation to the invariance distortion. Both models encode
the augmented data, pass the representation through an entropy bottleneck which ensures that they
are compressed, and use a distortion to retain the information about the identity of the original data.
The models differ in how they retain that information: (VIC) by reconstructing unaugmented inputs;
(BINCE) by recognizing which inputs come from the same original data.

4 Unsupervised training of invariant neural compressors

In this section, we design practical, invariant neural compressors that bound optimal rates. Derivations
are in Appx. C. In particular, we are interested in the argmin encoders p(Z|X) of the RD function
(Eq. (1)) under the invariance distortion DT∼ . To accomplish this, we can optimize the following
equivalent (i.e., it induces the same RI function) Lagrangian, where β takes the role of δ,6

argmin
p(Z|X)

I[X;Z] + β · R[M(X) |Z] . (6)

In ML, the maximal invariant M is often not available. Instead, invariances are implicitly specified by
sampling a random augmentation from A, applying it to a datapoint X , and asking that the model’s
prediction be invariant between X and A(X). For example, invariance to cropping can be enforced
by randomly cropping images while retaining the original label. We show in Appx. C, that in such
case, we can treat the augmented A(X) as the new source, Z as the representation of A(X), and
the unaugmented X as the maximal invariant task M(A(X)). Indeed, R[M(A(X)) |Z] is equal to
R[X |Z] up to a constant, so we can rewrite Eq. (6) as the following equivalent objective,

argmin
p(Z|A(X))

I[A(X);Z] + β · R[X |Z] . (7)

Such reformulation is possible if random augmentations retain the invariance structure X ∼ A(X)
but “erase” enough information about equivalent inputs, specifically, if X⊥⊥A(X) |M(X). We
discuss the second requirement in Appx. C but note that it will likely not be a practical issue if the
dataset is small compared to the support |D| � |X |. With this, we have an objective whose r.v.s. are
easy to sample from. However, both terms in Eq. (7) are still challenging to estimate.

In the following, we develop two practical variational bounds to Eq. (7), which can be optimized
by stochastic gradient descent [23] over the encoder’s parameters. Both approximations use the
standard lossy neural compression bound I[Z;A(X)] ≤ H[Z] ≤ minθ Ep(Z)[− log qθ(Z)] where
qθ(Z) is called an entropy model (or a prior) [24, 25]. This has the advantage that the learned qθ can
be used for entropy coding Z [26, 27]. See Ballé et al. [28] for possible entropy models. Our two
approximations differ in how they upper bound R[X |Z]. The first uses a reconstruction loss, which
attempts to reconstruct the unaugmented input x ∈ D from A(x). The second uses a discrimination
loss, which attempts to recognize which examples are augmented versions of the input.

4.1 Variational Invariant Compressor (VIC)

Our first model is a modified neural compressor in which inputs are augmented but target reconstruc-
tions are not. We refer to it as a variational invariant compressor (VIC). See Fig. 4 for an illustration.
VIC has an encoder pϕ(Z|A(X)), an entropy model qθ(Z), and a decoder qφ(X|Z). Given a data
sample x ∈ D, we apply a random augmentation A(x), and encode it to get a representation Z. The
decoder then attempts to reconstruct the unaugmented x from Z. This leads to the objective,

LVIC(φ, θ, ϕ) := −
∑
x∈D

Ep(A)pϕ(Z|A(x))[log qθ(Z) + β · log qφ(x |Z)] . (8)

6As the RI function is not strictly convex (Fig. 3), it should be beneficial to use R[M(X) |Z]2 to ensure that
sweeping over β is equivalent to sweeping over δ [22]. We did not see any difference in practice.
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The term log qθ(Z) is an entropy bottleneck, which bounds the rate I[A(X);Z] and ensures that
unnecessary information is removed. The term log qφ(x |Z) bounds the distortion R[X |Z] ≤
Ep(X,Z)[− log qφ(X |Z)] and ensures that VIC preserves the information needed for invariant tasks.

4.2 Bottleneck InfoNCE (BINCE)

Our second compressor retains all predictive information without reconstructing the data. It has
two components: an entropy bottleneck and an InfoNCE [15] objective, which is the standard in
contrastive SSL. We refer to this as the bottleneck InfoNCE (BINCE), see Fig. 4. BINCE has an
advantage over VIC in that it avoids the problem of reconstructing possibly high dimensional data.

Algorithm 1 BINCE’s forward pass for x

Require: pϕ, qθ , fψ , D, A, β, n, x
1: x̃← sample(A(x)) . Augment
2: z ← sample(pϕ(Z|x̃)) . Encode
3: rate_loss← − log qθ(z)

4: {x−i }
n
i=1 ← select(D \{x}) n times

5: x̃← sample([A(x), A(x−1 ), . . . , A(x
−
n )])

6: z← sample(pϕ(Z|x̃))
7: z+ ← z[0]

8: softmax← exp fψ(z+,z)

(
∑
z′∈z exp fψ(z′,z))

9: distortion_loss← − log(softmax)

10: return rate_loss + β · distortion_loss

Algorithm 1 shows how to train BINCE, where each
call to A returns an independent augmentation of
its input. As with VIC, for every datapoint x ∈ D,
we obtain a representation Z by applying an aug-
mentation A(x) and passing it through the encoder
pϕ(Z |A(X)). We then sample a “positive” exam-
ple Z+ by encoding a different augmented version
of the same underlying datapoint x. Finally, we
sample n “negative” examples Z−i by encoding aug-
mentations A(x−i ) of datapoints x−i ∈ D that are
different from x. This results in a sequence Z =
(Z+, Z−1 , . . . , Z

−
n ). For conciseness we will denote

the above sampling procedure as pϕ(Z,Z |A,D, x).
The final loss uses a discriminator fψ that is opti-
mized to score the equivalence of two representation,

LBINCE(ϕ, θ, ψ) := −
∑
x∈D

Ep(A)pϕ(Z,Z|A,D,x)

[
log qθ(Z) + β · log exp fψ(Z

+, Z)∑
Z′∈Z exp fψ(Z ′, Z)

]
. (9)

BINCE retains the necessary information by classifying (as seen by the softmax) whichZ is associated
with an equivalent example X . Both VIC and BINCE give rise to efficient compressors by passing
X through pϕ(Z|X) and entropy coding using qθ(Z). In theory they can both recover the optimal
rate for lossless predictions, i.e., H[M(X)], in the limit of infinite samples (|D|,n) and unconstrained
variational families. In practice, BINCE has the advantage over VIC of (i) not requiring a high
dimensional decoder; and (ii) giving (for suitable fψ) representations that are approximately linearly
separable [29–31] and thus easy to predict from [15, 32]. The disadvantages of BINCE are that it
(i) does not provide to reconstructions diminishes interpretability; and (ii) has a high bias, unless the
number of negative samples n is large [33, 34], which is computationally intensive.

5 Experiments

We evaluated our framework focusing on two questions: (i) What compression rates can our frame-
work achieve at what cost? (ii) Can we train a general purpose predictive image compressor? For
all experiments, we train the compressors, freeze them, train the downstream predictors, and finally
evaluate both on a test set. For classical compressors, standard neural compressors (VC) and our VIC,
we used either reconstructions X̃ as inputs to the predictors or representations Z. As BINCE does not
provide reconstructions, we predicted from the compressed Z using a multi-layer perceptron (MLP).
We used ResNet18 [35] for encoders and image predictors. For entropy models we used Ballé et al.’s
[28] hyperprior, which uses uniform quantization. We optimized hyper-parameters on validation
using random search. For classification tasks, we report classification error instead of log-loss. The
former is more standard and gave similar results (see Appx. F.2). For experimental details see Appx. E.
For additional results see Appx. F. Code is at github.com/YannDubs/lossyless.

5.1 Building intuition with toy experiments

To build an visual intuition, we compressed samples from a 2D banana source distribution [36],
assuming rotation invariant tasks, e.g., classifying whether points are in the unit circle. We also
compressed MNIST digits as in Fig. 1. Digits are augmented (rotations, translations, shearing,
scaling) both at train and test time to ensure that our invariance assumption still holds.
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(a) Rate-Invariance curves

(b) VC high rate (c) VC (d) VC low rate

(e) VIC high rate (f) VIC (g) VIC low rate

Figure 5: Compression rates of a Banana source [36] can be decreased when downstream tasks are
rotation invariant. (Left) Our invariant compressor (VIC, blue) outperforms neural compressors (VC,
orange). 5 runs with standard errors in gray. (Right) VIC quantizes the space using disks to remove
unnecessary angular information. Pink lines are quantization boundaries, dots are code vectors with
size proportional to learned probabilities. Low rates correspond to low β in Eq. (7).

Where do our rate gains come from? For rotation invariant tasks, our method (VIC) discards
unnecessary angular information by learning disk-shaped quantizations (Fig. 5, bottom right). Specif-
ically, VIC retains only radial information by mapping all randomly rotated points (disks) back to
maximal invariants (pink dots). In contrast, standard neural compressors (VC) attempt to reconstruct
all information, which requires a finer partition (Fig. 5, top right). As a result (Fig. 5a), VIC needs
a smaller bit-rate (y-axis) for the same desired performance (DT∼ , x-axis). The area under the RD
curve (AURD) for VIC is 35.8±4.2 against 48.1±0.3 for VC, i.e., expected bit-rate gains are around
70%. Similar gains are achieved for augmented MNIST in Fig. 6 by reconstructing canonical digits.

(a) Rate-Error curve (b) Reconstructions that allow 99% downstream accuracy

Figure 6: (Left) By reconstructing prototypical digits our VIC (blue) achieves higher compression
of augmented MNIST digits than standard neural compressors (VC, orange) without hindering
downstream classification. 5 runs. (Right) The source examples (first row) as well as reconstructions
for the non-invariant (second row) and invariant compressor (last row).

Can we recover the optimal bit-rate? We investigated whether our losses can achieve the optimal
bit-rate for lossy prediction by using supervised augmentations, i.e., A(x) randomly samples a train
example x+ that has the same label. For MNIST the single-task optimal bit-rate is H[Y ] = log(10) ≈
3.3 bits. VIC and BINCE respectively achieve 5.7 and 5.9 bits, which shows that our losses are
relatively good despite practical approximations. Details in Appx. F.2.

What is the impact of the choice of augmentations? The choice of augmentation A implicitly
defines the desired task-set T , i.e., T is the set of all tasks for which A does not remove information.
As a result Theorem 2 can be rewritten as Rate(δ) = I[X;A(X)]− δ, so the rate decreases when A
removes more information fromX . To illustrate this we trained our VIC using three augmentation sets
on MNIST, all of which keep the true label invariant but progressively discard more X information.
VIC respectively achieves a rate of 185.3, 79.0, and 5.7 bits, which shows the importance of using
augmentations that remove X information. Details and BINCE results are in Appx. F.2.
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5.2 Evaluating our methods with controlled experiments

To investigate our methods, we compressed the STL10 dataset [37]. We augment (flipping, color
jittering, cropping) the train and test set, to ensure that the task invariance assumptions are satisfied.
We focus on more realistic settings in the next section. In each experiment, we sampled 100
combinations of hyper-parameters to ensure equal computational budget across models and baselines.

Table 1: Invariant compressors (BINCE, VIC) outperform classical (PNG, JPEG, WebP) and neural
(VC) compressors on STL10. BINCE achieves lossless prediction but compresses 121× better.

PNG [38] JPEG [39] WebP [40] VC X̃ VIC X̃ VIC Z BINCE

Decrease in test acc. 0 0.7 1.1 21.0 25.1 16.1 0.0
Compression gains 1× 3× 13× 63× 269× 175× 121×

How do our BINCE and VIC compare to standard compressors? In Table 1 we compare com-
pressors at the lowest downstream error that they achieved. As benchmark, we use PNG’s lossless
compression. Predicting from PNG corresponds to standard image classification, and obtains a rate
of 1.42e4 bits per image for 80.8% accuracy. Classical lossy methods (JPEG, WebP) achieved up to
13× bit-rate gains with little drop in performance. In comparison, our BINCE method achieved 121×
compression gains with no impact on predictions. Both our invariant (VIC) and standard (VC) neural
compressors significantly decreased classification accuracy, which we believe can be explained by
the encoders architecture (ResNet18) that we use for consistency (see Appx. F.3).

Should we predict from representations Z or reconstructions X? In Table 1 we analyzed the
impact of predicting from Z instead of X̃ for VIC and see that this increases accuracy by 9%. In
contrast, predicting from Z for VC decreases performance by 12% (see Appx. F.3). This suggests
that invariant reconstructions X̃ might not be easy to predict from with standard image predictors.

Are we learning invariant compressors? Invariant compressors should provide RD curves that are
robust to test distribution shift in the desired augmentations. We thus trained our VIC by applying the
augmentations 50% of the time but varying that probability p at test time. In Appx. F.3 we show that
this distribution shift have negligible influence on RD curves.

5.3 A zero-shot compressor using pre-trained self-supervised models

BINCE includes a standard contrastive SSL loss. So, we investigated whether existing pre-trained
SSL models [32, 41] can be used to build generic compressors. In particular, we investigated whether
CLIP [41] could be quickly turned into a powerful task-centric compressor for computer vision. In the
introduction, we motivated large compression gains by noting that typical image classification tasks
can be predicted from detailed captions instead of images (around 1000× more bits). CLIP is a vision
transformer [42] pre-trained on 400M pairs of images and text (ximage, x+text) using a contrastive loss.
The “augmentation” A is then a function that maps ximage to its associated x+text and vis-versa. This
will partition the images and texts into sets, each of which are associated directly or by transitivity
in CLIP’s dataset. This suggests that CLIP is retaining the image information that corresponds to a
detailed caption, and may be turned into a generic compressor for image classification.

CLIP can essentially be seen as a BINCE model with an image-to-text augmentation, but without an
entropy bottleneck. (For details about the CLIP-BINCE relation see Appx. C.5.) We thus constructed
an approximation of our desired image-to-text BINCE compressor by two simple steps. First, we
downloaded and froze CLIP’s parameters. Second, we trained, on the small MSCOCO dataset [43],
an entropy bottleneck to compress CLIP’s representation. The latter step can be done by training any
lossy compressor on CLIP’s representations, we did so using Ballé et al.’s [28] hyperprior entropy
model with a learned rounded precision. We then evaluated our resulting compressor on 8 datasets
(various classification tasks and image shapes) that were never seen during training (zero-shot), by
training an MLP for downstream predictions on each dataset. One can see this as a multi-task setting
(each dataset is a distinct task). We investigate the case of multiple labels per images in Appx. F.5.

Can we use pretrained SSL to obtain a generic compressor? Table 2 shows that we can exploit
existing state-of-the-art (SOTA) SSL models to get a powerful image compressor, which achieves
1000× bit-rate gains on ImageNet compared to JPEG (at the quality level used for storing ImageNet).
The bit-rate gains (1st row) are significant across all zero-shot datasets, even for biological tissues
(PCam; [44]). Importantly, these gains come at little cost in test performance. Indeed, the test
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Table 2: Converting a pretrained SSL model into a zero-shot compressor achieves substantial bit-rate
gains while allowing test accuracies similar to supervised models predicting from raw images.

ImageNet STL PCam Cars CIFAR10 Food Pets Caltech

Rate gains vs JPEG 1104× 35× 64× 131× 7× 109× 150× 126×
Our Acc. [%] 76.3 98.7 80.9 79.6 95.2 88.3 89.5 93.4
Supervised Acc. [%] 76.1 99.0 82.6 49.1 96.7 81.8 90.4 94.5

accuracies of MLPs from our representations (2nd row) is similar to a near SOTA model trained on
the uncompressed images (3rd row is from Radford et al. [41]). These results are not surprising as
JPEG is optimized to retain perceptual rather than classification information. Note that the large
variance in rate gains come from JPEG rates due to different images shapes (see Table 3).

Our CLIP compressor retains all the information needed to get 0 error for those tasks. Table 2
provides the test performance for MLPs, while our theory discusses Bayes risk, which is independent
of specific predictors and generalization. We estimated the excess Bayes risk for our datasets by
counting the images (in train and test) that get compressed to the same Z but have different labels.
We found that we are in the lossless prediction regime for those datasets.

Table 3: Our entropy bottleneck (EB) on CLIP improves compression of representations up to 17×
with little impact on predictions. The same compressor is used across datasets. Rates are per image.

ImageNet STL PCam Cars CIFAR10 Food Pets Caltech

B
it-

R
at

e

JPEG 1.49e6 4.71e4 9.60e4 1.92e5 1.05e4 1.54e5 1.81e5 1.69e5
CLIP 1.52e4 1.52e4 1.52e4 1.52e4 1.52e4 1.52e4 1.52e4 1.52e4

+EB high β 2.47e3 2.46e3 2.61e3 2.59e3 2.53e3 2.39e3 2.33e3 2.46e3
+EB β 1.35e3 1.34e3 1.49e3 1.47e3 1.41e3 1.27e3 1.21e3 1.34e3
+EB low β 9.63e2 9.52e2 1.09e3 1.07e3 1.02e3 8.89e2 8.35e2 9.53e2

Te
st

A
cc

. CLIP 76.5 98.6 84.5 80.8 95.3 88.5 89.7 93.2
+EB high β 76.6 98.7 82.7 80.4 95.3 88.5 89.6 93.5
+EB β 76.3 98.7 80.9 79.6 95.2 88.3 89.5 93.4
+EB low β 76.0 98.7 80.1 78.9 94.8 87.6 88.6 92.9

What is the effect of the entropy bottleneck? In Table 3 we compare the pretrained CLIP, to our
CLIP compressor with an entropy bottleneck (EB) trained at different values for β. When trained
with a high β, our EB improves bit-rates by an average of 6× without impacting predictions. For
our compressor from Table 2 (CLIP+EB β) the gains increase to 11× with little predictive impact.
The sacrifice in predictions is more clear for 16× bit-rate gains (low β). This shows that CLIP’s raw
representations retain unnecessary information as it not explicitly trained to discard information.

How would end-to-end BINCE compare to staggered training? Compression gains can likely be
larger by end-to-end training of BINCE, which would require access to CLIP’s original dataset.7 To
get an idea of potential gains we compared end-to-end and staggered BINCE on augmented MNIST
in Appx. F.2. We found significant rate improvements (358 to 131 bits) for similar test accuracy.

Our CLIP compressor is simple to use. In Appx. E.7, we provide a minimal script (150 lines) to
train a generic compressor in less than five minutes on a single GPU. The script contains an efficient
entropy coder for our model (200 images/second), which shows its practicality. As usual in SSL,
the compressed representations are also more computationally efficient to work with than standard
compressors. In our minimal script we achieve the desired performance (98.7% on STL) using a
linear model that is trained in one second, which is 1000× faster than the baseline in Table 2. This
shows that our pipeline can improve computational efficiency in addition to storage efficiency.

What augmentations to use for SSL compression? Table 4 compares two ResNet50 pretrained with
contrastive learning using invariance to text-image (CLIP) or standard image augmentations (SimCLR
[32]) such as cropping or flipping. We see that CLIP’s augmentation usually give better compression
and downstream performance, which shows the importance of the choice of augmentations. This also
supports our motivation of using text-image augmentations, which are likely label-preserving for a
vast amount of tasks but discard large amounts of unnecessary information.

7We investigated finetuning CLIP on MSCOCO but it suffered from catastrophic forgetting.
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Table 4: Text-image invariance is better than invariance to standard augmentations for image classifi-
cation. CLIP and SimCLR are both ResNet50 pretrained with InfoNCE but different augmentations.

ImageNet STL PCam Cars CIFAR10 Food Pets Caltech

R
at

e CLIP+EB 2108 1962 1949 2421 2111 1991 1867 1968
SimCLR+EB 2811 2732 2769 2751 2950 2077 2839 2502

A
cc

. CLIP+EB 63.2 92.0 78.6 68.0 65.5 74.1 81.8 83.0
SimCLR+EB 62.8 91.9 81.4 29.6 78.6 60.0 78.9 79.0

6 Related work

In Appx. D we discuss more related work, including invariances in compression and the link to SSL.

Task-centric compression. To our knowledge, our paper is the first to formalize compression
only for predictions. IB [11] uses a task-centric distortion, but is not used for compression as it
requires supervised training, so there are no advantages compared to compressing predicted labels.
Some authors used heuristics to bypass the supervised issue, e.g., focusing on low frequencies
for classification [45] or high frequencies for segmentation [46]. Other authors have incorporated
predictive errors to perceptual distortions [47, 48], but cannot compress without the perceptual
distortion for the same reason as IB. One exception is Weber et al.’s [49] compressor, which (when
removing their perceptual distortion) minimizes MSE in the hidden layers of a pretrained classifier.
Even more related is Singh et al.’s [50] work on compressing pretrained features for transfer learning,
which is practice is similar to our compression of SSL features. Their work do not provide theoretical
justifications, and are constrained to tasks that are similar to those used for pretraining.

7 Discussion and Outlook

Given the ever increasing amount of data that is processed by task-specific algorithms, it is necessary
to rethink the current task-agnostic compression paradigm. We formalized the first compression
framework for retaining only the information necessary for high performance on desired tasks. Using
our theory, we provide two unsupervised objectives for training neural compressors. Experimentally,
we show that these compressors can achieve bit-rates that are orders of magnitude (1000× on
ImageNet) smaller than standard image compressors without losing predictive performance.

There are a number of caveats that should be addressed. First, to achieve better rates, our theory
requires an irrecoverable loss of information. This can be an issue if the set of desired tasks
changes. For example, if one uses text-image invariances then it may be impossible to perform image
segmentation from the compressed representations. One solution would be to keep an original copy
and use invariant compression for duplicated data, e.g., for the thousands copies of ImageNet. A
second issue is the interpretability of the compressed representations. This can be partially addressed
by reconstructing prototypical data as in Fig. 1 (post-hoc decoders could be trained for BINCE).
A third caveat is that the compressed representations may be harder to learn from, e.g., neural
networks may struggle to predict from representations even if the information is retained. Although
our experiments actually showed the opposite, this should be addressed theoretically, e.g., using
decodable information [51, 52]. Finally, successful use of our framework requires access to label-
preserving augmentations A that discard significant information about X . Finding such an A may
be challenging for some tasks. Given that augmentations are ubiquitous in ML, the community will
hopefully continue developing task-specific augmentations which we could take advantage of.

Nevertheless, we achieved orders of magnitude improvements in compression for predictions, and we
believe that our improvements are just the beginning. For example, many tasks can be answered by
referencing a detailed natural language description of the data. In these cases, the improvements can
be very large, potentially 1M× for videos.8 In the long-term, we hope that abandoning perceptual
reconstructions will enable individuals to process data at scales that are currently only possible at
large institutions, and our society to take advantage of large data sources in a more sustainable way.

8A movie takes around 10GB to store, but the information relevant to humans (e.g., “what happened to the
house?”, “how did the movie end?”) can likely be stored in a detailed movie script and would require 100KB.
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