
An End-to-End Transformer Model for 3D Object Detection

Ishan Misra Rohit Girdhar Armand Joulin
Facebook AI Research

https://facebookresearch.github.io/3detr

Abstract

We propose 3DETR, an end-to-end Transformer based
object detection model for 3D point clouds. Compared to
existing detection methods that employ a number of 3D-
specific inductive biases, 3DETR requires minimal mod-
ifications to the vanilla Transformer block. Specifically,
we find that a standard Transformer with non-parametric
queries and Fourier positional embeddings is competitive
with specialized architectures that employ libraries of 3D-
specific operators with hand-tuned hyperparameters. Nev-
ertheless, 3DETR is conceptually simple and easy to im-
plement, enabling further improvements by incorporating
3D domain knowledge. Through extensive experiments, we
show 3DETR outperforms the well-established and highly
optimized VoteNet baselines on the challenging ScanNetV2
dataset by 9.5%. Furthermore, we show 3DETR is applica-
ble to 3D tasks beyond detection, and can serve as a build-
ing block for future research.

1. Introduction
3D object detection aims to identify and localize ob-

jects in 3D scenes. Such scenes, often represented us-
ing point clouds, contain an unordered, sparse and irregu-
lar set of points captured using a depth scanner. This set-
like nature makes point clouds significantly different from
the traditional grid-like vision data like images and videos.
While there are other 3D representations such as multiple-
views [60], voxels [1] or meshes [8], they require additional
post-processing to be constructed, and often loose informa-
tion due to quantization. Hence, point clouds have emerged
as a popular 3D representation, and spurred the develop-
ment of specialized 3D architectures.

Many recent 3D detection models directly work on the
3D points to produce the bounding boxes. Of particular in-
terest, VoteNet [42] casts 3D detection as a set-to-set prob-
lem, i.e., transforming an unordered set of inputs (point
cloud), into an unordered set of outputs (bounding boxes).
VoteNet uses an encoder-decoder architecture: the encoder
is a PointNet++ network [44] which converts the unordered

Input Point Cloud Decoder Attention Detections

Figure 1: 3DETR. We train an end-to-end Transformer model for
3D object detection on point clouds. Our model has a Transformer
encoder for feature encoding and a Transformer decoder for pre-
dicting boxes. For an unseen input, we compute the self-attention
from the reference point (blue dot) to all points in the scene and
display the points with the highest attention values in red. The de-
coder attention groups points within an instance which presumably
makes it easier to predict bounding boxes.

point set into a unordered set of point features. The point
features are then input to a decoder that produces the 3D
bounding boxes. While effective, such architectures have
required years of careful development by hand-encoding
inductive biases, radii, and designing special 3D operators
and loss functions.

In parallel to 3D, set-to-set encoder-decoder models have
emerged as a competitive way to model 2D object detec-
tion. In particular, the recent Transformer [68] based model,
called DETR [4], casts 2D object detection as a set-to-set
problem. The self-attention operation in Transformers is de-
signed to be permutation-invariant and capture long range
contexts, making them a natural candidate for processing
unordered 3D point cloud data. Inspired by this observation,
we ask the following question: can we leverage Transform-
ers to learn a 3D object detector without relying on hand-
designed inductive biases?

To that end, we develop 3D DEtection TRansformer
(3DETR) a simple to implement 3D detection method that
uses fewer hand-coded design decisions and also casts de-
tection as a set-to-set problem. We explore the similarities
between VoteNet and DETR, as well as between the core
mechanisms of PointNet++ and the self-attention of Trans-

https://facebookresearch.github.io/3detr

formers to build our end-to-end Transformer-based detec-
tion model. Our model follows the general encoder-decoder
structure that is common to both DETR and VoteNet. For
the encoder, we replace the PointNet++ by a standard Trans-
former applied directly on the point clouds. For the decoder,
we consider the parallel decoding strategy from DETR with
Transformer layers making two important changes to adapt
it to 3D detection, namely non-parametric query embed-
dings and Fourier positional embeddings [64].

3DETR removes many of the hard coded design deci-
sions in VoteNet and PointNet++ while being simple to im-
plement and understand. Unlike DETR, 3DETR does not
employ a ConvNet backbone, and solely relies on Trans-
formers trained from scratch. Our transformer-based de-
tection pipeline is flexible, and as in VoteNet, any compo-
nent can be replaced by other existing modules. Finally, we
show that 3D specific inductive biases can be easily incor-
porated in 3DETR to further improve its performance. On
two standard indoor 3D detection benchmarks, ScanNetV2
and SUN RGB-D we achieve 65.0% AP and 59.0% AP re-
spectively, outperforming an improved VoteNet baseline by
9.5% AP50 on ScanNetV2.

2. Related Work
We propose a 3D object detection model composed of

Transformer blocks. We build upon prior work in 3D archi-
tectures, detection, and Transformers.
Grid-based 3D Architectures. Convolution networks can
be applied to irregular 3D data after converting it into reg-
ular grids. Projection methods [3, 19, 25, 26, 59, 60, 65]
project 3D data into 2D planes and convert it into 2D grids.
3D data can also be converted into a volumetric 3D grid by
voxelization [1, 12, 15, 28, 35, 49, 56, 66]. We use 3D point
clouds directly since they are suitable for set based archi-
tectures such as the transformer.
Point cloud Architectures. 3D sensors often acquire data
in the form of unordered point clouds. When using un-
ordered point clouds as input, it is desirable to obtain per-
mutation invariant features. Point-wise MLP based archi-
tectures [17, 83] such as PointNet [44] and PointNet++ [45]
use permutation equivariant set aggregation (downsam-
pling) and pointwise MLPs to learn effective representa-
tions. We use a single downsampling operation from [45]
to keep the number of input points tractable in our model.

Graph-based models [27, 73] can operate on unordered
3D data. Graphs are constructed from 3D data in a variety
of ways – DGCNN [77] and PointWeb [90] use local neigh-
borhoods of points, SPG [24] uses attribute and context sim-
ilarity and Jiang et al. [18] use point-edge interactions.

Finally, continuous point convolution based architec-
tures can also operate on point clouds. The continu-
ous weights can be defined using polynomial functions
as in SpiderCNN [80] or linear functions as in Flex-
Convolutions [13]. Convolutions can also be applied by

soft-assignment matrices [69] or specific ordering [28].
PointConv [78] and KPConv [67] dynamically generate
convolutional weights based on the input point coordinates,
while InterpCNN [34] uses these coordinates to interpolate
weights. We build upon the Transformer [68] which is ap-
plicable for sets but not tailored for 3D.
3D Object Detection is a well studied research area where
methods predict three dimensional bounding boxes from 3D
input data [23, 41, 43, 52, 54, 55, 70, 72, 93]. Many meth-
ods avoid expensive 3D operations by using 2D projection.
MV3D [6], VoxelNet [92] use a combination of 3D and
2D convolutions. Yan et al. [81] simplify the 3D opera-
tion while [82] uses a 2D projection, and [76] uses ‘pil-
lars’ of voxels. We focus on methods that directly use 3D
point clouds [40, 51, 75, 85]. PointRCNN [51] and PVR-
CNN [50] are 2-stage detection pipelines similar to the pop-
ular R-CNN framework [47] for 2D images. While these
methods are related to our work, for simplicity we build a
single stage detection model as done in [11, 14, 42, 84].
VoteNet [42] uses Hough Voting on sparse point cloud in-
puts and detects boxes by feature sampling, grouping and
voting operations designed for 3D data. VoteNet is a build-
ing block for many follow up works. 3D-MPA [11] com-
bines voting with a graph ConvNet for refining object pro-
posals and uses specially designed 3D geometric features
for aggregating detections. HGNet [5] improves Hough
Voting and uses a hierarchical graph network with feature
pyramids. H3DNet [89] improves VoteNet by predicting
3D primitives and uses a geometric loss function. We pro-
pose a simple detection method that can serve as a building
block for such innovations in 3D detection.
Transformers in Vision. The Transformer architecture by
Vaswani et al. [68] has been immensely successful across
domains like NLP [9, 46], speech recognition [33, 62], im-
age recognition [4, 10, 16, 38, 74], and for cross-domain
applications [32, 61, 63]. Transformers are well suited for
operating on 3D points since they are naturally permuta-
tion invariant. Attention based methods have been used for
building 3D point representations for retrieval [87], outdoor
3D detection [29, 36, 86], object classification [83]. Con-
current work [37, 91] also uses the Transformer architec-
ture for 3D. While these methods use 3D specific informa-
tion to modify the Transformer, we push the limits of the
standard Transformer. Our work is inspired by the recent
DETR model [4] for object detection in images by Carion
et al. [4]. Different from Carion et al., our model is an end-
to-end transformer (no convolutional backbone) that can be
trained from scratch and has important design differences
such as non-parametric queries to enable 3D detection.

3. Approach
We briefly review prior work in 3D detection and

their conceptual similarities to 3DETR. Next, we describe

Set of DetectionsInput point cloud Set of Points

M
LP

M
LP

Transformer
Encoder

Transformer
Decoder

Query embeddings

Set
Aggregate

M
LP⇠F

<latexit sha1_base64="yz3D13QcNguP69x6gLy9k+6iF6Y=">AAAB/HicbVDLSsNAFJ3UV62vaJdugq3gqiRFUHdFQVxWsA9oQphMJ+3QmUmYmQghxF9x40IRt36IO//GSZuFth4YOJxzL/fMCWJKpLLtb6Oytr6xuVXdru3s7u0fmIdHfRklAuEeimgkhgGUmBKOe4ooioexwJAFFA+C2U3hDx6xkCTiDyqNscfghJOQIKi05Jv1pisJ8zOXQTUVLLvN86ZvNuyWPYe1SpySNECJrm9+ueMIJQxzhSiUcuTYsfIyKBRBFOc1N5E4hmgGJ3ikKYcMSy+bh8+tU62MrTAS+nFlzdXfGxlkUqYs0JNFRrnsFeJ/3ihR4aWXER4nCnO0OBQm1FKRVTRhjYnASNFUE4gE0VktNIUCIqX7qukSnOUvr5J+u+Wct67u243OdVlHFRyDE3AGHHABOuAOdEEPIJCCZ/AK3own48V4Nz4WoxWj3KmDPzA+fwC/k5Ta</latexit>

Query
embeddings

3DETR Query pointsSet of Points

Random

Sample
Positional
Encoding

Downsample

Figure 2: Approach. (Left) 3DETR is an end-to-end trainable Transformer that takes a set of 3D points (point cloud) as input and outputs
a set of 3D bounding boxes. The Transformer encoder produces a set of per-point features using multiple layers of self-attention. The point
features and a set of ‘query’ embeddings are input to the Transformer decoder that produces a set of boxes. We match the predicted boxes
to the ground truth and optimize a set loss. Our model does not use color information (used for visualization only). (Right) We randomly
sample a set of ‘query’ points that are embedded and then converted into bounding box predictions by the decoder.

3DETR, simplifications in bounding box parametrization
and the simpler set-to-set objective function.

3.1. Preliminaries
The recent VoteNet [42] framework forms the basis for

many detection models in 3D, and like our method, is a
set-to-set prediction framework. VoteNet uses a special-
ized 3D encoder and decoder architecture for detection. It
combines these models with a Hough Voting loss designed
for sparse point clouds. The encoder is a PointNet++ [45]
model that uses a combination of multiple downsampling
(set-aggregation) and upsampling (feature-propagation) op-
erations that are specifically designed for 3D point clouds.
The VoteNet “decoder” predicts bounding boxes in three
steps - 1) each point ‘votes’ for the center coordinate of a
box; 2) votes are aggregated within a fixed radius to obtain
‘centers’; 3) bounding boxes are predicted around ‘centers’.
BoxNet [42] is a non-voting alternative to VoteNet that ran-
domly samples ‘seed’ points from the input and treats them
as ‘centers’. However, BoxNet achieves much worse perfor-
mance than VoteNet as the voting captures additional con-
text in sparse point clouds and yields better ‘center’ points.
As noted by the authors [42], the multiple hand-encoded
radii used in the encoder, decoder, and the loss function are
important for detection performance and have been care-
fully tuned [44, 45].

The Transformer [68] is a generic architecture that can
work on set inputs and capture large contexts by comput-
ing self-attention between all pairs of input points. Both
these properties make it a good candidate model for 3D
point clouds. Next, we present our 3DETR model which
uses a Transformer for both the encoder and decoder with
minimal modifications and has minimal hand-coded infor-
mation for 3D. 3DETR uses a simpler training and inference
procedure. We also highlight similarities and differences to
the DETR model for 2D detection.

3.2. 3DETR: Encoder-decoder Transformer
3DETR takes as input a 3D point cloud and predicts

the positions of objects in the form of 3D bounding boxes.
A point cloud is a unordered set of N points where each
point is associated with its 3-dimensional XYZ coordinates.
The number of points is very large and we use the set-

aggregation downsampling operation from [45] to down-
sample the points and project them to N ′ dimensional fea-
tures. The resulting subset of N ′ features is passed through
an encoder to also obtain a set of N ′ features. A decoder
takes these features as input and predicts multiple bound-
ing boxes using a parallel decoding scheme inspired by [4].
Both encoder and decoder use standard Transformer blocks
with ‘pre-norm’ [21] and we refer the reader to Vaswani et
al. [68] for details. Fig 2 illustrates our model.

Encoder. The downsample and set-aggregation steps pro-
vide a set of N ′ features of d = 256 dimensions using an
MLP with two hidden layers of 64, 128 dimensions. The
set of N ′ features is then passed to a Transformer to also
produce a set of N ′ features of d = 256 dimensions. The
Transformer applies multiple layers of self-attention and
non-linear projections. We do not use downsampling opera-
tions in the Transformer, and use the standard self-attention
formulation [68]. Thus, the Transformer encoder has no
specific modifications for 3D data. We omit positional em-
beddings of the coordinates from the encoder since the input
already contains information about the XYZ coordinates.

Decoder. Following Carion et al. [4], we frame detection
as a set prediction problem, i.e., we simultaneously predict
a set of boxes with no particular ordering. This is achieved
with a parallel decoder composed of Transformer blocks.
This decoder takes as input the N ′ point features and a set
of B query embeddings {qe

1, . . . ,q
e
B} to produce a set of

B features that are then used to predict 3D-bounding boxes.
In our framework, the query embeddings qe represent lo-
cations in 3D space around which our final 3D bounding
boxes are predicted. We use positional embeddings in the
decoder as it does not have direct access to the coordinates
(operates on encoder features and query embeddings).

Non-parametric query embeddings. Inspired by seed
points used in VoteNet and BoxNet [42], we use non-
parametric embeddings computed from ‘seed’ XYZ loca-
tions. We sample a set of B ‘query’ points {qi}Bi=1 ran-
domly from theN ′ input points (see Fig 2). We use Farthest
Point Sampling [45] for the random samples as it ensures a
good coverage of the original set of points. We associate
each query point qi with a query embedding qe

i , by con-

verting the coordinates of qi into Fourier positional embed-
dings [64] followed by projection with a MLP.

3DETR-m: Inductive biases into 3DETR. As a proof of
concept that our model is flexible, we modify our encoder
to include inductive biases in 3D data, while keeping the de-
coder and loss fixed. We leverage a weak inductive bias in-
spired by PointNet++, i.e., local feature aggregation matters
more than global aggregation. Such an inductive bias can
be easily implemented in Transformers by applying a mask
to the self-attention [68]. The resulting model, 3DETR-m
has a masked self-attention encoder with the same decoder
and loss function as 3DETR. 3DETR-m uses a three layer
encoder which has an additional downsampling operation
(from N ′= 2048 to N ′′= 1024 points) after the first layer.
Every encoder layer applies a binary mask of N ′′ × N ′′ to
the self-attention operation. Row i in the mask indicates
which of the N ′′ points lie within the `2 radius of point i.
We use the radius values of [0.16, 0.64, 1.44]. Compared to
PointNet++, 3DETR-m does not rely on multiple layers of
3D feature aggregation and 3D upsampling.

3.3. Bounding box parametrization and prediction

The encoder-decoder architecture produces a set of B
features, that are fed into prediction MLPs to predict bound-
ing boxes. A 3D bounding box has the attributes (a) its loca-
tion, (b) size, (c) orientation, and (d) the class of the object
contained in it. We describe the parametrization of these
attributes and their associated prediction problems.

The prediction MLPs produce a box around every query
coordinate q. (a) Location: We use the XYZ coordinates
of box’s center c. We predict this in terms of an offset ∆q
that is added to the query coordinates, i.e., c = q + ∆q.
(b) Size: Every box is a 3D rectangle and we define its size
around the center coordinate c using XYZ dimensions d.
(c) Orientation: In some settings [53], we must predict the
orientation of the box, i.e., the angle it forms compared to
a given referential. We follow [42] and quantize the angles
into 12 bins from [0, 2π) and note the quantization resid-
ual. Angular prediction involves predicting the the quan-
tized ‘class’ of the angle and the residual to obtain the con-
tinuous angle a. (d) Semantic Class: We use a one-hot
vector s to encode the object class contained in the bound-
ing box. We include a ‘background’ or ‘not an object’ class
as some of the predicted boxes may not contain an object.

Putting together the attributes of a box, we have two
quantities: the predicted boxes b̂ and the ground truth boxes
b. Each predicted box b̂ = [ĉ, d̂, â, ŝ] consists of (1) geo-
metric terms ĉ, d̂ ∈ [0, 1]3 that define the box center and
dimensions respectively, â = [âc, âr] that defines the quan-
tized class and residual for the angle; (2) semantic term
ŝ = [0, 1]K+1 that contains the probability distribution over
the K semantic object classes and the ‘background’ class.
The ground truth boxes b also have the same terms.

3.4. Set Matching and Loss Function

To train the model, we first match the set of B predicted
3D bounding boxes {b̂} to the ground truth bounding boxes
{b}. While VoteNet uses hand-defined radii to do such set
matching, we follow [4] to perform a bipartite graph match-
ing which is simpler, generic (see § 4.2.1) and robust to
Non-Maximal Suppression. We compute a loss for each
predicted box using its matched ground truth box.
Bipartite Matching. We define a matching cost for a pair
of boxes, predicted box b̂ and ground truth box b, using a
geometric and a semantic term.

Cmatch(b̂,b) = −λ1GIoU(b̂,b) + λ2‖ĉ− c‖1︸ ︷︷ ︸
geometric

− λ3ŝ[sgt] + λ4(1− ŝ[sbg])︸ ︷︷ ︸
semantic

(1)

These terms are similar to the loss functions used for
training the model and λs are scalars used for a weighted
combination. The geometric cost measures the box over-
lap using GIoU [48] and the distance between the centers
of the boxes. Box overlap automatically accounts for the
box dimensions, angular rotation and is scale invariant. The
semantic cost measures the likelihood of the ground truth
class sgt under the predicted distribution ŝ and the likeli-
hood of the box features belonging to a foreground class,
i.e., of not belonging to the background class sbg.

We compute the optimal bipartite matching between all
the predicted boxes {b̂} and ground truth boxes {b} using
the Hungarian algorithm [22] as in prior work [4, 58]. As
we predict a larger number of boxes than the ground truth,
the predicted boxes that do not get matched are considered
matched to the ‘background’ class. This encourages the
model to not over-predict, a property that helps our model
be robust to Non-Maximal Suppression (see § 5).
Loss function. We use `1 regression losses for the center
and box dimensions, normalizing them both in the range
[0, 1] for scale invariance. We use Huber regression loss
for the angular residuals and cross-entropy losses for the
angular classification and semantic classification.

L3DETR = λc‖ĉ−c‖1+λd‖d̂−d‖1+λar‖âr−ar‖huber
− λacaᵀ

c log âc − λssᵀc log ŝc (2)

Our final loss function is a weighted combination of the
above five terms and we provide the full details in the ap-
pendix. For predicted boxes matched to the ‘background’
class, we only compute the semantic classification loss with
the background class ground truth label. For datasets with
axis-aligned 3D bounding boxes, we also use a loss directly

on the GIoU as in [4, 48]. We do not use the GIoU loss
for oriented 3D bounding boxes as it is computationally in-
volved.
Intermediate decoder layers. At training time, we use the
same bounding box prediction MLPs to predict bounding
boxes at every layer in the decoder. We compute the set
loss for each layer independently and sum all the losses to
train the model. At test time, we only use the bounding
boxes predicted from the last decoder layer.

3.5. Implementation Details
We implement 3DETR using PyTorch [39] and use the

standard nn.MultiHeadAttention module to implement
the Transformer. We use a single set aggregation opera-
tion [45] to subsample N ′=2048 points and obtain 256 di-
mensional point features. The 3DETR encoder has 3 layers
where each layer uses multiheaded attention with four heads
and a two layer MLP with a ‘bottleneck’ of 128 hidden di-
mensions. The 3DETR decoder has 8 layers and closely fol-
lows the encoder, except that the MLP hidden dimensions
are 256. We use Fourier positional encodings [64] of the
XYZ coordinates in the decoder. The bounding box predic-
tion MLPs are two layer MLPs with a hidden dimension of
256. Full architecture details in the appendix Appendix A.1.

All the MLPs and self-attention modules in the model
use a dropout [57] of 0.1 except in the decoder where we
use a higher dropout of 0.3. 3DETR is optimized using
the AdamW optimizer [31] with the learning rate decayed
by a cosine learning rate schedule [30] to 10−6, a weight
decay of 0.1, and gradient clipping at an `2 norm of 0.1. We
train the model on a single V100 GPU with a batchsize of 8
for 1080 epochs. We use the RandomCuboid augmentation
from [88] which reduces overfitting.

4. Experiments
Dataset and metrics. We evaluate models on two stan-
dard 3D indoor detection benchmarks - ScanNetV2 [7] and
SUN RGB-D-v1 [53]. SUN RGB-D has 5K single-view
RGB-D training samples with oriented bounding box an-
notations for 37 object categories. ScanNetV2 has 1.2K
training samples (reconstructed meshes converted to point
clouds) with axis-aligned bounding box labels for 18 object
categories. For both datasets, we follow the experimental
protocol from [42]: we report the detection performance on
the val set using mean Average Precision (mAP) at two dif-
ferent IoU thresholds of 0.25 and 0.5, denoted as AP25 and
AP50. Along with the metric, their protocol evaluates on the
10 most frequent categories for SUN RGB-D.

4.1. 3DETR on 3D Detection

In this set of experiments, we validate 3DETR for 3D de-
tection. We compare it to the BoxNet and VoteNet models
since they are conceptually similar to 3DETR and are the

Method ScanNetV2 SUN RGB-D
AP25 AP50 AP25 AP50

BoxNet† [42] 49.0 21.1 52.4 25.1
3DETR 62.7 37.5 58.0 30.3
VoteNet† [42] 60.4 37.5 58.3 33.4
3DETR-m 65.0 47.0 59.1 32.7
H3DNet [89] 67.2 48.1 60.1 39.0

Table 1: Evaluating 3DETR on 3D detection. We compare
3DETR with BoxNet and VoteNet methods and denote by † our
improved implementation of these baselines. 3DETR achieves
comparable or better performance to these improved baselines de-
spite having fewer hand-coded 3D or detection specific decisions.
We report state-of-the-art performance from [89] that improves
VoteNet by using 3D primitives. Detailed state-of-the-art com-
parison in Appendix B.

foundations of many recent detection models. For fair com-
parison, we use our own implementation of these models
with the same optimization improvements used in 3DETR–
leading to a boost of +2-4% AP over the original paper (de-
tails in supplemental). We also compare against a state-of-
the-art method H3DNet [89] and provide a more detailed
comparison against other recent methods in the appendix.
3DETR models use 256 and 128 queries for ScanNetV2 and
SUN RGB-D datasets.

Observations. We summarize results in Table 1. The com-
parison between BoxNet and 3DETR is particularly rel-
evant since both methods predict boxes around location
queries while VoteNet uses 3D Hough Voting to obtain
queries. Our method significantly outperforms BoxNet on
both the datasets with a gain of +13% AP25 on ScanNetV2
and +3.9% AP25 on SUN RGB-D. Even when compared
with VoteNet, our model achieves competitive performance,
with +2.3% AP25 on ScanNetV2 and−1.5% AP25 on SUN
RGB-D. 3DETR-m, which uses the masked Transformer
encoder, achieves comparable performance to VoteNet on
SUN RGB-D and a gain of +4.6% AP25 and +9.5% AP50

on ScanNetV2.
Compared to a state-of-the-art method, H3DNet [89],

that builds upon VoteNet, 3DETR-m is within a couple of
AP25 points on both datasets (more detailed comparison
in Appendix B). These experiments validate that a encoder-
decoder detection model based on the standard Transformer
is competitive with similar models tailored for 3D data. Just
as the VoteNet model was improved by the innovations of
H3DNet [89], HGNet [5], 3D-MPA [11], similar innova-
tions could be integrated to our model in the future.

Qualitative Results. In Fig 3, we visualize a few detections
and ground truth boxes from SUN RGB-D. 3DETR detects
boxes despite the partial (single-view) depth scans and also
predicts amodal bounding boxes or missing annotations on
SUN RGB-D.

Ground Truth Prediction Ground Truth Prediction Ground Truth Prediction

Ground Truth Prediction Ground Truth Prediction Ground Truth Prediction

Figure 3: Qualitative Results using 3DETR. Detection results for scenes from the val set of the SUN RGB-D dataset. 3DETR does not
use color information (used only for visualization) and predicts boxes from point clouds. 3DETR can detect objects even with single-view
depth scans and predicts amodal boxes e.g., the full extent of the bed (top left) including objects missing in the ground truth (top right).

Method Encoder Decoder Loss ScanNetV2 SUN RGB-D
AP25 AP50 AP25 AP50

3DETR Tx. Tx. Set 62.7 37.5 58.0 30.3
PN++ Tx. Set 61.4 34.7 56.8 26.9

PN++: PointNet++ [45], Tx.: Transformer, Set loss § 3.4

Table 2: 3DETR with different encoders. We vary the encoder
used in 3DETR and observe that the performance is unchanged
or slightly worse when moving to a PointNet++ encoder. This
suggests that the decoder design and the loss function in 3DETR
are compatible with prior 3D specific encoders.

4.2. Analyzing 3DETR

We conduct a series of experiments to understand
3DETR. In § 4.2.1, we explore the similarities between
3DETR, VoteNet and BoxNet. Next, in § 4.2.2, we compare
the design decisions in 3DETR that enable 3D detection to
the original components in DETR.

4.2.1 Modules of VoteNet and BoxNet vs. 3DETR
The encoder-decoder paradigm is flexible and we can test
if the different modules in VoteNet, BoxNet and 3DETR
are interchangeable. We focus on the encoders, decoders
and losses and report the detection performance in Tables 2
and 3. For simplicity, we denote the decoders and the losses
used in BoxNet and VoteNet as Box and Vote respectively.
We use PointNet++ to refer to the modified PointNet++ ar-
chitecture used in VoteNet [42].
Replacing the encoder. We train 3DETR with a Point-
Net++ encoder (Table 2) and observe that the detection
performance is unchanged or slightly worse compared to
3DETR with a transformer encoder. This shows that the de-
sign decisions in 3DETR are broadly compatible with prior
work, and can be used for designing better encoder models.
Replacing the decoder. In Table 3, we observe that re-
placing our Transformer-based decoders by Box or Vote de-
coders leads to poor detection performance on both bench-

Method Encoder Decoder Loss ScanNetV2 SUN RGB-D
AP25 AP50 AP25 AP50

Comparing different decoders
1 3DETR Tx. Tx. Set 62.7 37.5 58.0 30.3
2 Tx. Box Box 31.0 10.2 36.4 14.4
3 Tx. Vote Vote 46.1 23.4 47.5 24.9
Comparing different losses

4 Tx. Tx. Box 49.6 20.5 49.5 21.1
5 Tx. Tx. Vote 54.0 31.9 53.4 28.3

Tx.: Transformer, Vote/Box loss [42], Set loss § 3.4

Table 3: 3DETR with different decoders and losses. We vary
the decoder and losses used with our transformer encoder. As the
Box and Vote decoders are only compatible with their losses, we
vary the loss function while using them. The Vote loss is compat-
ible with our Transformer encoder-decoder, however a simpler set
loss performs the best.

marks. Additionally, the Box and Vote decoders work only
with their respective losses and our preliminary experiments
using set loss on these decoders led to worse results. Thus,
the drop of performance could be attributed to changing the
decoder used with our transformer encoder. We inspect this
next by replacing the loss in 3DETR while using the trans-
former encoder and decoder.

Replacing the loss. We train 3DETR, i.e., both Trans-
former encoder and decoder with the Box and Vote losses.
We observe (Table 3 rows 4 and 5) that this leads to sim-
ilar degradation in performance, suggesting that the losses
are not applicable to our model. This is not surprising since
the design decisions, e.g., voting radius, aggregation radius
etc. in the Vote loss was specifically designed for radius pa-
rameters in the PointNet++ encoder [45]. This set of obser-
vations exposes that the decoder and loss function used in
VoteNet depend greatly on the nature of the encoder (addi-
tional results in Appendix B.4). In contrast, our set loss has
no design decisions specific to our encoder-decoder.

Method input mAcc OA
PointNet++ [45] point – 91.9
SpecGCN [71] point – 92.1
DGCNN [77] point 90.2 92.2
PointWeb [90] point 89.4 92.3
SpiderCNN [80] point – 92.4
PointConv [78] point – 92.5
KPConv [67] point – 92.9
InterpCNN [34] point – 93.0
3DETR encoder (Ours) point 89.1 92.1
3DETR-m encoder (Ours) point 89.9 91.9

Table 4: Shape classification. We report shape classification re-
sults by training our Transformer encoder model. Our model per-
forms competitively with architectures designed for 3D suggesting
that our design decisions can extend beyond detection and be use-
ful for other tasks.

Visualizing self-attention. We visualize the self-attention
in the decoder in Fig 1. The decoder focuses on whole in-
stances and groups points within instances. This presum-
ably makes it easier to predict bounding boxes for each
instance. We provide visualizations for the encoder self-
attention in the supplemental.

Encoder applied to Shape classification. To verify that
our encoder design is not specific to the detection task we
test the encoder on shape classification of of models includ-
ing 3D Warehouse [79].

We use the three layer encoder from 3DETR with vanilla
self-attention (no decoder) or the three layer encoder from
3DETR-m. To obtain global features for the point cloud,
we use the ‘CLS token’ formulation from Transformer, i.e.,
append a constant point to the input and use this point’s
output encoder features as global features (see supplemental
for details). The global features from the encoder are input
to a 2-layer MLP to perform shape classification. Table 4
shows that both the 3DETR and 3DETR-m encoders are
competitive with state-of-the-art encoders tailored for 3D.
These results suggest that our encoder design is not specific
to detection and can be used for other 3D tasks.

4.2.2 Design decisions in 3DETR
Our model is inspired by the DETR [4] architecture but has
major differences - (1) it is an end-to-end transformer with-
out a ConvNet, (2) it is trained from scratch (3) uses non-
parametric queries and (4) Fourier positional embeddings.
In Table 5, we show the impact of the last two differences
by evaluating various versions of our model on ScanNetV2.
The version with minimal modifications is a DETR model
applied to 3D with our training and loss function.

First, this version does not perform well on the Scan-
NetV2 benchmark, achieving 15% AP25. However, when
replacing the parametric queries by non-parametric queries,

Method Positional Embedding Query Type ScanNetV2
Encoder Decoder AP25 AP50

1 3DETR - Fourier np + Fourier 62.7 37.5
2 Fourier Fourier np + Fourier 61.8 37.0
3 Sine Sine np + Sine 55.8 30.9
4 - - np + Sine 31.3 10.8
5 DETR [4]† Sine Sine parametric [4] 15.4 5.3

np: non-parametric query (§ 3.2)

Table 5: Decoder Query Type and Positional Embedding.
We how using non-parametric queries and Fourier positional em-
beddings [64] affect detection performance. DETR’s parametric
queries do not work well for 3D detection (rows 3, 5). The stan-
dard choice [4, 68] of sinusoidal positional embeddings is worse
than Fourier embeddings (rows 2, 3). † - DETR is designed for 2D
image detection and we adapt it for 3D detection.

Method NMS No NMS
VoteNet [42] 60.4 10.7
3DETR (ours) 62.7 59.5

Table 6: Effect of NMS. We report the detection performance
(AP25) for 3DETR and VoteNet on ScanNetV2. 3DETR works
without NMS at test time because the set matching loss discour-
ages excess predicted boxes.

we observe a significant improvement of +40% in AP25 (Ta-
ble 5 rows 3 and 5). In fact, only using the non-parametric
queries (row 4) without positional embeddings doubles the
performance. This shows the importance of using non-
parametric queries with 3D point clouds. A reason is that
point clouds are irregular and sparse, making the learning
of parametric queries harder than on a 2D image grids.
Non-parametric queries are directly sampled from the point
clouds and hence are less impacted by these irregularities.
Unlike the fixed number of parametric queries in DETR,
non-parametric queries easily enable the use different num-
ber of queries at train and test time (see § 5.1).

Finally, replacing the sinusoidal positional embedding
by the low-frequency Fourier encodings of [64] provides
an additional improvement of +5% in AP25 (Table 5 rows
2 and 3). As a side note, using positional encodings bene-
fits the decoder more than the encoder because the decoder
does not have direct access to coordinates.

5. Ablations
We conduct a series of ablation experiments to under-

stand the components of 3DETR with settings from § 4.

Effect of NMS. 3DETR uses the set loss of DETR (§ 3.4)
that forces a 1-to-1 mapping between the ground truth box
and the predicted box. This loss penalizes models that
predict too many boxes, since excess predictions are not
matched to ground truth. In contrast, the loss used in
VoteNet [42] does not discourage multiple predictions of
the same object and thus relies on Non-Maximal Suppres-

2 3 6 8 10
Number of decoder layers

25

30

35

40

45

A
P 5

0
on

 S
ca

nN
et

V
2 Encoder layers = 2

Encoder layers = 3
Encoder layers = 6
Encoder layers = 8

Figure 4: Varying number of layers for encoder and decoder.
We train different models with varying number of encoder and de-
coder layers and analyze the impact on detection performance on
ScanNetV2. Increasing the number of layers in either the encoder
or decoder has a positive effect, but a higher number of decoder
layers matters more than the encoder layers.

1 2 3 4 5 6 7 8
Decoder layer

45

50

55

60

65

A
P 2

5
on

 S
ca

nN
et

V
2

Same model
Different models

32 64 128 256 384
Number of queries

20

30

40

50

60
65

A
P 2

5
on

 S
ca

nN
et

V
2

Same model
Different models

Figure 5: Adapting compute at test time. We change the number
of decoder layers or the number of queries used at test time for
a 3DETR model (‘same model’). We compare this to different
models trained with reduced depth of the decoder (left) or with
different number of queries (right). 3DETR can adapt to different
test time conditions and performs favorably compared to different
models trained for the test time conditions.

sion to remove them as a post-processing step. We compare
3DETR and VoteNet with and without NMS in Table 6 with
the detection AP metric, which penalizes duplicate detec-
tions. Without NMS, 3DETR drops in performance by only
3% AP while VoteNet drops by 50%, showing our set loss
works without NMS.

Effect of encoder/decoder layers. We assess the impor-
tance of the number of layers in the encoder and decoder
in Fig 4. While a higher number of layers improves de-
tection performance in general, adding the layers in the de-
coder instead of the encoder has a greater impact on perfor-
mance. For instance, for a model with three encoder and
three decoder layers, adding five decoder layers improves
performance by +7% AP50 while adding five encoder layers
improves by +2%AP50. This preference toward the decoder
arises because in our parallel decoder, each layer further re-
fines the prediction quality of the bounding boxes.

5.1. Adapting computation to inference constraints

An advantage of our model is that we can adapt its com-
putation during inference by using less layers in the decoder

or queries to predict boxes without retraining.

Adapting decoder depth. The parallel decoder of 3DETR
is trained to predict boxes at each layer with the same
bounding box prediction MLPs. Thus far, in all our results
we used the predictions only from the last decoder layer.
We now test the performance of the intermediate layers for
a decoder with six layers in Fig 5 (left). We compare this to
training different models with a varying number of decoder
layers. We make two observations - (1) similar to Fig 4, de-
tection performance increases with the number of decoder
layers; and (2) more importantly, the same model with re-
duced depth at test time performs as well or better than mod-
els trained from scratch with reduced depth. This second
property is shared with the DETR, but not with VoteNet.
It allows adapting the number of layers in the decoder to a
computation budget during inference without retraining.

Adapting number of queries. As we increase the num-
ber of queries, 3DETR predicts more bounding boxes, re-
sulting in better performance at a cost of longer running
time. However, our non-parametric queries in 3DETR al-
low us to adapt the number of box predictions to trade per-
formance for running time. Note that this is also possible
with VoteNet, but not with DETR. In Fig 5 (right), we com-
pare changing the number of queries at test time to different
models trained with varying number of queries. The same
3DETR model can adapt to a varying number of queries at
test time and performs comparably to different models. Per-
formance increases until the number of queries is enough
to cover the point cloud well. We found this adaptation to
number of queries at test time works best with a 3DETR
model trained with 128 queries (see Appendix B for other
models). This adaptive computation is promising and re-
search into efficient self-attention should benefit our model.
We provide inference time comparisons to VoteNet in Ap-
pendix A.1 for different versions of the 3DETR model.

6. Conclusion
We presented 3DETR, an end-to-end Transformer model

for 3D detection on point clouds. 3DETR requires few 3D
specific design decisions or hyperparameters. We show that
using non-parametric queries and Fourier encodings is crit-
ical for good 3D detection performance. Our proposed de-
sign decisions enable powerful Transformers for 3D detec-
tion, and also benefit other 3D tasks like shape classifica-
tion. Additionally, our set loss function generalizes to prior
3D architectures. In general, 3DETR is a flexible frame-
work and can easily incorporate prior components used in
3D detection and can be leveraged to build more advanced
3D detectors. Finally, it also combines the flexibility of both
VoteNet and DETR, allowing for a variable number of pre-
dictions at test time (like VoteNet) with a variable number
of decoder layers (like DETR).

Acknowledgments: We thank Zaiwei Zhang for helpful discus-
sions and Laurens van der Maaten for feedback on the paper.

Supplemental Material

A. Implementation Details

A.1. Architecture

We describe the 3DETR architecture in detail.
Architecture. We follow the dataset preprocessing
from [42] and obtain N = 20, 000 points and N = 40, 000
points respectively for each sample in SUN RGB-D and
ScanNetV2 datasets. TheN×3 matrix of point coordinates
is then passed through one layer of the downsampling and
set aggregation operation [45] which uses Farthest-Point-
Sampling to sample 2048 points randomly from the scene.
Each point is projected to a 256 dimensional feature fol-
lowed by the set-aggregation operation that aggregates fea-
tures within a `2 distance of 0.2. The output is a 2048×256
dimensional matrix of features for the N ′ = 2048 points
which is input to the encoder. We now describe the encoder
and decoder architectures (illustrated in Fig 6).

LayerNorm

Input

Multi-headed
Attention

+

LayerNorm

MLP

+

Output

One Layer of
Transformer Encoder

LayerNorm

Input

Multi-headed
Attention

+

LayerNorm

MLP

+

Output

One Layer of
Transformer Decoder

<latexit sha1_base64="N+AbrXF+6H20mUqcDRMNkw2sXXE=">AAACjnicbVFda9RAFJ3Er5qqjfroy+CmuH1Zkj7UUilWRagPSgW3LWzWcDO52R2aTMLMjbCE/Bz/kG/+Gye729IPLwwczjn3Y+5N60IaCsO/jnvv/oOHjzYee5tPnj7b8p+/ODVVowWORVVU+jwFg4VUOCZJBZ7XGqFMCzxLLz71+tkv1EZW6gctapyWMFMylwLIUon/ezvIf7ZxCTTXZWuoyVBR1yUxzZGAD7/s8EN+zUEIYo76yjG8FKCZlX2qzdgJPFv1ZolLm6iUIbC+wFua2pUruWrw+euHruvV4NubmGSJhmdB4g/CUbgMfhdEazBg6zhJ/D9xVommn0gUYMwkCmuatqBJigI7L24M1iAuYIYTCxXYPtN2uc6Ob1sm43ml7VPEl+z1jBZKYxZlap390Oa21pP/0yYN5fvTVqq6IVRi1ShvCk4V72/DM6lRULGwAISWdlYu5qBBkL2gZ5cQ3f7yXXC6O4r2RtH33cHRx/U6Ntgr9poNWcTesiN2zE7YmAln04mcA+ed67t77qH7fmV1nXXOS3Yj3ON/D2TE9A==</latexit>

N 0 ⇥ d

<latexit sha1_base64="N+AbrXF+6H20mUqcDRMNkw2sXXE=">AAACjnicbVFda9RAFJ3Er5qqjfroy+CmuH1Zkj7UUilWRagPSgW3LWzWcDO52R2aTMLMjbCE/Bz/kG/+Gye729IPLwwczjn3Y+5N60IaCsO/jnvv/oOHjzYee5tPnj7b8p+/ODVVowWORVVU+jwFg4VUOCZJBZ7XGqFMCzxLLz71+tkv1EZW6gctapyWMFMylwLIUon/ezvIf7ZxCTTXZWuoyVBR1yUxzZGAD7/s8EN+zUEIYo76yjG8FKCZlX2qzdgJPFv1ZolLm6iUIbC+wFua2pUruWrw+euHruvV4NubmGSJhmdB4g/CUbgMfhdEazBg6zhJ/D9xVommn0gUYMwkCmuatqBJigI7L24M1iAuYIYTCxXYPtN2uc6Ob1sm43ml7VPEl+z1jBZKYxZlap390Oa21pP/0yYN5fvTVqq6IVRi1ShvCk4V72/DM6lRULGwAISWdlYu5qBBkL2gZ5cQ3f7yXXC6O4r2RtH33cHRx/U6Ntgr9poNWcTesiN2zE7YmAln04mcA+ed67t77qH7fmV1nXXOS3Yj3ON/D2TE9A==</latexit>

N 0 ⇥ d

<latexit sha1_base64="N+AbrXF+6H20mUqcDRMNkw2sXXE=">AAACjnicbVFda9RAFJ3Er5qqjfroy+CmuH1Zkj7UUilWRagPSgW3LWzWcDO52R2aTMLMjbCE/Bz/kG/+Gye729IPLwwczjn3Y+5N60IaCsO/jnvv/oOHjzYee5tPnj7b8p+/ODVVowWORVVU+jwFg4VUOCZJBZ7XGqFMCzxLLz71+tkv1EZW6gctapyWMFMylwLIUon/ezvIf7ZxCTTXZWuoyVBR1yUxzZGAD7/s8EN+zUEIYo76yjG8FKCZlX2qzdgJPFv1ZolLm6iUIbC+wFua2pUruWrw+euHruvV4NubmGSJhmdB4g/CUbgMfhdEazBg6zhJ/D9xVommn0gUYMwkCmuatqBJigI7L24M1iAuYIYTCxXYPtN2uc6Ob1sm43ml7VPEl+z1jBZKYxZlap390Oa21pP/0yYN5fvTVqq6IVRi1ShvCk4V72/DM6lRULGwAISWdlYu5qBBkL2gZ5cQ3f7yXXC6O4r2RtH33cHRx/U6Ntgr9poNWcTesiN2zE7YmAln04mcA+ed67t77qH7fmV1nXXOS3Yj3ON/D2TE9A==</latexit>

N 0 ⇥ d
<latexit sha1_base64="wU/EfJDJ6CRMvB2OekVP7EeYuKA=">AAAB8nicbVBNT8JAEN3iF+IX6tHLRjDxRFoO6pHgxSMmgiSlIdvtFjZsd5vdqQlp+BlePGiMV3+NN/+NC/Sg4EsmeXlvJjPzwlRwA6777ZQ2Nre2d8q7lb39g8Oj6vFJz6hMU9alSijdD4lhgkvWBQ6C9VPNSBIK9hhObuf+4xPThiv5ANOUBQkZSR5zSsBKfr09AJ4wg6P6sFpzG+4CeJ14BamhAp1h9WsQKZolTAIVxBjfc1MIcqKBU8FmlUFmWErohIyYb6kkdk+QL06e4QurRDhW2pYEvFB/T+QkMWaahLYzITA2q95c/M/zM4hvgpzLNAMm6XJRnAkMCs//xxHXjIKYWkKo5vZWTMdEEwo2pYoNwVt9eZ30mg3vquHdN2utdhFHGZ2hc3SJPHSNWugOdVAXUaTQM3pFbw44L86787FsLTnFzCn6A+fzBxV6kHg=</latexit>

B ⇥ d Encoder Feature

Multi-headed
Attention

LayerNorm

+

~F

~F

<latexit sha1_base64="wU/EfJDJ6CRMvB2OekVP7EeYuKA=">AAAB8nicbVBNT8JAEN3iF+IX6tHLRjDxRFoO6pHgxSMmgiSlIdvtFjZsd5vdqQlp+BlePGiMV3+NN/+NC/Sg4EsmeXlvJjPzwlRwA6777ZQ2Nre2d8q7lb39g8Oj6vFJz6hMU9alSijdD4lhgkvWBQ6C9VPNSBIK9hhObuf+4xPThiv5ANOUBQkZSR5zSsBKfr09AJ4wg6P6sFpzG+4CeJ14BamhAp1h9WsQKZolTAIVxBjfc1MIcqKBU8FmlUFmWErohIyYb6kkdk+QL06e4QurRDhW2pYEvFB/T+QkMWaahLYzITA2q95c/M/zM4hvgpzLNAMm6XJRnAkMCs//xxHXjIKYWkKo5vZWTMdEEwo2pYoNwVt9eZ30mg3vquHdN2utdhFHGZ2hc3SJPHSNWugOdVAXUaTQM3pFbw44L86787FsLTnFzCn6A+fzBxV6kHg=</latexit>

B ⇥ d

Figure 6: Architecture of Encoder and Decoder. We present
the architecture for one layer of the 3DETR encoder and decoder.
The encoder layer takes as input N ′ × d features for N ′ points
and outputs N ′ × d features too. It performs self-attention fol-
lowed by a MLP. The decoder takes as input B × d features (the
query embeddings or the prior decoder layer), N ′ × d point fea-
tures from the encoder to output B × d features for B boxes. The
decoder performs self-attention between the B query/box features
and cross-attention between the B query/box features and the N ′

point features. We denote by ∼F the Fourier positional encod-
ings [64] used in the decoder. All 3DETR models use d = 256.

Encoder. The encoder has three layers of self-attention fol-
lowed by an MLP. The self-attention operation uses multi-
headed attention with four heads. The self-attention pro-
duces a 2048×2048 attention matrix which is used to attend
to the features to produce a 256 dimensional output. The
MLPs in each layer have a hidden dimension with 128. All
the layers use LayerNorm [2] and the ReLU non-linearity.

3DETR-m Encoder. The masked 3DETR-m encoder has
three layers of self-attention followed by an MLP. At each
layer the self-attention matrix of size #points×#points is
multiplied with a binary mask M of the same size. The bi-
nary mask entry Mij is 1 if the point coordinates for points
i and j are within a radius r of each other. We use radius
values of [0.4, 0.8, 1.2] for the three layers. The first layer
operates on 2048 points and is followed by a downsample
+ set aggregation operator that downsamples to 1024 points
using a radius of 0.4, similar to PointNet++. The encoder
layers follow the same structure as the vanilla Encoder de-
scribed above, i.e., MLPs with hidden dimension of 128,
multi-headed attention with four heads etc. The encoder
produces 256 dimensional features for 1024 points.

Decoder. The decoder operates on the N ′ × 256 encoder
features and B × 256 location query embeddings. It pro-
duces a B × 256 matrix of box features as output. The de-
coder has eight layers and uses cross-attention between the
location query embeddings (Sec 3.2 main paper) and the
encoder features, and self-attention between the box fea-
tures. Each layer has the self-attention operation followed
by a cross-attention operation (implemented exactly as self-
attention) and an MLP with a hidden dimension of 256. All
the layers use LayerNorm [2], ReLU non-linearity and a
dropout of 0.3.

Bounding box prediction MLPs. The box prediction
MLPs operate on the B × 256 box features from the de-
coder. We use separate MLPs for the following five pre-
dictions - 1) center location offset ∆q ∈ [0, 1]3; 2) angle
quantization class; 3) angle quantization residual ∈ R; 4)
box size s ∈ [0, 1]3; 5) semantic class of the object. Each
MLP has 256 hidden dimensions and uses the ReLU non-
linearity. The center location and size prediction MLP out-
puts are followed by a sigmoid function to convert them into
a [0, 1] range.

Inference speed. 3DETR has very few 3D-specific tweaks
and uses standard PyTorch. VoteNet relies on custom GPU
CUDA kernels for 3D operations. We measured the infer-
ence time of 3DETR (256 queries) and VoteNet (256 boxes)
on a V100 GPU with a batchsize of 8 samples. Both models
downsample the pointcloud to 2048 points. 3DETR needs
170 ms while VoteNet needs 132 ms. As research into ef-
ficient self-attention becomes more mature (several recent
works show promise), it will benefit the runtime and mem-
ory efficiency of our model.

Encoder Layers Decoder Layers Inference time
3 3 153
3 6 164
3 8 170
3 10 180
6 6 193
6 8 213
8 8 219

Table 7: Inference Speed and Memory. We provide inference
speed (in milliseconds) for different number of encoder and de-
coder layers in the 3DETR model. All timings are measured on a
single V100 GPU with a batchsize of 8 and using 256 queries.

A.2. Set Loss

The set matching cost is defined as:

Cmatch(b̂,b) = −λ1GIoU(b̂,b) + λ2‖ĉ− c‖1︸ ︷︷ ︸
geometric

−λ3ŝ[sgt]︸ ︷︷ ︸
semantic

For B predicted boxes and G ground truth boxes, we
compute a B × G matrix of costs by using the above pair-
wise cost term. We then compute an optimal assignment
between each ground truth box and predicted box using the
Hungarian algorithm. Since the number of predicted boxes
is larger than the number of ground truth boxes, the remain-
derB−G boxes are considered to match to background. We
set λ1, λ2, λ3, λ4 as 2, 1, 0, 0 for ScanNetV2 and 3, 5, 1, 5
for SUN RGB-D.

For each predicted box that is matched to a ground truth
box, our loss function is:

L3DETR = 5 ∗ ‖ĉ− c‖1 + ‖d̂− d‖1 + ‖âr − ar‖huber
− 0.1 ∗ aᵀ

c log âc − 5 ∗ sᵀc log ŝc

For each unmatched box that is considered background, we
compute only the semantic loss term. The semantic loss
is implemented as a weighted cross entropy loss with the
weight of the ‘background’ class as 0.2 and a weight of 0.8
for the K object classes.

B. Experiments
We provide additional experimental details and hyperpa-

rameter settings.

B.1. Improved baselines

We improve the VoteNet and BoxNet baselines by doing
a grid search and improving the optimization hyperparam-
eters. We train the baseline models for 360 epochs using
the Adam optimizer [20] with a learning rate of 1 × 10−3

decayed by a factor of 10 after 160, 240, 320 epochs and a

Method ScanNetV2 SUN RGB-D
AP25 AP50 AP25 AP50

BoxNet [42] 45.4 - 53.0 -
BoxNet† [42] 49.0 21.1 52.4 25.1
VoteNet [42] 58.6 33.5 57.7 -
VoteNet† [42] 60.4 35.5 58.3 33.4

Table 8: Improved baseline. We denote by † our improved im-
plementation of the baseline methods and report the numbers from
the original paper [42]. Our improvements ensure that the compar-
isons in the main paper are fair.

weight decay of 0. We found that using a cosine learning
rate schedule, even longer training than 360 epochs or the
AdamW optimizer did not make a significant difference in
performance for the baselines. These improvements to the
baseline lead to an increase in performance, summarized
in Table 8.

B.2. Per-class Results

We provide the per-class mAP results for ScanNetV2
in Table 10 and SUN RGB-D in Table 9. The overall results
for these models were reported in the main paper (Table 1).

B.3. Detailed state-of-the-art comparison

We provide a detailed comparison to state-of-the-art de-
tection methods in Table 11. Most state-of-the-art meth-
ods build upon VoteNet. H3DNet [89] uses 3D primitives
with VoteNet for better localization. HGNet [5] improves
VoteNet by using a hierarchical graph network with higher
resolution output from its PointNet++ backbone. 3D-
MPA [11] uses clustering based geometric aggregation and
graph convolutions on top of the VoteNet method. 3DETR
does not use Voting and has fewer 3D specific decisions
compared to all other methods. 3DETR performs favorably
compared to these methods and outperforms VoteNet. This
suggests that, like VoteNet, 3DETR can be used as a build-
ing block for future 3D detection methods.

B.4. 3DETR-m with Vote loss

We tuned the VoteNet loss with the 3DETR-m en-
coder and our best tuned model gave 60.7% and 56.1%
mAP on ScanNetV2 and SUN RGB-D respectively (set-
tings from Table 3 of the main paper). The VoteNet loss
performs better with 3DETR-m compared to the vanilla
3DETR encoder (gain of 6% and 3%), confirming that the
VoteNet loss is dependent on the inductive biases/design of
the encoder. Using our set loss is still better than using the
VoteNet loss for 3DETR-m (Table 1 vs. results stated in this
paragraph). Thus, our set loss design decisions are more
broadly applicable than that of VoteNet.

Model bed table sofa chair toilet desk dresser nightstand bookshelf bathtub
3DETR 81.8 50.0 58.3 68.0 90.3 28.7 28.6 56.6 27.5 77.6
3DETR-m 84.6 52.6 65.3 72.4 91.0 34.3 29.6 61.4 28.5 69.8

Table 9: Per-class AP25 for SUN RGB-D.

Model cabinet bed chair sofa table door window bookshelf picture counter desk curtain refrigerator showercurtrain toilet sink bathtub garbagebin
3DETR 50.2 87.0 86.0 87.1 61.6 46.6 40.1 54.5 9.1 62.8 69.5 48.4 50.9 68.4 97.9 67.6 85.9 45.8
3DETR-m 49.4 83.6 90.9 89.8 67.6 52.4 39.6 56.4 15.2 55.9 79.2 58.3 57.6 67.6 97.2 70.6 92.2 53.0

Table 10: Per-class AP25 for ScanNetV2.

Method Arch. ScanNetV2 SUN RGB-D
AP25 AP50 AP25 AP50

BoxNet† [42] BoxNet 49.0 21.1 52.4 25.1
3DETR Tx. 62.7 37.5 56.8 30.1
VoteNet† [42] VoteNet 60.4 37.5 58.3 33.4
3DETR-m Tx. 65.0 47.0 59.0 32.7
H3DNet [89] VoteNet + 3D primitives 67.2 48.1 60.1 39.0
HGNet [5] VoteNet + GraphConv 61.3 34.4 61.6 34.4
3D-MPA [11] VoteNet + GraphConv 64.2 49.2 - -

Table 11: Detailed state-of-the-art comparison on 3D detec-
tion.

B.5. Adapt queries at test time

We provide additional results for Section 5.1 of the main
paper. We change the number of queries used at test time
for the same 3DETR model. We show these results in Fig 7
for two different 3DETR models trained with 64 and 256
queries respectively. We observe that the model trained with
64 queries is more robust to changing queries at test-time,
but at its most optimal setting achieves worse detection per-
formance than the model trained with 256 queries. In the
main paper, we show results of changing queries at test
time for a model trained with 128 queries that achieves a
good balance between overall performance and robustness
to change at test-time.

B.6. Visualizing the encoder attention

We visualize the encoder attention for a 3DETR model
trained on the SUN RGB-D dataset in Fig 8. The encoder
focuses on parts of objects.

B.7. Shape Classification setup

Dataset and Metrics. We use the processed point clouds
with normals from [45], and sample 8192 points as input
for both training and testing our models. Following prior
work [90], we report two metrics to evaluate shape classi-
fication performance: 1) Overall Accuracy (OA) evaluates
how many point clouds we classify correctly; and 2) Class-
Mean Accuracy (mAcc) evaluates the accuracy for each
class independently, followed by an average over the per-
class accuracy. This metric ensures tail classes contribute
equally to the final performance.

32 64 128 256 384
Number of queries

20

30

40

50

60
65

A
P 2

5
on

 S
ca

nN
et

V
2

Same model
Different models

32 64 128 256 384
Number of queries

20

30

40

50

60
65

A
P 2

5
on

 S
ca

nN
et

V
2

Same model
Different models

Figure 7: Adapt queries at test time. Similar to Figure 5 of
the main paper, we change the number of queries at test time for
a 3DETR model and compare it to different models trained with
a varying number of queries. We plot the results for the same
3DETR model trained with 64 queries (left) or with 256 queries
(right).

Input Point Cloud Encoder Attention

Figure 8: Encoder attention. We visualize the encoder attention
for two different heads. We compute the self-attention from the
reference point (blue dot) to all the points in the scene and display
the points with the highest attention values in red. The encoder
groups together different geometric parts (legs of multiple chairs)
or focuses on single parts of an instance (backrest of a chair).

Architecture Details. We use the base 3DETR and
3DETR-m encoder architectures, followed by a 2-layer
MLP with batch norm and a 0.5 dropout to transform the fi-
nal features into a distribution over the 40 predefined shape
classes. Differently from object detection experiments, our
point features include the 3D position information concate-
nated with 3D normal information at each point, and hence
the first linear layer is correspondingly larger, though the
rest of the network follows the same architecture as the en-
coder used for detection. For the experiments with 3DETR,
we prepend a [CLS] token, output of which is used as input
to the classification MLP. For the experiments with 3DETR-
m that involve masked transformers, we max pool the final

layer features, which are then passed into the classifier.

Training Details. All models are trained for 250 epochs
with a learning rate of 4× 10−4 and a weight decay of 0.1,
using the AdamW optimizer. We use a linear warmup from
4 × 10−7 to the initial LR over 20 epochs, and then decay
to 4×10−5 over the remaining 230 epochs. The models are
trained on 4 GPUs with a batch size of 2 per GPU.

References
[1] Andrew Adams, Jongmin Baek, and Myers Abraham Davis.

Fast high-dimensional filtering using the permutohedral lat-
tice. In Computer Graphics Forum, volume 29, pages 753–
762. Wiley Online Library, 2010.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[3] Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert.
Unstructured point cloud semantic labeling using deep seg-
mentation networks. 3DOR, 2:7, 2017.

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision, pages 213–229. Springer, 2020.

[5] Jintai Chen, Biwen Lei, Qingyu Song, Haochao Ying,
Danny Z Chen, and Jian Wu. A hierarchical graph network
for 3d object detection on point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 392–401, 2020.

[6] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous
driving. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1907–1915,
2017.

[7] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niessner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), July 2017.

[8] Boris Delaunay et al. Sur la sphere vide. Izv. Akad. Nauk
SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk,
7(793-800):1–2, 1934.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[11] Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian
Leibe, and Matthias Nießner. 3d-mpa: Multi-proposal ag-
gregation for 3d semantic instance segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9031–9040, 2020.

[12] Ben Graham. Sparse 3d convolutional neural networks.
arXiv preprint arXiv:1505.02890, 2015.

[13] Fabian Groh, Patrick Wieschollek, and Hendrik PA Lensch.
Flex-convolution. In Asian Conference on Computer Vision,
pages 105–122. Springer, 2018.

[14] JunYoung Gwak, Christopher B Choy, and Silvio Savarese.
Generative sparse detection networks for 3d single-shot ob-
ject detection. In European conference on computer vision,
2020.

[15] Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar
Vinacua, and Timo Ropinski. Monte carlo convolution for
learning on non-uniformly sampled point clouds. ACM
Transactions on Graphics (TOG), 37(6):1–12, 2018.

[16] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen
Wei. Relation networks for object detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3588–3597, 2018.

[17] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
Randla-net: Efficient semantic segmentation of large-scale
point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11108–
11117, 2020.

[18] Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-
Wing Fu, and Jiaya Jia. Hierarchical point-edge interaction
network for point cloud semantic segmentation. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 10433–10441, 2019.

[19] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi
Nishida. Rotationnet: Joint object categorization and pose
estimation using multiviews from unsupervised viewpoints.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5010–5019, 2018.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[21] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M Rush. Opennmt: Open-source
toolkit for neural machine translation. arXiv preprint
arXiv:1701.02810, 2017.

[22] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955.

[23] Jean Lahoud, Bernard Ghanem, Marc Pollefeys, and Mar-
tin R Oswald. 3d instance segmentation via multi-task metric
learning. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 9256–9266, 2019.

[24] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4558–4567, 2018.

[25] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12697–12705, 2019.

[26] Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg,
Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg.

Deep projective 3d semantic segmentation. In International
Conference on Computer Analysis of Images and Patterns,
pages 95–107. Springer, 2017.

[27] Guohao Li, Matthias Muller, Ali Thabet, and Bernard
Ghanem. Deepgcns: Can gcns go as deep as cnns? In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9267–9276, 2019.

[28] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In Advances in Neural Information Processing Sys-
tems, pages 820–830, 2018.

[29] Zhe Liu, Xin Zhao, Tengteng Huang, Ruolan Hu, Yu Zhou,
and Xiang Bai. Tanet: Robust 3d object detection from point
clouds with triple attention. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages 11677–
11684, 2020.

[30] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[32] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
Vilbert: Pretraining task-agnostic visiolinguistic represen-
tations for vision-and-language tasks. arXiv preprint
arXiv:1908.02265, 2019.

[33] Christoph Lüscher, Eugen Beck, Kazuki Irie, Markus Kitza,
Wilfried Michel, Albert Zeyer, Ralf Schlüter, and Hermann
Ney. Rwth asr systems for librispeech: Hybrid vs attention–
w/o data augmentation. arXiv preprint arXiv:1905.03072,
2019.

[34] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpo-
lated convolutional networks for 3d point cloud understand-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 1578–1587, 2019.

[35] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928. IEEE, 2015.

[36] Anshul Paigwar, Ozgur Erkent, Christian Wolf, and Christian
Laugier. Attentional pointnet for 3d-object detection in point
clouds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages
0–0, 2019.

[37] Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao
Huang. 3d object detection with pointformer. arXiv preprint
arXiv:2012.11409, 2020.

[38] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In International Conference on Machine
Learning, pages 4055–4064. PMLR, 2018.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[40] Quang-Hieu Pham, Thanh Nguyen, Binh-Son Hua, Gemma
Roig, and Sai-Kit Yeung. Jsis3d: Joint semantic-instance
segmentation of 3d point clouds with multi-task pointwise
networks and multi-value conditional random fields. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8827–8836, 2019.

[41] Trung T Pham, Markus Eich, Ian Reid, and Gordon Wyeth.
Geometrically consistent plane extraction for dense indoor
3d maps segmentation. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
4199–4204. IEEE, 2016.

[42] Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep hough voting for 3d object detection in point
clouds. In Proceedings of the International Conference on
Computer Vision (ICCV), 2019.

[43] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum pointnets for 3d object detection from rgb-
d data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 918–927, 2018.

[44] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 652–660,
2017.

[45] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. In Advances in neural information processing
systems, pages 5099–5108, 2017.

[46] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. 2018.

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Neural Information Processing Sys-
tems, 2015.

[48] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union. June 2019.

[49] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
Octnet: Learning deep 3d representations at high resolutions.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3577–3586, 2017.

[50] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-
voxel feature set abstraction for 3d object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10529–10538, 2020.

[51] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–779, 2019.

[52] Martin Simony, Stefan Milzy, Karl Amendey, and Horst-
Michael Gross. Complex-yolo: An euler-region-proposal
for real-time 3d object detection on point clouds. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV) Workshops, pages 0–0, 2018.

[53] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.

Sun rgb-d: A rgb-d scene understanding benchmark suite. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 567–576, 2015.

[54] Shuran Song and Jianxiong Xiao. Sliding shapes for 3d ob-
ject detection in depth images. In ECCV, 2014.

[55] Shuran Song and Jianxiong Xiao. Deep sliding shapes for
amodal 3d object detection in rgb-d images. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[56] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-
lis Savva, and Thomas Funkhouser. Semantic scene com-
pletion from a single depth image. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1746–1754, 2017.

[57] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. JMLR,
15(1):1929–1958, 2014.

[58] Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng.
End-to-end people detection in crowded scenes. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2325–2333, 2016.

[59] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
Splatnet: Sparse lattice networks for point cloud processing.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2530–2539, 2018.

[60] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), pages 945–
953, 2015.

[61] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu
Wei, and Jifeng Dai. Vl-bert: Pre-training of generic visual-
linguistic representations. arXiv preprint arXiv:1908.08530,
2019.

[62] Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Tatiana
Likhomanenko, Edouard Grave, Vineel Pratap, Anuroop Sri-
ram, Vitaliy Liptchinsky, and Ronan Collobert. End-to-end
asr: from supervised to semi-supervised learning with mod-
ern architectures. arXiv preprint arXiv:1911.08460, 2019.

[63] Hao Tan and Mohit Bansal. Lxmert: Learning cross-
modality encoder representations from transformers. arXiv
preprint arXiv:1908.07490, 2019.

[64] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. NeurIPS, 2020.

[65] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-
Yi Zhou. Tangent convolutions for dense prediction in 3d.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3887–3896, 2018.

[66] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung
Gwak, and Silvio Savarese. Segcloud: Semantic segmen-
tation of 3d point clouds. In 2017 international conference
on 3D vision (3DV), pages 537–547. IEEE, 2017.

[67] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J

Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6411–6420, 2019.

[68] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[69] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet:
Feature-steered graph convolutions for 3d shape analysis. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2598–2606, 2018.

[70] Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Bei-
jbom. Pointpainting: Sequential fusion for 3d object detec-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4604–4612,
2020.

[71] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-
tral graph convolution for point set feature learning. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 52–66, 2018.

[72] Dominic Zeng Wang and Ingmar Posner. Voting for voting
in online point cloud object detection. In Robotics: Science
and Systems, volume 1, pages 10–15607. Rome, Italy, 2015.

[73] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and
Jie Shan. Graph attention convolution for point cloud se-
mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10296–10305, 2019.

[74] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018.

[75] Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and
Jiaya Jia. Associatively segmenting instances and seman-
tics in point clouds. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4096–
4105, 2019.

[76] Yue Wang, Alireza Fathi, Abhijit Kundu, David Ross, Car-
oline Pantofaru, Tom Funkhouser, and Justin Solomon.
Pillar-based object detection for autonomous driving. arXiv
preprint arXiv:2007.10323, 2020.

[77] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019.

[78] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9621–9630, 2019.

[79] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2015.

[80] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 87–102, 2018.

[81] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-

ded convolutional detection. Sensors, 18(10):3337, 2018.
[82] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-

time 3d object detection from point clouds. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 7652–7660, 2018.

[83] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,
Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point
clouds with self-attention and gumbel subset sampling. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3323–3332, 2019.

[84] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd:
Point-based 3d single stage object detector. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11040–11048, 2020.

[85] Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J
Guibas. Gspn: Generative shape proposal network for 3d
instance segmentation in point cloud. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3947–3956, 2019.

[86] Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, and
Ruigang Yang. Lidar-based online 3d video object detec-
tion with graph-based message passing and spatiotemporal
transformer attention. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11495–11504, 2020.

[87] Wenxiao Zhang and Chunxia Xiao. Pcan: 3d attention map
learning using contextual information for point cloud based
retrieval. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12436–
12445, 2019.

[88] Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan
Misra. Self-supervised pretraining of 3d features on any
point-cloud. In Proceedings of the International Conference
on Computer Vision (ICCV), 2021.

[89] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.
H3dnet: 3d object detection using hybrid geometric primi-
tives. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2020.

[90] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia.
Pointweb: Enhancing local neighborhood features for point
cloud processing. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5565–5573, 2019.

[91] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and
Vladlen Koltun. Point transformer. arXiv preprint
arXiv:2012.09164, 2020.

[92] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4490–4499, 2018.

[93] Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping Shi, and
Dahua Lin. Ssn: Shape signature networks for multi-class
object detection from point clouds. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020.

