
Continuous Deployment at Facebook and OANDA

Tony Savor
Facebook

1 Hacker Way
Menlo Park, CA, U.S.A. 94025

tsavor@fb.com

Mitchell Douglas
Dept. of Computer Science

Stanford University
Stanford, CA, U.S.A. 94305

mrdoug95@stanford.edu

Michael Gentili
OANDA Corp.
140 Broadway

New York, NY, U.S.A. 10005
gentili@oanda.com

Laurie Williams
Dept. Computer Science

NC State University
Raleigh, NC, U.S.A. 27695

williams@csc.ncsu.edu

Kent Beck
Facebook

1 Hacker Way
Menlo Park, CA, U.S.A. 94025

kbeck@fb.com

Michael Stumm
ECE Department

University of Toronto
Toronto, Canada M8X 2A6

stumm@eecg.toronto.edu

ABSTRACT
Continuous deployment is the software engineering practice of
deploying many small incremental software updates into produc-
tion, leading to a continuous stream of 10s, 100s, or even 1,000s
of deployments per day. High-profile Internet firms such as Ama-
zon, Etsy, Facebook, Flickr, Google, and Netflix have embraced
continuous deployment. However, the practice has not been cov-
ered in textbooks and no scientific publication has presented an
analysis of continuous deployment.

In this paper, we describe the continuous deployment practices
at two very di↵erent firms: Facebook and OANDA. We show that
continuous deployment does not inhibit productivity or quality
even in the face of substantial engineering team and code size
growth. To the best of our knowledge, this is the first study to
show it is possible to scale the size of an engineering team by 20X
and the size of the code base by 50X without negatively impact-
ing developer productivity or software quality. Our experience
suggests that top-level management support of continuous de-
ployment is necessary, and that given a choice, developers prefer
faster deployment. We identify elements we feel make continuous
deployment viable and present observations from operating in a
continuous deployment environment.

1. INTRODUCTION
Continuous deployment is the process of deploying software
into production as quickly and iteratively as permitted by
agile software development. Key elements of continuous de-
ployment are:

1. software updates are kept as small and isolated as rea-
sonably feasible;

2. they are released for deployment immediately after de-
velopment and testing completes;

3. the decision to deploy is largely left up to the develop-
ers (without the use of separate testing teams); and

4. deployment is fully automated.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA

c� 2016 ACM. ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889223

This practice leads to a continuous stream of software de-
ployments, with organizations deploying 10s, 100s, or even
1,000s of software updates a day.

Continuous deployment has been embraced by a number
of high-profile Internet firms. Facebook was utilizing con-
tinuous deployment as early as 2005. Flickr was one of the
first organizations to publicly embrace continuous deploy-
ment; it reported an average of 10 software deployments a
day in 2009 [1]. At Etsy, another early adopter which re-
ported over 11,000 software deployments in 2011 [2], newly
hired software developers are assigned a simple bug to find
and fix on their first day of work, and are expected to deploy
their fix to production servers within a day or two — with-
out supervision and without a separate testing team. Netflix
utilizes continuous deployment at scale in the cloud [3].

Potential benefits of continuous deployment that are often
mentioned include improved productivity and motivation of
developers, decreased risk, and increased software quality.
Often stated potential drawbacks include lack of control of
the software cycle, increased instability, and unsuitability
for safety- or mission-critical software. It is open to debate
whether these stated pros and cons are valid, complete, and
lead to a compelling answer about the well-foundedness of
continuous deployment.

In this paper, we present both quantitative and qualita-
tive analyses of the continuous deployment practices at two
very di↵erent firms over a period of 7 years and 5 years, re-
spectively. Facebook has thousands of engineers and a set
of products that are used by well over a billion users; its
backend servers can process billions of queries per second.
OANDA, the second firm, has only roughly 100 engineers;
it operates a currency trading system that processes many
billion dollars worth of trades per day and is thus consid-
ered mission critical. The continuous deployment processes
at both firms are strikingly similar even though they were
developed independently.

We make two key contributions in this paper:

1. We present quantitative evidence that (i) continuous
deployment does not inhibit productivity or quality
even when the size of the engineering team increases
by a factor of 20 and the code size grows by a factor of
50; (ii) management support of continuous deployment
is vital; and (iii) developers prefer faster deployment
of the code they develop.

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion

 21

2. We identify elements that, based on our experience,
make continuous deployment viable and present ob-
servations from operating in a continuous deployment
environment. In doing so, our aim is to help software
development organizations better understand key is-
sues they will be confronted with when implementing
continuous deployment.

Section 2 provides background on continuous deployment.
Section 3 describes our methodology. Section 4 presents
findings derived from our quantitative analysis, and Sec-
tion 5 presents insights and lessons learned from our quali-
tative analysis. We close with limitations, related work and
concluding remarks.

2. CONTINUOUS DEPLOYMENT
Continuous deployment is a software engineering practice
in which incremental software updates are tested, vetted,
and deployed to production environments. Deployments can
occur within hours of the original changes to the software.

A number of key developments have enabled and moti-
vated continuous deployment, the primary one being agile
software development [4, 5, 6] that began in the late 1990s
and that is now used in some form in many if not most orga-
nizations. Agile development methodologies embrace higher
rates of change in software requirements. Software is de-
veloped iteratively with cycles as short as a day [7]. Agile
development has been shown to increase productivity, and
it is arguably one of the reasons software productivity has
started to increase some 10-15 years ago after decades of
stagnation [8, 9]. Continuous deployment is a natural ex-
tension of agile development. Other developments include
lean software development [10], kanban [11], and kaizan [10].
DevOps is a movement that emerged from combining roles
and tools from both the development and operations sides
of the business [12].

For Web-based applications and cloud-based SAAS of-
ferings, software updates can occur continuously intraday
because the updates are largely transparent to the end-
user. The process of updating software on PCs, smart-
phones, tablets, and now cars, has largely been automated
and can occur as frequently as daily, since the updates are
downloaded over the Internet. In these cases, software is
deployed continuously to a beta or demo site, and a cut
is taken periodically (e.g., every two weeks for iOS) to de-
ploy to production. HP applies continuous deployment to
its printer firmware, so that each printer is always shipped
with the latest version of software [13].

2.1 Continuous deployment process
Two key principles are followed in a continuous deployment
process. First, software is updated in relatively small incre-
ments that are independently deployable; when the update
has been completed, it is deployed as rapidly as possible.
The size of the increments will depend in part on the na-
ture of the update and will also di↵er from organization to
organization.

Second, software updates are the responsibility of the soft-
ware developers who created them. As a consequence, de-
velopers must be involved in the full deployment cycle: they
are responsible for testing and staging, as well as provid-
ing configuration for, and supporting their updates post-
deployment, including being on call so they can be notified

of system failures [14]. This broad responsibility provides
the fastest turn-around time in the event of failures. A quick
feedback loop is an important aspect of the process, because
developers still have the code design and implementation
details fresh in their minds, allowing them to rectify issues
quickly. Moreover, this ensures a single point of contact in
the event of a problem.

Continuous deployment is a team-oriented approach shar-
ing common goals but having decentralized decision-making.
Developers have significant responsibility and accountability
for the entire software lifecycle and in particular for deci-
sions related to releasing software. Proper tools reduce risk,
as well as make common processes repeatable and less error
prone.

A continuous deployment process includes the following
key practices:

Testing. Software changes1 are unit- and subsystem-
tested by the developers incrementally and iteratively, as
they are being implemented. Automated testing tools are
used to enable early and frequent testing. A separate test-
ing group is not generally used. The developers are tasked
with creating e↵ective tests for their software.

Developers begin integration testing to test the entire sys-
tem with the updated software. For this, developers may use
virtual machine environments that can be instantiated at a
push of a button, with the target system as similar to the
production environment as possible. At any given time, each
developer may have one or more virtual test environments
instantiated for unit and system testing. Automated system
tests simulate production workloads and exercise regression
corner cases.

After successful completion of system testing, performance
tests are run to catch performance issues as early as possi-
ble. The performance tests are executed by the developers
in non-virtual environments for reproducibility. Automated
measurements are made and compared with historical data.

The developers are responsible for and perform these tests.
When problems are identified, the process loops back so they
can be addressed immediately.

Code review. Code reviews are prevalent in continuous
deployment processes. Because developers are fully respon-
sible for the entire lifecycle of the software, code reviews are
taken more seriously and there is far less resistance to them.

Release engineering. Once the developer determines
the software is functionally correct and will perform as ex-
pected, she identifies the update as ready to deploy. This
identification might occur by committing the update to a
specific code repository or an update might be made avail-
able for deployment through a deployment management tool.
The update may be handed o↵ to a separate release engi-
neering team.2

Release engineering is a team separate from the devel-
opment group. The mission of release engineering is to
compile, configure and release source code into production-

1We use the term software “change” and “update” interchange-
ably; in practice, a software update that is deployed may include
multiple changes.
2A number of organizations do not use such a release engineering
team; e.g., Etsy and Netflix. Instead, the developers are able to
initiate deployment themselves by using a tool that deploys the
software automatically. However, based on our experiences at
Facebook and OANDA, we have come to believe that having a
separate team is valuable when reliable software is important.

22

ready products. Release engineering ensures traceability
of changes, reproducibility of build, configuration and re-
lease while maintaining a revertible repository of all changes.
Tasks include full build from source to ensure compatibility
with the production environment, re-verification of devel-
oper evaluation of the tests done by developers and a full
install/uninstall test. Software with issues is rejected for
release and passed back to developers. Otherwise, the soft-
ware is deployed into production. The deployment is highly
automated to prevent errors, to make it repeatable and to
have each step be appropriately logged.

The release engineering group begins its involvement early,
when development begins. The group communicates with
teams to learn of new updates in progress to identify high-
risk updates so they can provide advice on best practices
to increase the probability of a smooth deployment. The
group also identifies potential interactions between software
updates that could cause issues when deployed together and
handles them accordingly. For example, two software re-
leases that require opposing configurations of an individual
parameter may not have been noticed by the two separate
teams but should be noticed by release engineering. The
release engineering group assesses the risk of each upgrade,
based on the complexity of the upgrade, the caliber of the
team that created the update, and the history of the devel-
opers involved. With upgrades deemed to have higher risk
release engineering group may do extensive tests of its own.

When the release engineering group is ready to deploy an
update, it coordinates with the appropriate developers to
ensure they are available when deployment occurs.

Deployment. Software is deployed in stages. Initially
software updates are deployed onto a beta or a demo sys-
tem. Only after the new software has been running without
issue on the beta or demo site for a period of time, are they
pushed to the final production site. Beta/demo sites have
real users and are considered production sites. Where pos-
sible, organizations use a practice commonly referred to as
“dog fooding” whereby a portion of the development orga-
nization uses the most updated software before the changes
are pushed to external users. Generally, the release of de-
ployed software occurs in stages to contain any issues before
general availability to the entire customer code base. Staged
deployment strategies might include:

• blue-green deployments: A deployment strategy
where a defective change to a production environment
(blue) can be quickly switched to the latest stable pro-
duction build (green) [15]. The change may initially be
made available to, for example, 1% of the client base in
a specific geographical location, thus limiting exposure
(and with it, reputational risk), and only when confi-
dence increases that the software is running properly
is the fraction gradually increased, until it ultimately
reaches 100%. When problems are detected, the frac-
tion is quickly reduced to 0%.

• dark launches: A deployment strategy where changes
are released during o↵ peak hours; or where code is in-
stalled on all servers, but configured so that users do
not see their e↵ects because their user interface com-
ponents are switched o↵. Such launches can be used to
test scalability and performance [14] and can be used
to break a larger release into smaller ones.

• staging/baking: A stage in the deployment pipeline
where a new version of software is tested in conditions

similar to a production environment. An example of
this is called shadow testing where production tra�c
is cloned and sent to a set of shadow machines that
execute newer code than production. Results between
production and shadow environments can be automat-
ically compared and discrepancies reported as failures.

Configuration tools are used to dynamically control (at run
time) which clients obtain the new functionality. If issues
occur after the update is deployed, the release engineering
group triages the issue with the developer that created the
update. Possible remedies include: reverting the deployed
update to the previous version of the software through a
deployment rollback, rapid deployment of a hotfix, a con-
figuration change to disable the feature that triggers the
issue using for example feature flags or blue-green deploy-
ments [15], or (for lower priority issues) filing a bug report
for future remediation.

2.2 Transition to Continuous Deployment
Introducing continuous deployment into an organization is
non trivial and involves significant cultural shifts [16]. A
number of requirements must be met before continuous de-
ployment can be successful. Firstly, buy-in from the organi-
zation, and in particular from senior management is critical.
Without full support, the process can easily be subverted.
This support is particularly important when a major failure
occurs, at which point organizations often tend to gravitate
back to more traditional processes.

Secondly, highly cohesive, loosely coupled software makes
small changes more likely to be better isolated. Small de-
ployment units allow updating of software with higher pre-
cision and give the release engineering team flexibility in not
releasing problematic updates.

Thirdly, tools to support the process are important, but
they require appropriate investment. Tools not only increase
the productivity of developers, but also decreases risk be-
cause they reduce the number of manual operations (where
errors are most likely to occur) and make deployment op-
erations repeatable. Beyond standard tools, such as revi-
sion control and configuration management systems (as de-
scribed, e.g., in [15]) we highlight a few tools that are par-
ticularly important for continuous deployment:

• automated testing infrastructure: testing func-
tionality, performance, capacity, availability, and secu-
rity must be fully automated with the ability to initiate
these tests at the push of a button. This automation
enables frequent testing and reduces overhead. Test-
ing environments must be as identical to the produc-
tion environment as possible with full, realistic work-
load generation. As mentioned earlier, virtual machine
technology can play an important role.

• deployment management system (DMS): helps
the release engineering group manage the flow of up-
dates. The DMS has various dashboards that provide
an overview of the updates progressing through the de-
velopment and deployment phases. For each update,
the DMS links together all the disparate systems (the
change set from source control, the bug tracking sys-
tem, code review comments, testing results, etc.) and
the developers responsible for the update. Ultimately,
the DMS is used to schedule the deployment.

23

• deployment tool: executes all the steps necessary for
single-button deployment of an update to a specified
environment, from initial compilation of source code,
to configuration, to the actual installation of a work-
ing system and all steps in between. The tools can
also roll-back any previous deployment, which may be
necessary when a serious error is detected after de-
ployment. Automating the roll-back minimizes the
time from when a critical error is identified to when it
is removed, and ensures that the rollback is executed
smoothly.

• monitoring infrastructure: a sophisticated moni-
toring system is particularly important to quickly iden-
tify newly-deployed software that is misbehaving.

Some of these tools are not readily available o↵-the-shelf
because they need to be customized to the development or-
ganization. Hence, they tend to be developed in house. For
example, the DMS is highly customized because of the num-
ber of systems it is required to interface with, and it also
automates a good portion of the software deployment work-
flow, thus making it quite specific to the organization. The
deployment tool is also highly customized for each partic-
ular environment. For each deployment module, automatic
installation and rollback scripts are required.

3. CASE STUDIES
In this section, we present information about our case study
companies, Facebook and OANDA, as well as the method-
ology we used.

3.1 Facebook
Facebook is a company that provides social networking prod-
ucts and services, servicing well over a billion users. The case
study presented here covers the time period 2008-2014, dur-
ing which time, the software development sta↵ at Facebook
grew 20-fold from low 100’s to 1000’s. The vast majority of
the sta↵ is located at Facebook headquarters in Menlo Park,
CA, but sta↵ from roughly a dozen smaller remote o�ces lo-
cated around the world also contributes to the software.

The case study covers all software deployed within Face-
book during the above stated time period, with the excep-
tion of newly acquired companies that have not yet been
integrated into the Facebook processes and infrastructure
(e.g., Instagram that is in the process of being integrated).
The software is roughly partitioned into 4 segments:

1. Web frontend code: primarily implemented in PHP,
but also a number of other languages, such as Python,

2. Android frontend code: primarily implemented in Java

3. iOS frontend code: primarily written in Objective- C

4. Backend infrastructure code that services the front-end
software: implemented in C, C++, Java, Python, and
a host of other languages.

In Facebook’s case, the beta site is the Facebook site and
mobile applications with live data used by internal employ-
ees and some outside users.

3.2 OANDA
OANDA is a small, privately held company that provides
currency information and currency trading as a service. Its
currency trading service processes a cash flow in the many

Table 1: Facebook commits considered

commits lines inserted or modified
WWW 705,631 76,667,915

Android 68,272 10,635,605
IOS 146,658 12,671,047

Backend 238,742 30,828,829

billions of dollars a day for online customers around the
world. OANDA has about 80 developers, all located in
Toronto, Canada; this number stayed reasonably constant
during the period of the study.

The trading system frontend software is implemented in
Java (Web and Android), and Objective-C (iOS). Backend
infrastructure software servicing the front end is primarily
implemented in C++, but also Perl, Python and other lan-
guages.

OANDA also “white-labeled” its trading system software
to several large banks, which means the software ran on the
banks’ infrastructure and was customized with the banks’
look and feel. The banks did not allow continuous updates
of the software running on their servers. As a result, the
authors had a unique opportunity to compare and contrast
some di↵erences between continuous and noncontinuous de-
ployment of the same software base.

In OANDA’s case, the demo system is a full trading sys-
tem, but one that only trades with virtual money (instead of
real money) — it has real clients and, in fact a much larger
client base than the real-money system.

3.3 Methodology
For our quantitative analysis, we extracted and used data
from a number of sources at both Facebook and OANDA.
At Facebook, Git repositories provided us with informa-
tion on which software was submitted for deployment when,
since developers committed to specific repositories to trans-
fer code to the release engineering team for deployment. For
each commit, we extracted the timestamp, the deploying de-
veloper, the commit message, and for each file: the number
of lines added, removed or modified.

Commits were recorded from June, 2005 (with Android
and iPhone code starting in 2009). For this study we only
considered data from 2008 onwards up until June 1014. Ta-
ble 1 lists the four repositories used along with the number of
commits recorded. The table also provides an indication of
the magnitude of these commits in terms of lines inserted or
modified. In total these repositories recorded over 1 million
commits involving over 100 million lines of modified code.3

All identified failures at Facebook are recorded in a“SEV”
database and we extracted all errors from this database.
Failures are registered by employees when they are detected
using an internal SEV tool. Each failure is assigned a sever-
ity level between 1 and 3: (1) critical, where the error needs
to be addressed immediately at high priority, (2) medium-
priority, and (3) low-priority.4 In total, the SEV database
contained over 4,750 reported failures.

3In our analysis, we did not include commits that added
or modified more than 2,000 lines of code so as not to in-
clude third party (i.e., open-source) software packages being
added or directories being moved. Not considering these
large commits may cause us to underreport the productiv-
ity of Facebook developers.
4The developer that developed the software does not typi-
cally set the severity level of the error.

24

For our analysis, a developer was considered “active” at
any given point in time if she had committed code to de-
ployment in the previous three weeks. We only considered
the developer that issued the commit, even though other de-
velopers may have also contributed to the code being com-
mitted. This may skew our analysis, but since we found
that a Facebook developer deploys software once a day on
average, we believe the skew is minimal.

OANDA used a (inhouse-developed) deployment manage-
ment system (DMS)to keep track of every stage of software
as it progressed through the deployment process. In aggre-
gate, over 20,000 deployments were recorded between April,
2010 and June, 2014. Git repositories, which deployment
records refer to, provided information with respect to the
number of lines of code added/changed/deleted with each
deployment.

Unfortunately, OANDA did not maintain a failure data-
base as Facebook did (and only started to use Redmine and
JIRA relatively recently). Instead, detected failures were
typically communicated to the developers responsible for the
code through email/messenger in an ad hoc way. As a result,
OANDA failure data is largely unavailable. However, we
extrapolated critical (i.e., severity level 1) failures using the
following heuristic: if software is deployed a second time
within 48 hours of a first deployment, then we assume that
the second deployment was necessary to fix a critical error
that became visible after the first deployment.

4. QUANTITATIVE ANALYSIS
Wherever possible, we present both OANDA and Facebook
data together. However, some observations could be made
at only one company. Facebook understandably had a larger
sample size and more accurate production failure data, but
OANDA had better data related to management and human
aspects.

.

4.1 Productivity
We measure productivity as number of commented lines of
code shipped to production (while realizing that LoC per
person week can be controversial). The metric was chosen
largely because it is easy to count, readily understood and
the data was available.

Each Facebook developer releases an average of 3.5 soft-
ware updates into production per week. Each update in-
volves an average of 92 lines of code (median of 33) that
were added or modified. Each OANDA developer releases
on average 1 update per week with each update involving
273 lines of code on average (median of 57) that were added
or modified. OANDA has a far higher proportion of back-
end releases than Facebook, which may explain some of the
productivity di↵erences.

Figure 1 depicts the average number of new and modi-
fied lines of code deployed into production per developer per
week at Facebook for the period January 1, 2008 to July 31,
2014.5 The figure shows that productivity has remained rel-
atively constant for more than six years. This is despite the

5OANDA’s software development productivity is shown
later in Figure 3, where it is depicted in terms of number of
deployments per week. Since the size of OANDA’s engineer-
ing team did not change materially over the period studied,
no conclusions can be drawn from the OANDA data as it
relates to scalability.

Figure 1: Lines of modified or added code deployed
per developer per week at Facebook.

fact that the number of developers increased by a factor of
over 20 during that period.

Observation 1: Productivity scaled with the size of the en-
gineering organization.

Our experience has been that when developers are incen-
tivized with having the primary measure of progress be work-
ing software in production, they self-organize into smaller
teams of like-minded individuals. Intuitively, developers
understand that smaller teams have significantly reduced
communication overheads, as identified by Brooks [17, 18].
Hence, one would expect productivity to remain high in such
organizations and to scale with an increased number of de-
velopers.

Moreover, productivity remained constant despite the fact
that over the same period:

1. the size of the overall code base has increased by a
factor of 50; and

2. the products have matured considerably, and hence,
the code and its structure have become more complex,
and management places more emphasis on quality.

Observation 2: Productivity scaled as the product matured,
became larger and more complex.

Note that we do not claim that continuous deployment is
necessarily a key contributor to this scalability of produc-
tivity since productivity scalability is influenced by many
factors, including belief in company mission, compensation,
individual career growth, work fulfillment etc.— an organi-
zation needs to get most (if not all) of these factors right for
good scalability.

However, we can conclude from the data that continuous
deployment does not prevent an engineering organization
from scaling productivity as the organization grows and the
product becomes larger and more complex. Within Face-
book, we consider this observation a startling discovery that
to the best of our knowledge, has not been shown for other
software engineering methodologies.

In the authors’ opinion, a focus on quality is one factor
that enables the software development process to scale. A
strong focus on quality company-wide with buy in from man-
agement implies clear accountability and emphasis on au-
tomating routine tasks to make them repeatable and error
free. High degrees of automation also make it easier to run

25

Figure 2: Number of production issues per month
as a function of the number of deployments at Face-
book.

tests and collect metrics, making it more likely for develop-
ers to take these initiatives.

4.2 Quality
The quality of deployed software is of interest because con-
tinuous deployment does not have the same checks and bal-
ances that more traditional software engineering processes
have with their independent test teams. (Neither Facebook
nor OANDA had a test team, although both had release en-
gineering teams.) Rather, continuous deployment relies on
the accountability of high-caliber developers who are respon-
sible for software throughout its entire lifecycle, including
idea generation, architecture, design, implementation, test-
ing and support in production; developers independently de-
cide when to deploy their code and hence are responsible if
production issues arise by being part of an on-call rotation.

Production failures are used as an indicator of quality. At
Facebook, each failure is categorized by severity: (i) critical,
where the issue needs to be addressed immediately at high
priority, (ii) medium-priority, and (iii) low-priority. The
graph in Figure 2 depicts the number of failures for each
severity level as a function of the number of deployments
per month. The triangular marks in red represent critical
failures. The number of critical and medium priority fail-
ures grow significantly slower than the number of deploy-
ments per month, with trendline slopes of 0.0004, 0.0013,
and 0.0061, respectively; and this despite the growth in size
and complexity of the product.

Observation 3: The number of critical issues arising from
deployments was almost constant regardless of the number
of deployments.

This observation demonstrates that it is possible to manage
quality with continuous deployment without having separate
independent test teams. The number of low-priority issues
increases linearly with the number of lines of code deployed
(which is not much of a surprise given Facebook engineer-
ing’s focus on productivity). Perhaps more interesting is the
fact that the release engineering team did not increase in size
as the number of deployments increased (primarily because
of the focus on automating the process as much as possible).

Each organization will have to make its own tradeo↵s with
respect to quality and productivity. Often these tradeo↵s
are di�cult if not impossible to make a priori. They are
influenced many factors such as customer tolerance, compa-
nies values, the type of product etc. and can vary over time.

Figure 3: Number of deployments at OANDA per
week over three management regimes. The red lines
depict the average over the time periods shown.

Finding the appropriate quality vs. productivity tradeo↵ can
require iteration. For example, Figure 2 is a representation
of the quality vs productivity tradeo↵ Facebook made. Dur-
ing the approximate period January 2009 – July 2010, there
was a surge in productivity (Figure 1). Figure 4 shows there
was a degradation in quality during this same period as mea-
sured by the number of hotfixes (used as a proxy for quality).
E↵orts to improve quality then came at the expense of some
productivity.

4.3 Human Factors

Management buy-in

Management buy-in and competence in continuous deploy-
ment can significantly a↵ect the productivity of the engi-
neering organization and possibility the viability of the con-
tinuous development process. As an example, OANDA had
a number of executive changes in the past four years with
most other factors relatively constant. It started with man-
agement team (Mgmt-A) having an engineering background
and supporting continuous deployment. In mid 2012, man-
agement was replaced with executives having a business
background (Mgmt-B). Their inclinations were more towards
more traditional software engineering processes. At the end
of 2013, executive management was replaced again (Mgmt-
C). This team had a Silicon Valley background and was well
versed with and supportive of continuous deployment.

Figure 3 shows the e↵ects of management on productiv-
ity levels. For example, the average number of deployments
dropped by 23% after Mgmt-B took control, despite other
factors such as the engineering team remaining largely un-
changed. Perhaps most surprising is how quickly productiv-
ity changes occurred after new management was introduced.

Observation 4: Management support can a↵ect the pro-
ductivity of an engineering organization.

Developer motivation

Some argue that developers are more motivated if their soft-
ware is deployed into production quickly. While we do not
know how to measure motivation directly, at Facebook, de-
velopers can choose whether their software is deployed as
part of the next weekly release (which is the default) or,
more quickly, as part of the next daily release. Figure 4
indicates that developers chose to deploy their software as

26

Figure 4: The number of deployment requests per
week by type of request.

quickly as possible when given the choice. Figure 4 depicts
the release rate over time for daily and weekly releases. Ini-
tially, they are fairly similar. However, as time progresses,
the number of deployments in the weekly release decreases,
even in the presence of rapid engineering growth rates. With
the choice of a daily or weekly deployment entirely up to the
individual engineer, we conclude the preference is towards
shorter release cycles.

Observation 5: Developers prefer faster deployments over
slower ones.

5. LESSONS LEARNED
Combined, the authors have 13 years of experience with con-
tinuous deployment at Facebook and OANDA. In this sec-
tion, we discuss some of the insights and lessons learned
at the two organizations. These are obviously subjective
— other organizations that have embraced continuous de-
ployment may have had di↵erent experiences and may draw
di↵erent conclusions. The objective of this section is primar-
ily to present some of the issues an organization supporting
continuous deployment will likely be confronted with.

Desirability of continuous deployment

OANDA used continuous deployment for its own systems,
but also rebranded and “white-labeled” its systems to sev-
eral large, international banks. The banks’ policies did not
allow continuous deployment. This allowed a side-by-side
comparison of experiences between continuous deployment
and non-continuous deployments of the same software base.

A first observation was that white-labeled trading systems
were at a competitive disadvantage. What their clients con-
sidered irritating bugs , but deemed by the bank to be non-
critical, were not fixed for many months. New functionality
that became standard in the fast moving currency trading
market were made available late.

A second observation was that each deployment in the
white-labeled product incorporated thousands of changes,
which increased anxiety surrounding the deployment and led
to much more extensive testing than deployments of indi-
vidual changes. Moreover, failures identified at deployment
time were significantly harder to isolate to identify their root
cause. Developers had mentally moved on to work on soft-
ware several generations later, and as a result worked on
fixing the fault with a negative attitude, knowing they were
working on software that was already obsolete. Fixing these
faults was clearly less e�cient and caused more overhead.

Considerable and continuous investment is required

Continuous deployment requires continuous investments in
educating and coaching developers as well as in building,
improving, and maintaining tool infrastructure.

Education is needed because the software process with
continuous deployment is su�ciently di↵erent from what is
traditionally taught and practiced. Both companies o↵er
6-12 week training periods for new developers. Developers
joining OANDA are typically first assigned to the release
engineering team for several months for broad training.

Both organizations have separate teams developing and
improving tools that enable continuous deployment (Section
2.2). Although some tools are readily available, many had
to be developed or adapted to suit organizational needs. Ex-
isting tools are often too limited or force a specific process
that does not fit the organization. For example, both Face-
book and OANDA found it necessary to develop their own
deployment management systems.

Developing, improving, and maintaining these tools takes
considerable e↵ort. Facebook had approximately 5% of its
engineers dedicated to the task, while OANDA had 15% at
time of writing. In our experience, it is more di�cult for
smaller companies to use continuous deployment because a
larger percentage of its engineering resources are needed for
internal tool development.

Versatile and skilled developers required

To thrive in an continuous deployment environment, devel-
opers need to be: (i) generalists with the ability to under-
stand many aspects of the system; (ii) good at firefighting
and systems debugging; (iii) bottom-up capable, willing and
able to be responsible (and accountable) for making sound
deployment decisions, taking quality, security, performance,
and scalability into account; and (iv) able to work in an orga-
nization that some see as disorganized and perhaps chaotic;
taking appropriate initiatives when necessary. This makes
finding suitable candidates to hire more challenging.

Being a generalist is particularly important when working
on complex software, such as backend systems. Generalists
require a broader set of skills and a mindset to be able to
reason with systems that they haven’t developed and don’t
have intimate knowledge of. In our experience, there are
talented developers who are not well suited, or interested, in
this type of role and may be better suited in more structured
organizations.

Technical management essential

As with other agile methodologies, organizations embracing
continuous deployment tend to have a strong bottom-up cul-
ture with developers making many key decisions. Organiza-
tions are flatter, as managers can have an increased number
of direct reports. However, a di↵erent type of manager is
needed because they play a di↵erent role: they influence
rather than operate within a chain of command. We find
that in this environment, it is critical that managers be re-
spected by the developers. Being technologically excellent
makes this easier. Filling management roles with suitable
candidates has been a key challenge in both organizations.
This is exacerbated because the continuous deployment pro-
cess is not yet practiced in many other organizations. As a
result, management roles are often filled by promoting from
within.

27

Empowered culture

A suitable culture within the organization is critically impor-
tant to make continuous deployment e↵ective. Developers
need to be appropriately supported and given freedom along
with their responsibilities. At both Facebook and OANDA,
developers are given almost full access to the company’s code
base and are empowered to release new code within days of
being hired. At Facebook, developers are given much free-
dom over which team to join and are encouraged to move
to di↵erent teams periodically. Open and transparent com-
munication across the company is particularly important so
that developers have context in which to make informed de-
cisions in a decentralized way.

Developers must be encouraged to take calculated risks,
and the presence of e↵ective testing and deployment in-
frastructure makes it possible to identify and correct errors
quickly while supporting developers who move fast. They
should not be penalized for failures that occur as a result of
the risks taken (as long as the taken decisions were reason-
able and prudent given the circumstances).

Managing the risk-reward tradeo↵

Because deployment decisions rest with each individual de-
veloper, he or she evaluates risks and rewards independently.
Examples of risks include insu�cient testing, unrepeatable
release procedures and the overhead and inconvenience of
dealing with defects in deployed software. Rewards include
benefits to the company, incentives, and self-fulfillment.

An important role of management is to improve the risk-
reward tradeo↵ so that better decisions can be made by the
developers. In particular, management should play a role in
systematically reducing risks for the continuous deployment
process. Examples include allocating resources for building
tools to improve repeatability of deployments and testing
as well as having a no-blame culture. This risk reduction
allows engineers to execute at a faster pace because it frees
them up from mitigating their own risks. At the same time,
proper incentives encourage developers to move even faster.
For example, at Facebook, the impact of working code in
production is a principle parameter of incentives.

Need for objective retrospective when failures occur

The culture of a software development organization is often
defined after a serious failure occurs. One of the most chal-
lenging aspects is to retain management support after such
an event. It is easy to lose confidence when the approach
di↵ers significantly from the “textbook” approach. A com-
mon reaction is to blame the process as the root cause and,
in turn, increase the complexity of it. Over time, this makes
the process more cumbersome, resulting in a more conser-
vative, less productive organization. This phenomenon is
commonly referred to as runaway process inflation [19].

The authors experienced this first hand at OANDA: after
using continuous deployment successfully for several years,
a major failure occurred that cost the company a signif-
icant amount of money within seconds. Senior manage-
ment’s initial reaction was to add engineering hierarchy, a
more complicated approvals process and a full-blown, sep-
arate and traditional testing team. A postmortem analysis
of the event identified what had gone wrong: the output of
failing unit tests (that correctly identified the bug) were dis-
regarded because of too many false positive error messages.
Fortunately, engineering was able to convince management
to instead promote a renewed focus on automated testing

frameworks, and require that the output of those testing
systems be part of the deployment decision.

Having a continuous deployment champion in the senior
management team is, in our view, critical, especially for non-
technical management teams.

Dependencies considered harmful

In our experience, engineering teams that practice continu-
ous deployment work best if divided into small, cohesive and
largely autonomous groups that are not architecturally de-
pendent on (many) other teams. According to Brooks, com-
munication overhead increases at a rate of n2, with n the
number of people in a group [17]. Software that is modular-
ized into smaller, loosely coupled units reduces the need for
inter-team communication. Inevitably, the product archi-
tecture and the team communication structure are aligned,
per Conway’s law [20]. Cohesive teams typically have the
characteristic of being self-organized with like-minded indi-
viduals that work well together.

Extra e↵ort for comprehensive software updates

Changes, bug fixes and enhancements localized to one sys-
tem or one organization are generally handled well by con-
tinuous deployment. However, as per Conway’s Law [20]“or-
ganizations that design systems are constrained to produce
designs which are copies of the communication structures in
these organizations.” In our experience, this occurs in one of
two circumstances. First, if the individual group has a high
friction release process. Second, if the change spans mul-
tiple teams with poor communications between them. We
describe both in further detail.

Instituting continuous deployment requires e↵ort, infras-
tructure and iteration over a period of time. For exam-
ple, OANDA spent 2 years perfecting continuous deploy-
ment for mission critical infrastructure trading billions of
dollars a day. OANDA’s backend infrastructure release pro-
cess was more sophisticated than Facebook’s resulting from
a concerted engineering e↵ort. However, OANDA’s database
schema changes always were always ad hoc and full of fear.
OANDA never spent the time to streamline its database
schema changes which resulted in changes that added ta-
bles and columns resulting in a superset of what was needed
over time. Database schema changes have been shown to be
possible with a concerted e↵ort.

Changes spanning multiple teams are more di�cult to
coordinate without agreed upon procedures. For example,
Facebook has had di�culty with configuration changes in
part because they spanned multiple groups. The company
didn’t have the appropriate communication channels in place
for configuration changes to be properly vetted. As a re-
sult, a group might make changes that seem reasonable when
viewed locally but had undesirable consequences globally.

Absence of separate testing team

Whether to have a separate testing team or not is one of
the more controversial questions and still an active area of
debate. Some engineers and managers argue that a test
team would benefit a continuous deployment organization
while others argue strongly against it.

One tenant of continuous deployment is clear accountabil-
ity between code in production and the engineer who created
it. A testing group dilutes this accountability, especially
during times of system failures – opinions often disagree in
whether the failure was due to a system test escape or poor

28

development practices because not everything is testable. In
our experience, diluting responsibility of ownership increases
the time to resolution of system failures.

Proponents of testing groups claim that individuals who
are not versed in the code and have a broader product per-
spective are better testers, and that career testers will al-
ways be more e↵ective than developers having less inter-
est but more subject matter knowledge. Moreover, context
switching between development and testing also yields inef-
ficiencies. In other words, software developers are not best
at testing and specialization of tasks is the best approach.

In the experiences of the authors, developers have a higher
degree of influence and better software development skills.
By being less interested in testing, developers are motivated
to find creative means to automate it. Both Facebook and
OANDA have pre-software release systems (internal beta
used by Facebook employees and a virtual money system
used by OANDA’s customers) that serve e↵ectively as test
systems. Both were conceived by developers to improve
test coverage by leveraging user resources. In the case of
OANDA, the systems also provides a marketing benefit.

Convergence on local minima

The iterative process may lead to local minima in products
when continuous, but incremental, improvements are made.
Teams may have resistance to make larger, bolder moves
(perhaps because of the fear of risks involved). OANDA’s
trading GUI is an example. The product is reasonable, but
the number of users using it makes it di�cult to make dra-
matic changes. Getting out of the local minima may require
an initiative that comes from outside the culture, perhaps
through a separate skunks work project (or by acquiring
another firm).

Sub-standard product releases

Developers may deploy products or product features too
early with the understanding that they can be improved
later through quick iterations. The continuous deployment
process can make the use of this argument too easy, yet re-
leasing too early can alienate end-users (who often will not
give the released product a second chance). Hence, the flex-
ibility the continuous deployment process o↵ers should be
used with care. A stakeholder representing end users (e.g.,
a product manager) can play an important roll in educating
and convincing developers.

Susceptible to resource and performance creep

With continuous deployment, each deployed update is rel-
atively small, so increases in system resource usage (e.g.
CPU, memory etc.) due to the update are expected to
be small. However, aggregated over a large number of de-
ployments, the additional resource usage may become sub-
stantial. That is, continuous deployment can su↵er from a
“death by a thousand cuts,” because release decisions are
decentralized to individual developers rather than having a
central coordinating body as in the waterfall model.

Consider a hypothetical example where a set of updates
each consume an additional 0.05% of CPU. The 0.05% ad-
ditional CPU may seem reasonable and justifiable given the
added functionality. However, having 100 such releases per
week (for example) means that CPU utilization would in-
crease by 260% within a year.

Decentralized release decisions may lead to aggregate de-
cisions that do not make sense. We have been able to solve

this by making developers aware of the issue and continu-
ously monitor for resource creep. Tools that allow precise
measurement (e.g., static analysis, lint rules, run-time mea-
surements) of incremental changes give developers feedback
on the implications of their releases. We have also found it
useful to dedicate a group to look at variance in tra�c pat-
terns and propose performance optimizations and e�cient
architectural generalizations of common usage patterns.

Susceptible to not-invented-here syndrome

We observed that developers working in a continuous de-
ployment environment do not like to be held back. They
find it di�cult to work with other parts of the organiza-
tion, or outside organizations, that work at slower speeds or
with a di↵erent culture. As a result, teams may reinvent
components that would otherwise be available from outside
the team. In particular, third-party software vendors have
their own release schedules and product philosophies typ-
ically aimed at the masses, which developers feel impede
their freedom. Thus, developers often implement their own
version, which allows them to march to their own schedule
and allows them to create customized highly optimized solu-
tions most appropriate for their needs, however duplication
can result. We have even encountered similar components
being developed in di↵erent groups concurrently.

Variability in quality

The structural and functional quality of software produced
can vary substantially from developer to developer. Simi-
larly, the ability to e↵ectively deal with operational issues
in the production system will also vary from developer to
developer. With smaller teams, the quality of the contribu-
tions each developer makes is much more noticeable. The
release engineering team and management can play a valu-
able role in mentoring and advising to equalize quality.

6. LIMITATIONS OF STUDY
This study has several obvious limitations. Firstly, the data,
findings and experiences are from two companies and thus
represent only two data points. While we believe that the
two data points are interesting and important, they may not
be representative, and other firms may have di↵erent expe-
riences and or use di↵erent approaches. Secondly, while our
quantitative analysis allows us to identify a number of find-
ings, we can only hypothesize the root cause of our observa-
tions. Thirdly, our insights and the lessons we learned are
fundamentally subjective; other organizations may well have
had di↵erent experiences and come to completely di↵erent
conclusions.

7. RELATED WORK
Few studies have evaluated continuous deployment. Hum-
ble et al. provide an early overview of continuous deploy-
ment [21]. Ollson et al. [22] and Dijkstra [23] present several
case studies identifying barriers in transitioning from agile
development to continuous deployment. Pulkkinen discusses
strategies for continuous deployment in the cloud [24]. Neely
et al. describe their experiences introducing continuous de-
ployment at Rally [25].

Continuous deployment impacts the work arrangements
of the software development team. Marschall reports that
continuous deployments change developers’ perceptions on
quality when they can better see the link between their con-

29

tribution and the result “in the wild” [26]. Developers are
responsible for making and testing changes that reach the
customer rapidly and for responding to failures that result
as a consequence of deploying those changes. Claps et al.
found that stress may be increased, due to perceived pres-
sure to deploy [16]. Hence, tools automating deployment are
essential in keeping demands on developers realistic.

Ho↵ describes how Netflix’s focus on high velocity delivery
has caused them to virtually abandon standard software en-
gineering processes [27]. Instead, small teams of developers
are independently responsible for the development, support,
and deployment of their software. Lehman’s seminal work
on software evolution predicts that progress on a product
will slow when size and complexity increase [28]. In a prior
study, Facebook has found that the code base of their prod-
uct has grown superlinearly over time [14].

8. CONCLUDING REMARKS

We compared experiences with continuous deployment at
two very di↵erent companies. The data reveals that contin-
uous deployment allows scaling of the number of developers
and code base size. For example, Facebook has been able
to maintain productivity and keep critical-rated production
issues relatively constant for over half a decade despite an
order of magnitude increase in developers and code base size.
Findings also reveal that developers, given the choice, prefer
short release cycles over longer ones.

Continuous deployment is highly dependent on the incli-
nations of management, which may a↵ect productivity, or
even the viability of the approach. Customized tools, in-
cluding deployment management, testing environments, and
performance monitoring etc. are important and may con-
sume a significant portion of engineering resources. Finally,
continuous deployment has the limitation of resource creep
— small changes’ incremental resource demands may seem
reasonable individually but not in the aggregate.

9. REFERENCES
[1] J. Allspaw and P. Hammond, “10 deploys per day — Dev

and Ops cooperation at Flickr,” 2009, slides. [Online].
Available: http://www.slideshare.net/jallspaw/
10-deploys-per-day-dev-and-ops-cooperation-at-flickr

[2] M. Brittain, “Continuous deployment: The dirty details.”
[Online]. Available: http://www.slideshare.net/
mikebrittain/mbrittain-continuous-deploymentalm3public

[3] B. Schmaus, “Deploying the Netflix API,” 2013. [Online].
Available: http:
//techblog.netflix.com/2013/08/deploying-netflix-api.html

[4] K. Beck, Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2000.

[5] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Je↵ries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas,
“Manifesto for agile software development,” 2001. [Online].
Available: http://www.agilemanifesto.org/

[6] A. Cockburn, Agile Software Development. Addison
Wesley Longman, 2002.

[7] A. Cockburn and L. Williams, “Agile software
development: It’s about feedback and change,”Computer,
vol. 36, no. 6, pp. 39–43, 2003.

[8] F. Maurer and S. Martel, “On the productivity of agile
software practices: An industrial case study,” in Proc. Intl.
Workshop on Economics-Driven Software Engineering
Research, 2002.

[9] V. Nguyen, L. Huang, and B. W. Boehm, “An analysis of
trends in productivity and cost drivers over years,” in Proc.
of the 7th Intl. Conf. on Predictive Models in Software
Engineering, 2011, pp. 3:1–3:10.

[10] M. Poppendeick and T. Poppendeick, Lean Software
Development. Addison Wesley, 2002.

[11] D. J. Anderson, Kanban: Successful Evolutionary Change
for Your Technology Business. Blue Hole Press, 2010.

[12] D. Edwards, “The history of DevOps,” June 2009. [Online].
Available: http://itrevolution.com/the-history-of-devops/

[13] G. Gruver, M. Young, and P. Fulgham, A Practical
Approach to Large-scale Agile Development — How HP
Transformed LaserJet FutureSmart Firmware.
Addison-Wesley, 2013.

[14] D. Feitelson, E. Frachtenberg, and K. Beck, “Development
and deployment at Facebook,” IEEE Internet Computing,
vol. 17, no. 4, pp. 8–17, 2013.

[15] J. Humble and D. Farley, Continuous delivery: reliable
software releases through build, test, and deployment
automation. Addison-Wesley, 2010.

[16] G. G. Claps, R. B. Svensson, and A. Aurum, “On the
journey to continuous deployment: Technical and social
challenges along the way,” Information and Software
Technology, vol. 57, pp. 21–31, 2015.

[17] F. P. Brooks, Mythical Man Month: Essays on Software
Engineering. Addison-Wesley, 1975.

[18] ——, “No silver bullet: Essence and accidents of software
engineering,” IEEE Computer, vol. 20, no. 4, pp. 10–19,
1987.

[19] R. C. Martin, Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall, 2003.

[20] M. Conway, “How do committees invent?” Datamation,
vol. 14, no. 5, pp. 28–31, April 1968.

[21] J. Humble, C. Read, and D. North, “The deployment
production line,” in Proc. AGILE Conf., 2006, pp. 113–118.

[22] H. Olsson, H. Alahyari, and J. Bosch, “Climbing the
“Stairway to Heaven” – a mulitiple-case study exploring
barriers in the transition from agile development towards
continuous deployment of software,” in Proc. 38th
Euromicro Conf. on Software Engineering and Advanced
Applications, 2012, pp. 392–399.

[23] O. Dijkstra, “Extending the agile development discipline to
deployment: The need for a holistic approach,” Master’s
thesis, Utrecht University, 2013.

[24] V. Pulkkinen, “Continuous deployment of software,” in
Proc. of the Seminar no. 58312107: Cloud-based Software
Engineering. University of Helsinki, 2013, pp. 46–52.

[25] S. Neely and S. Stolt, “Continuous delivery? Easy! Just
change everything (well, maybe it is not that easy),” in
Proc. Agile Conf., 2013, pp. 121–128.

[26] M. Marschall, “Transforming a six month release cycle to
continuous flow,” in Proc. Agile Conf., 2007, pp. 395–400.

[27] T. Hu↵, “Netflix: Developing, deploying, and supporting
software according to the way of the cloud,” 2011. [Online].
Available: http://highscalability.com/blog/2011/12/12/
netflix-developing-deploying-and-supporting-software-accordi.
html

[28] M. M. Lehman, D. E. Perry, and J. F. Ramil, “Implications
of evolution metrics on software maintenance,” in Proc.
Intl. Conf. on Software Maintenance, 1998, pp. 208–217.

30

