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Abstract

Interactive user interfaces need to continuously evolve based on the interactions
that a user has (or does not have) with the system. This may require constant
exploration of various options that the system may have for the user and obtaining
signals of user preferences on those. However, such an exploration, especially
when the set of available options itself can change frequently, can lead to sub-
optimal user experiences. We present Explore-Exploit: a framework designed to
collect and utilize user feedback in an interactive and online setting that minimizes
regressions in end-user experience. This framework provides a suite of online
learning operators for various tasks such as personalization ranking, candidate
selection and active learning. We demonstrate how to integrate this framework
with run-time services to leverage online and interactive machine learning out-of-
the-box. We also present results demonstrating the efficiencies that can be achieved
using the Explore-Exploit framework.

1 Introduction

Continuously adapting to user’s preferences is important for the success of many modern systems.
For example, in recommender systems, the ultimate goal is to provide recommendations that users
find useful. When a user interacts with (or ignores) a piece of content, it provides a valuable signal to
improve the relevancy of the system over time. However, many modern systems have to deal with
problems such as bootstrapping for new users, quickly adapting for new content that’s constantly
added, and ever-changing preferences of their users.

"Exploration" and "Exploitation" are popular techniques in Machine Learning community to address
these problems, but the challenges are in quickly incorporating these techniques in a production system
[L,2]. In other words, simple utilization of user feedback data (known popularly as "exploitation")
might not be enough. It’s equally important to proactively collect signals that would otherwise be
hidden to the system with exploration. For example, showing new type of content that a user has not
seen before can give additional information on a user’s preference, which might be otherwise hard
to obtain. Yet, we may want to balance such new unknown content, with known relevant content to
maintain an overall relevancy and usability for the system. This forms the foundation of interactive
and online learning, by adding meaningful user feedback in the loop. Studies have shown that with
proper balance between exploration and exploitation, the performance of a recommendation system
can be substantially improved [ 2} 3, 4].

To this end, exploration in a production system must be conducted with extreme care as it could
lead the system to show sub-optimal choices, thereby causing regression of user experience, i.e.
regret. So, when choosing the items to be explored, we should prioritize those having a better chance
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of generating user feedback, as well as, those that can give us a meaningful signal that we don’t
already have. Therefore, when designing an interactive and online learning framework, we should
consider the following requirements: (1) the framework should be able to balance exploration vs.
exploitation such that we can minimize regret while getting the most information, (2) the exploration
and exploitation behaviours should be highly configurable as different applications may have different
needs and requirements, and (3) the framework should also be both easily attachable and detachable
to any run-time service depending on product needs.

In this paper, we present Explore-Exploit: a framework that makes it easy to do online and interactive
learning in production. It’s designed to collect and utilize user feedback in an interactive and online
fashion to minimize regret. Explore-Exploit does so by employing a suite of built-in online learning
operators. It’s also highly configurable to allow customizing what targets to explore, when to trigger
the exploration, who will receive the exploration, which operators to use for the exploration and where
to fetch user feedback signals for online learning. In addition, it also has a subscription based design
that allows any run-time service to easily integrate. Currently, it supports a variety of tasks including
ranking, candidate selection and active learning.

Specifically, Explore-Exploit has been used for the following applications:

e Simple Exploration. For example, explore the ranking of suggestions to gather unbiased
training data for training a ranking model

e Online Learning (with real-time feedback). For example, picking the winner among multiple
product options or automatically fine-tuning machine learning models by choosing the best
hyper-parameters.

e Active Learning. Explore models in an uncertainty interval and use user feedback data to
improve reach and precision.

e Reinforcement Learning (RL). Deploy and iterate on reinforcement learning models with
proper exploration.

2 System Design

In this section, we introduce the architecture of Explore-Exploit and motivations behind the design
decisions. We also detail the operators we have built in the framework along with examples of how
this framework works in practice.

2.1 Architecture

We briefly describe the architecture of the Explore-Exploit framework in Figure [I] To use the
framework for any run-time service, we first add an Exploration Target in the framework that defines
Transformers, Operators, Feedback Fetchers and some meta data. At any point during run-time, we
can subscribe to the Exploration Target and send Target Data to Explore-Exploit for exploration.
Then the framework will take care of logging, run online learning or interactive learning algorithms
and eventually return the Explored Target Data.

Subscription based Service. One consideration when building the framework was that we want to
make it generalizable to any system and easy to integrate (or remove). So we designed Explore-
Exploit as a subscription based service. We can send data to Explore-Exploit at any point during
run-time, but the data will only be explored if we subscribe to a target defined in the framework.
Otherwise, the data will be returned as it is. This allows us to easily turn on or off the interaction
with Explore-Exploit as needed.

Target Data and Explored Target Data. Target data contains the data that we want to explore,
such as the recommendation candidate we want to personalize and the hyper-parameter we want
to automatically learn for a machine learning model. The explored target data are what will be
returned by Explore-Exploit. They could have been altered from the original target data for online
and interactive learning.

Exploration Target. An exploration target in Explore-Exploit defines all the information needed
to run the exploration, including the type of task (e.g. candidate selection or active learning), the
operators we want to use, what user feedback signals we want to use for online learning, how to
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Figure 1: Architecture of the Explore-Exploit framework

control the traffic, etc. One exploration target can be shared by a cluster of data sets that could be
treated similarly in Explore-Exploit. For example, the hyper-parameters from multiple models can
share the same target.

Transformer. For each exploration target, we can define a set of transformers that will be chained
together and applied to the target data. Each transformer corresponds to a certain task we want
to perform. For instance, learning hyper-parameters for different languages could be different
transformers.

Operator. Each operator corresponds to an algorithm the transformer can use. Currently, there are
multiple operators in Explore-Exploit divided into three types: ranking, candidate selection and active
learning.

Feedback Fetcher. A feedback fetcher tells Explore-Exploit where to fetch user feedback. It’s
customizable such that we can easily choose what metric we want to optimize for through online and
interactive learning, e.g., click through rate, daily active users, etc. It even gives us the flexibility to
decide whether we want to do the optimization at user level or global level depending on whether the
feedback is user specific.

Exposure Logging. All the data that are explored will be automatically logged both in Hive for
offline processing and in a real-time counter service for online consumption. To get real-time
feedback, the online counters can be joined with events (e.g. display and click) from the run-time
service and provided to the feedback fetcher.

2.2 Operators

Within Explore-Exploit, we have already built 14 operators serving different purposes such as
candidate selection, active learning and ranking. It’s also straightforward to register and implement
new operators in this framework. In this section, we describe the available operators and their
functionality in Table[T]

As part of the design, for the operators with the same type, they are compatible and can be safely
chained together or swapped. For example, if we want to deploy a reinforcement learning model
to choose actions (e.g. showing a notification v.s. not showing), we can use the RLActionSelection
operator which will choose actions based on the predicted reward given by an RL model. However, in
order to make RL models perform well in practice, we often need to do multiple rounds of interactive



learning with RL policy exploration. To this end, we can easily chain a SoftmaxSelection operator
after RLActionSelection. It will first normalize the predicted rewards with a softmax function and
then sample an action from the normalized probability distribution, thus exploring the RL policy.
Once the RL model reaches to production-ready quality, we can safely remove the SoftmaxSelection
operator.

Table 1: The list of built-in operators in Explore-Exploit

Exploration Types Operators Notes

An operator that

EpsilonGreedySelection

implements the e-Greedy algorithm[JS]

An operator based on UCBT algorithm [6]

Candidate Selection UCB1Enhanced tailored to our needs
ThompsonSampling An operator based on
Thompson Sampling algorithm(7]]
An operator to choose actions
RLActionSelection based on reinforcement learning models
with flexible configurations
SoftmaxSelection An operator to choose actions

based on softmax exploration strategy|Sl]

An operator that performs binary search
to find the candidate with a reward
closest to a target reward

BinarySearchSelection

An operator that

UniformSelection randomly explores candidates

Explore targets that

SampleWithInterval have scores in the defined intervals

Explore targets with probabilities

SampleWithIntervalDecay defined by an interval decay function

Active Learning

SampleWithEntropy Explore targets based on entropy

Explore targets based on entropy

SampleWithEntropyMultiClass for multiclass models

Explore targets based on
the distribution of predictions
in different intervals

StratifiedSampling

Explore targets based on
their semantic similarities to
the given data points

SampleWithSemanticSimiliarity

An operator that

Ranking randomly explores ranking

ShuffleRanking

Due to space limit, we won’t be able to get into details for all the operators. But here, we want to
zoom into one operator, UCB1Enhanced, to illustrate how we modified the UCB1 algorithm [6] to
fit our needs. Originally, UCB1 will select the candidate that achieves the highest upper confidence
bound (UCB for short). That is, UCB1 will favor those candidates that either have high reward
or high uncertainty. However, in practice, we do not always want to maximize the reward. For
example, if the reward is click through rate (CTR), we may want to maintain CTR at a certain level to
balance reach. Meanwhile, we also want to control how aggressive we explore those candidates with
high uncertainty. In these cases, the original UCB1 algorithm won’t satisfy our needs. So, we have
implemented UCB1Enhanced operator in Explore-Exploit.

Assuming we have multiple candidates (e.g. a set of thresholds) and we want to automatically choose
one such that it can give us a target reward (e.g. a target CTR). Let T represent the total number of
rounds of interactive learning we have performed so far. Eventually, we want to select a candidate
a that can give us the target reward target. Given our current round ¢, UCBIEnhanced will select
candidates based on the following objective function

w X ug(a) — % |re(a) — target|, ifry(a) > target
w X ug(a) — 0 |ri(a) — target|, otherwise

Objective = arg max { (L



where w is a weight that controls the aggressiveness of doing exploration, u;(a) = /2%6L n,(a)

ne(a) ?
is the number of explorations for candidate a, r;(a) is the reward for candidate a and ¢ is the penalty
factor for small rewards compared to target.

2.3 Examples

To illustrate how Explore-Exploit can be used in practice, we show an example of the exploration
target in Figure[2] In this example, once the target has been subscribed, the Explore-Exploit framework
will explore the thresholds of the model with id example:goal_id with a probability of 0.7 and only do
the exploration if the language of the request is English. The approach is to use the UCBIEnhanced
operator to choose the candidate that can give us a target reward of 0.7/ according to the feedback
provided by example_feedback_fetcher.

Exploration Target

def explore_thresholds():
Target ID return (
ExplorationTargetBuilder(
target_id="example:target_id"}, Exploration Type
exploration_type= . CANDIDATE_SELECTIONY
)
EXp|0rati0n ID .add_transform(
"example:exploration_id"}
Operator UCB1Enhanced

explore_prob = 0.1,

target_with candidates = {
Goal ID 'example:goal_id': [0.08, 0.10, 0.12, 0.14, 0.16] e eclalsIl¢FI{=IY
}
feedback_fetcher = 'example_feedback_fetcher',
target_reward = 0.11,
language = 'en’',

)
)

.build()

Transformer

Figure 2: An example of exploration targets defined in Explore-Exploit

3 Experiments

To experiment with Explore-Exploit, we did several public tests on learning thresholds of a personal-
ization model with the online learning operators implemented in the framework. Originally, choosing
thresholds is a lot of pain since it requires an engineer to constantly try different values and closely
monitor the metrics. As we scale to more and more models, the whole process may take weeks to
finish. With Explore-Exploit, we make all of these easy. After a few days, the online learning operator
will automatically converge to the candidate we want. It’s also super configurable so we can add and
delete candidates at anytime.

In this experiment, we use Explore-Exploit to automatically learn the threshold of a personalization
model that can give us a target CTR of 0.11. Traditionally, this may take an engineer days of manual
work. Especially when there are multiple models to tune, it could take weeks to finish. However,
Explore-Exploit removes all the manual work. In Figure 3al we show the percentage of displays for
different threshold candidates after running Explore-Exploit for a few days. As we can see, at start,
Explore-Exploit was exploring the candidates uniformly. Then after a few days, it converges to the
candidate 0.12 without human intervention. To verify the correctness of the converged candidate, we
also show the relative deviation to the target reward for different candidates in Figure [3b] As shown,
the converged candidate 0.12 indeed gives the smallest deviation.
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Figure 3: Experiments with Explore-Exploit to online learn hyper-parameters for a machine learning
model

4 Related Work

The Explore-Exploit framework is built upon a significant amount of related works in multi-armed
bandit algorithms, reinforcement learning and active learning. [5]] and [6] give a good overview and
empirical analysis of different multi-armed bandit algorithms. These algorithms have been shown to
be very useful for many real world problems such as recommendation [4} 2] and ranking [3]]. Within
Explore-Exploit, we have implemented multiple multi-armed bandit algorithms including e-Greedy,
UCBI1, Thompson Sampling, etc. Active learning has also demonstrated great advantages in many
use cases [8}[9]. In Explore-Exploit, we have built multiple active learning operators that work both
in streaming setting [[10} [T1]] and pool setting [12]].

Recently, automated machine learning (AutoML) systems [[13 [14} (15} [16] have received abundant
attentions. Such systems focus on automatically finding good algorithms and hyper-parameters (e.g.
neural architectures) given some predefined datasets. Explore-Exploit shares similar concepts but
focuses on the online setting in a production environment.

5 Acknowledgments

We would like to thank Kavya Sajeev, Nanshu Wang, Nikunj Bajaj, Zoe Papakipos, Pooja Sethi, Yarik
Markov, Rajen Subba and everyone else who have contributed to the design and implementation of
Explore-Exploit.

References

[1] Xinxi Wang, Yi Wang, David Hsu, and Ye Wang. Exploration in interactive personalized
music recommendation: a reinforcement learning approach. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), 11(1):7, 2014.

[2] James MclInerney, Benjamin Lacker, Samantha Hansen, Karl Higley, Hugues Bouchard, Alois
Gruson, and Rishabh Mehrotra. Explore, exploit, and explain: personalizing explainable
recommendations with bandits. In Proceedings of the 12th ACM Conference on Recommender
Systems, pages 31-39. ACM, 2018.

[3] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rankings with
multi-armed bandits. In Proceedings of the 25th international conference on Machine learning,

pages 784-791. ACM, 2008.

[4] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661-670. ACM, 2010.

[5] Joannes Vermorel and Mehryar Mohri. Multi-armed bandit algorithms and empirical evaluation.
In European conference on machine learning, pages 437-448. Springer, 2005.



[6] Volodymyr Kuleshov and Doina Precup. Algorithms for multi-armed bandit problems. arXiv
preprint arXiv:1402.6028, 2014.

[7] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit
problem. In Conference on Learning Theory, pages 39—1, 2012.

[8] Honglei Liu and Bian Wu. Active learning of functional networks from spike trains. In
Proceedings of the 2017 SIAM International Conference on Data Mining, pages 81-89. SIAM,
2017.

[9] Nabiha Asghar, Pascal Poupart, Xin Jiang, and Hang Li. Deep active learning for dialogue
generation. arXiv preprint arXiv:1612.03929, 2016.

[10] Wei Chu, Martin Zinkevich, Lihong Li, Achint Thomas, and Belle Tseng. Unbiased online active
learning in data streams. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 195-203. ACM, 2011.

[11] Xingquan Zhu, Peng Zhang, Xiaodong Lin, and Yong Shi. Active learning from data streams.
In Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on, pages 757-762.
IEEE, 2007.

[12] Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. In Advances in
neural information processing systems, pages 1289-1296, 2008.

[13] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter.
Towards automatically-tuned neural networks. In Workshop on Automatic Machine Learning,
pages 58-65, 2016.

[14] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In Advances in Neural
Information Processing Systems, pages 2962-2970, 2015.

[15] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

[16] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter
optimization at scale. arXiv preprint arXiv:1807.01774, 2018.



	Introduction
	System Design
	Architecture
	Operators
	Examples

	Experiments
	Related Work
	Acknowledgments

