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Summary

The goal of continual learning (CL) is to learn a sequence of tasks without suffer-
ing from the phenomenon of catastrophic forgetting. Previous work has shown that
leveraging memory in the form of a replay buffer can reduce performance degra-
dation on prior tasks. We hypothesize that forgetting can be further reduced when
the model is encouraged to remember the evidence for previously made decisions.
As a first step towards exploring this hypothesis, we propose a simple novel training
paradigm, called Remembering for the Right Reasons (RRR), that additionally stores
visual model explanations for each example in the buffer and ensures the model has
“the right reasons” for its predictions by encouraging its explanations to remain con-
sistent with those used to make decisions at training time. Without this constraint,
there is a drift in explanations and increase in forgetting as conventional contin-
ual learning algorithms learn new tasks. We demonstrate how RRR can be easily
added to any memory or regularization-based approach and results in reduced for-
getting, and more importantly, improved model explanations. We have evaluated our
approach in the standard and few-shot settings and observed a consistent improve-
ment across various CL approaches using different architectures and techniques to
generate model explanations and demonstrated our approach showing a promising
connection between explainability and continual learning. Our code is available at
https://github.com/SaynaEbrahimi/Remembering-for-the-Right-Reasons.
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1 INTRODUCTION

Humans are capable of continuously learning novel tasks by leveraging their lifetime knowledge and expanding them when they
encounter a new experience. They can remember the majority of their prior knowledge despite the never-ending nature of their
learning process by simply keeping a running tally of the observations distributed over time or presented in summary form. The
field of continual learning or lifelong learning1,2 aims at maintaining previous performance and avoiding so-called catastrophic
forgetting of previous experience3,4 when learning new skills. The goal is to develop algorithms that continually update or add
parameters to accommodate an online stream of data over time.

https://github.com/SaynaEbrahimi/Remembering-for-the-Right-Reasons
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FIGURE 1 An illustration of applying RRR paradigm. (Left) In a typical experience replay scenario, samples from prior tasks
are kept in a memory buffer rep and revisited during training. (Right) In our proposed idea (RRR), in addition to rep, we
also store model explanations (saliency maps) as RRR for those samples and encourage the model to remember the original
reasoning for the prediction. Note that the saliency maps are small masks resulting in a negligible memory overhead (see Section
5.1).

An active line of research in continual learning explores the effectiveness of using small memory budgets to store data points
from the training set5,6,7,8, gradients9, or storing an online generative model that can fake them later10. Memory has been also
exploited in the form of accommodating space for architecture growth and storage to fully recover the old performance when
needed11,12. Some methods store an old snapshot of the model to distill the features13 or attention maps14 between the teacher
and student models.
The internal reasoning process of deep models is often treated as a black box and remains hidden from the user. However,

recent work in explainable artificial intelligence (XAI) has developed methods to create human-interpretable explanations for
model decisions15,16,17,18,19. We posit that the catastrophic forgetting phenomenon is due in part to not being able to rely on the
same reasoning as was used for a previously seen observation. Therefore, we hypothesize that forgetting can be mitigated when
the model is encouraged to remember the evidence for previously made decisions. In other words, a model which can remember
its final decision and can reconstruct the same prior reasoning. Based on this approach, we develop a novel strategy to exploit
explainable models for improving performance.
Among the various explainability techniques proposed in XAI, saliency methods have emerged as a popular tool to identify

the support of a model prediction in terms of relevant features in the input. These methods produce saliency maps, defined as
regions of visual evidence upon which a network makes a decision. Our goal is to investigate whether augmenting experience
replay with explanation replay reduces forgetting and how enforcing to remember the explanations will affect the explanations
themselves. Figure 1 illustrates our proposed method.
In this work, we propose RRR, a training strategy guided by model explanations generated by any white-box differentiable

explanation method; RRR adds an explanation loss to continual learning. White-box methods generate an explanation by using
some internal state of the model, such as gradients, enabling their use in end-to-end training. We evaluate our approach using
various popular explanation methods including vanilla backpropagation20, backpropagation with smoothing gradients (Smooth-
grad)21, Guided Backpropagation22, and Gradient Class Activation Mapping (Grad-CAM)19 and compare their performance
versus their computational feasibility. We integrate RRR into several state of the art class incremental learning (CIL) methods,
including iTAML6, EEIl5, BiC8, TOPIC23, iCaRL7, EWC24, and LwF13. Note that RRR does not require task IDs at test time.
We qualitatively and quantitatively analyze model explanations in the form of saliency maps and demonstrate that RRR remem-
bers its earlier decisions in a sequence of tasks due to the requirement to focus on the the right evidence. We empirically show
the effect of RRR in standard and few-shot class incremental learning (CIL) scenarios on popular benchmark datasets includ-
ing CIFAR100, ImageNet100, and Caltech-UCSD Birds 200 using different network architectures where RRR improves overall
accuracy and forgetting over experience replay and other memory-based method.
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Our contribution is threefold: we first propose our novel, simple, yet effective memory constraint, which we call Remembering
for the Right Reasons (RRR), and show that it reduces catastrophic forgetting by encouraging the model to look at the same
explanations it initially found for its decisions. Second, we show how RRR can be readily combined with memory-based and
regularization-based CL methods to improve performance. Third, we demonstrate how guiding a continual learner to remember
its explanations can improve the quality of the explanations themselves; i.e., the model looks at the right region in an image
when making correct decisions while it focuses its maximum attention on the background when it misclassifies an object. This
work is based on the original publication25.

2 RELATEDWORK

Continual learning: Past work in CL has generally made use of either memory, model structure, or regularization to prevent
catastrophic forgetting.Memory-based methods store some form of past experience into a replay buffer. However, the definition
of “experience" varies between methods. Rehearsal-based methods use episodic memories as raw samples26,7,27 or their gradi-
ents9,28 for the model to revisit. Incremental Classifier and Representation Learning (iCaRL)7, is a class-incremental learner that
uses a nearest-exemplar algorithm for classification and prevents catastrophic forgetting by using an episodic memory. iTAML6

is a task-agnostic meta-learning algorithm that uses a momentum based strategy for meta-update and in addition to the object
classification task, it predicts task labels during inference. An end-to-end incremental learning framework (EEIL)5 also uses an
exemplar set along with data augmentation and balanced fine-tuning to alleviate the imbalance between the old and new classes.
Bias CorrectionMethod (BiC)8 is another class-incremental learning algorithm for large datasets in which a linear model is used
to correct bias towards new classes using a fully connected layer. In contrast, pseudo-rehearsal methods generate the replay sam-
ples using a generative model such as an autoencoder29 or a GAN30,10. Regularization-based methods define different metrics
to measure importance and limit the changes on parameters accordingly24,31,32,33,13,14 but in general these methods have lim-
ited capacity. Structure-based methods control which portions of a model are responsible for specific tasks such that the model
increases its capacity in a controlled fashion as more tasks are added. Inference for different tasks can be restricted to various
neurons34,35, columns12, task-specific modules11, or parameters selected by a mask36,33. In RRR we explored the addition of
explanations to replay buffer and showed that saliency-based explanations offer performance upgrade as well as improvement
in explanations across all memory-based and regularization-based baselines we tried.
Visual explanation approaches or saliency methods attempt to produce a posterior explanation or a pseudo-probability map

for the detected signals from the target object in the input image. These approaches can be broadly divided into three categories
including activation, gradient, and perturbation based methods. Activation-based methods18,19,37 use a weighted linear combi-
nation of feature maps whereas gradient-based methods38,39,22,40,16 use the derivative of outputs w.r.t the input image to compute
pixel-wise importance scores to generate attention maps. Methods in these categories are only applicable to differentiable mod-
els, including convolutional neural networks (CNNs). In contrast, perturbation-based methods are model-agnostic and produce
saliency maps by observing the change in prediction when the input is perturbed17,41,42,43,44. While these methods attempt to
identify if models are right for the wrong reason,42 took a step further and applied penalties to correct the explanations provided
in supervised/unsupervised fashion during training.45 used human explanations in the form of question and answering to bring
model explanations closer to human answers.

3 BACKGROUND: WHITE-BOX EXPLANABILITY TECHNIQUES

Here we briefly review the explainability methods we have evaluated our approach with. The core idea behind RRR is to guide
explanations or saliency maps during training to preserve their values. Hence, only gradient-based saliency techniques can be
used which are differentiable and hence trainable during training for the mainstream task as opposed to black-box saliency
methods which can be used only after training to determine important parts of an image.
Vanilla Backpropagation20: The simplest way to understand and visualize which pixels are most salient in an image is to

look at the gradients. This is typically done by making a forward pass through the model and taking the gradient of the given
output class with respect to the input. Those pixel-wise derivative values can be rendered as a normalized heatmap representing
the amount of change in the output probability of a class caused by perturbing that pixel. To store a saliency map for each RGB
image of size 3 ×W ×H , we need an equivalent memory size of storingW ×H pixel values.
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Backpropagation with SmoothGrad:21 showed that the saliency maps obtained using raw gradients are visually noisy and
using them as a proxy for feature importance is sub-optimal. They proposed a simple technique for denoising the gradients that
adds pixel-wise Gaussian noise to n copies of the image, and simply averages the resulting gradients. SmoothGrad requires the
same amount of memory to store the saliency maps while it takes n times longer to repeat generating each saliency map. We
found n = 40 to be large enough to make a noticeable change in the saliencies in our experiments.
Gradient-weighted Class Activation Mapping (Grad-CAM)19: is a white-box explainability technique which uses gradi-

ents to determine the influence of specific feature map activations on a given prediction. Because later layers in a convolutional
neural network are known to encode higher-level semantics, taking the gradient of a model output with respect to the activa-
tions of these feature maps discovers which high-level semantics are important for the prediction. We refer to this layer as the
target layer in our analysis. For example, when using Grad-CAM to visualize explanations for image classification, taking the
gradient of the correct class prediction with respect to the last convolutional layer highlights class-discriminative regions in the
image (such as the wings of a bird when identifying bird species).
Consider the pre-softmax score yc for class c in an image classification output. In general, any differentiable activation can be

used. Consider also a single convolutional layer withK feature maps, with a single feature map noted asAk ∈ ℝu×v. Grad-CAM
takes the derivative of yc with respect to each feature map Ak. It then performs global average pooling over the height and width
dimensions for each of these feature map gradients, getting a vector of length K . Each element in this vector is used as a weight
�ck, indicating the importance of feature map k for the prediction yc . Next, these importance weights are used in computing
a linear combination of the feature maps. Followed by a ReLU46 to zero-out any activations with a negative influence on the
prediction of class c, the final Grad-CAM output (s) is as below with Akij defined at location (i, j) in feature map Ak.

�ck =
1
uv

u
∑

i=1

v
∑

j=1

)yc
)Akij

scGrad-CAM = ReLU

( K
∑

k=1
�ckA

k

)

(1)

Unlike the common saliency map techniques of Guided BackProp22, Guided GradCAM47, Integrated Gradients48, Gradient
⊙ Input49, Backpropagation with SmoothGrad21 etc., vanilla Backpropagation and Grad-CAM pass important “sanity checks"
regarding their sensitivity to data and model parameters50. We will compare using vanilla Backpropagation, Backpropagation
with SmoothGrad, and Grad-CAM in RRR in Section 5.We will refer to the function that computes the output s of these saliency
method as .

4 REMEMBERING FOR THE RIGHT REASONS (RRR)

Memory-based methods in continual learning have achieved high performance on vision benchmarks using a small amount of
memory, i.e. storing a few samples from the training data into the replay buffer to directly train with them when learning new
tasks. This simple method, known as experience replay, has been explored and shown to be effective7,8,5,6,11,51,27. In this work
we aim to go one step further and investigate the role of explanations in continual learning, particularly on mitigating forgetting
and change of model explanations.
We consider the problem of learning a sequence of T data distributionstr = {tr

1 ,⋯ ,tr
T }, where

tr
k = {(xki , y

k
i )
nk
i=1} is the

data distribution for task k with n sample tuples of input (xk ⊂ ) and set of output labels (yk ⊂ ). The goal is to sequentially
learn the model f� ∶ × →  for each task that can map each input x to its target output, y, while maintaining its performance
on all prior tasks. We aim to achieve this by using memory to enhance better knowledge transfer as well as better avoidance
of catastrophic forgetting. We assume two limited memory pools rep for raw samples and RRR for model explanations. In
particular, rep = {(xji , y

j
i )
m
i=1 ∼ tr

j=1⋯k−1} stores m samples in total from all prior tasks to k. Similarly RRR stores the
saliency maps generated based on f k� by one of the explanation methods () discussed in Section 3 for images in rep

where f k� is f� being trained for task k. We use a single-head architecture where the task ID integer t is not required at test time.
Upon finishing the ktℎ task, we randomly select m∕(k−1) samples per task from its training data and update our replay buffer

memoryrep. RRR uses model explanations on memory samples to perform continual learning such that the model preserves
its reasoning for previously seen observations. We explore several explanation techniques to compute saliency maps using f k� for
the stored samples in the replay buffer to populate the xai buffer memoryxai. The stored saliency maps will serve as reference
explanations during the learning of future tasks to prevent model parameters from being altered resulting in different reasoning
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Algorithm 1 Remembering for the right reasons (RRR) for Continual Learning
function TRAIN(f� ,tr,ts)

T : # of tasks, n: # of samples in task
R← 0 ∈ ℝT×T

rep ← {}
RRR ← {}
for k = 1 to T do

for i = 1 to n do
Compute cross entropy on task (task)
Compute RRR using Eq. 2
�′ ← � − �∇�(task+RRR)

end for
rep,RRR ← UPDATE MEM(f k� ,

tr
k ,

rep,RRR)
Rk,{1⋯k} ← EVAL (f k� ,

ts
{1⋯k})

end for
return f� , R

end function

function UPDATE MEM(f k� ,
tr
k ,

rep,RRR)
(xi, k, yi) ∼ tr

k
rep ← rep ∪ {(xi, k, yi)}
ŝ← (f k� (xi, k))
RRR ← RRR ∪ {ŝ}
returnrep,RRR

end function

function EVAL(f k� ,
ts
{1⋯k})

for i = 1 to k do
Rk,i = Accuracy(f k� (x, i), y|∀(x, y) ∈ ts

i )
end for
return R

end function

for the same samples. We implement RRR using an L1 loss on the error in saliency maps generated after training a new task
with respect to their stored reference evidence.

RRR(f� ,rep,RRR) = E((x,y),ŝ)∼(rep,RRR)||(f k� (x)) − ŝ||1 (2)
where (⋅) denotes the explanation method used to compute saliency maps using the model trained on the last seen

example from task k, and ŝ are the reference saliency maps generated by(f k� ) upon learning each task prior to T and stored
in to the memory.We show below that combining RRR into the objective function of state-of-the-art memory and regularization-
based methods results in significant performance improvements. The full algorithm for RRR is given in Alg. 1.

5 EXPERIMENTS

In this section, we apply RRR in two distinct learning regimes: standard and few-shot class incremental learning. These are the
most challenging CL scenarios, in which task descriptions are not available at test time. We first explore the effect of backbone
architecture and the saliency map technique on RRR performance. We then report our obtained results integrating RRR into
existing memory-based and regularization-based methods.
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FIGURE 2 Few-shot CIL learning of CUB200 in 11 tasks where each point shows the classification accuracy on all seen classes
so far. (Left) Shows ER with and without RRR using different backbone architectures and saliency map techniques. Numbers
to generate this plot are given in Table C2 of the appendix. (Right) Performance of the state-of-the-art existing approaches
with and without RRR on CUB200 including TOPIC23, EEIL5, iCaRL7. Joint training serves as the upper bound. Results for
baselines are obtained using their original implementation. All results are averaged over 3 runs and mean and standard deviation
values are given in Table C3 of the appendix. Best viewed in color.

5.1 Few-shot CIL Performance
We first explore CIL of low-data regimes where preventing overfitting to few-shot new classes is another challenge to overcome
in addition to avoiding catastrophic forgetting of old classes. We use C classes and K training samples per class as the C-way
K-shot few-shot class incrementally learning setting where we have a set of b base classes to learn as the first task while the
remaining classes are learned with only a few randomly selected samples. In order to provide a direct comparison to the state-
of-the-art work of23 we precisely followed their setup and and used the same Caltech-UCSD Birds dataset52, divided into 11
disjoint tasks and a 10-way 5-shot setting, where the first task contains b = 100 base classes resulting in 3000 samples for
training and 2834 images for testing. The remaining 100 classes are divided into 10 tasks where 5 samples per class are randomly
selected as the training set, while the test set is kept intact containing near 300 images per task. The images in CUB200 are
resized to 256 × 256 and then randomly cropped to 224 × 224 for training. We store 4 images per class from base classes in the
first task and 1 sample per each few-shot class in the remaining 10 tasks23. We used the RAdam53 optimizer with a learning rate
of 0.001 which was reduced by 0.2 at epochs 20, 40, and 60 and trained for a total of 70 epochs with a batch size of 128 for the
first and 10 for the remaining tasks.
Figure 2 (left) shows results for ERwith andwithoutRRR using different backbone architectures and saliencymap techniques.

Among the tested saliency map methods, Grad-CAM on ResNet18 outperforms Vanilla Backpropagation and SmoothGrad by
2-3% while SmoothGrad and vanilla Backpropagation achieve similar CL performance. To compute the memory overhead of
storing the output for a saliency method, if we assume the memory required to store an image isM , vanilla Backpropagation
and SmoothGrad generate a pixel-wise saliency map that occupies M∕3 of memory. However, in Grad-CAM the saliency map
size is equal to the feature map of the target layer in the architecture. In our study with Grad-CAM we chose our target layer
to be the last convolution layer before the fully-connected layers. For instance using ResNet18 for colored 224 × 224 images
results in the Grad-CAM output of 7×7 occupying 196B. Table A1 shows the target layer name and saliency map size for other
network architectures used in this work (AlexNet and SqueezeNet1_1) as well.
Figure 2 (right) shows the effect of adding RRR on existing recent state-of-the-art methods such as TOPIC23, EEIL5, and

iCaRL7.23 used a neural gas network54,55 which can learn and preserve the topology of the feature manifold formed by different
classes and we have followed their experimental protocol for our CUB200 experiment by using identical samples drawn in each
task which are used across all the baselines for fair comparison. Adding RRR improves the performance of all the baselines;
TOPIC becomes nearly on-par with joint training which serves as the upper bound and does not adhere to continual learning.
The gap between ER and iCaRL is also reduced when ER uses RRR.
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FIGURE 3 Effect of RRR on existing methods for CIL on CIFAR100 in (a) 10 and (b) 20 tasks and (c) ImageNet100 in 10
tasks. Each point shows the classification accuracy on all seen classes so far. Results for iTAML, BiC, and EEIL are produced
with their original implementation while EWC and LwF are re-implemented by us. All results are averaged over 3 runs and
mean and standard deviation values are given in Tables C4, C5, and C6 of the appendix. Best viewed in color.

5.2 Standard CIL Performance
In order to provide a direct comparison to the recent work iTAML6 we perform our standard CIL experiment on CIFAR10056

and ImageNet100 where we assume a memory budget of 2000 samples which are identical across all the baselines. Following6

we divide CIFAR100 to 10 and 20 disjoint tasks with 10 and 5 classes at a time. Figures 3a and 3b show the classification
accuracy upon learning each task on all seen classes. We see a consistent average improvement of 2 − 4% when RRR is added
as an additional constraint to preserve the model explanations across all methods, from the most naive memory-based method,
experience replay (ER), to more sophisticated approaches which store a set of old class exemplars along with meta-learning
(iTAML), correct bias for new classes (BiC), and fine tune on the exemplar set (EEIL). We also applied the RRR constraint on
regularization-based methods such as EWC and LwF with no memory used as a replay buffer. The accuracy for both improves
despite not benefiting from revisiting the raw data. However, they fall behind all memory-based methods with or without RRR.
The final accuracy on the entire sequence for joint training (multi-task learning) with RAdam optimizer53 is 80.03% which
serves as an upper bound as it has access to data from all tasks at all time.
Figure 3c shows our results on learning ImageNet100 in 10 tasks. The effect of adding RRR to baselines on the ImageNet100

experiment is more significant (3−6%) compared to CIFAR100. This is mainly due to the larger size and better quality of images
in ImageNet100, resulting in generating larger Grad-CAM saliency maps. These experiments clearly reveal the effectiveness of
RRR on model explanations in a continual learning problem at nearly zero cost of memory overhead when a memory buffer
is already created and applied as a catastrophic forgetting avoidance strategy. This makes Grad-CAM the ideal approach to
generate saliency maps when applying the RRR training strategy, as it achieves the highest accuracy while utilizing the least
storage space to store saliencies. Note that we adopt Grad-CAM to generate saliency maps in the remaining experiments in this
paper. We also keep using only ResNet18 for a fair comparison with the literature.

6 ANALYSIS OF MODEL EXPLANATIONS

In this section we want to answer the question “How often does the model remember its decision for the right reason upon
learning a sequence of tasks?”. In particular, we want to evaluate how often the model is “pointing" at the right evidence for
its predictions, instead of focusing its maximum attention on the background or other objects in the image. We use the Pointing
Game experiment (PG)16 for this evaluation, which was introduced to measure the discriminativeness of a visualization method
for target object localization. Here, we use ground truth segmentation annotation labels provided with the CUB-200 dataset to
define the true object region.
First, we look into hits and misses defined by the PG experiment. When the location of the maximum in a predicted saliency

map falls inside the object, it is considered as a hit and otherwise it is a miss. Figure B1 shows an example from CUB200
where the segmentation annotation is used to determine whether the peak of the predicted saliency map (marked with red cross)
falls inside the object region. This example is regarded as hit as the red cross is inside the segmentation mask for the bird.
PG localization accuracy is defined as the number of hits over the total number of predictions. We would like to measure both
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TABLE 1 PG experiment results on few-shot CIL CUB200measuring localization accuracy (PG-ACC%) and backward transfer
(PG-BWT %).

Methods PG-ACC (%) PG-BWT (%)
ER 54.0 -17.4
ER+RRR 58.5 -15.6
TOPIC 72.7 -0.9
TOPIC+RRR 74.2 -2.1

TABLE 2 PG experiment results on few-shot CIL CUB200 measuring precision and recall averaged over all tasks. Pri,i and
Rei,i evaluate the pointing game on each task t i directly after the model has been trained on t i. PrT ,i and ReT ,i are obtained by
the evaluation for task t i using the model trained for all T tasks.

Precision Recall

Methods Pri,i PrT ,i Rei,i ReT ,i
ER 80.0 68.9 64.1 65.1
ER+RRR 82.1 70.3 64.2 66.8
TOPIC 91.0 88.4 98.1 97.4
TOPIC+RRR 92.8 89.1 99.6 99.2

the overall PG performance of a continual learner as well as how much learning new tasks causes it to forget its ability to hit
the target object. For these metrics, inspired by9, we define PG-ACC = 1

T

∑T
i=1RT ,i as the average PG localization accuracy

computed over all prior tasks after training for each new task and PG-BWT = 1
T−1

∑T−1
i=1 RT ,i − Ri,i (backward transfer) which

indicates how much learning new tasks has influenced the PG localization accuracy on previous tasks where Rn,i is the on task
i after learning the nth task. Results for ER and TOPIC with and without RRR on CUB200 are shown in Table 1. It shows how
constraining different models to remember their initial evidence can lead to better localization of the bird across learning new
tasks.
However, PG performance does not capture all of our desired properties for a continual learner. Ideally, we not only want a

model to predict the object correctly if it is looking at the right evidence, but also we want it to not predict an object if it is not
able to find the right evidence for it. To measure how close our baselines can get to this ideal model when they are combined with
RRR, we measure the precision as tp∕(tp+fp), and recall as tp∕(tp+fn). We evaluate these metrics once immediately after learning
each task, denoted as Pri,i and Rei,i, respectively, and again at the end of the learning process of final task T denoted as PrT ,i
and ReT ,i, where the first subscript refers to the model ID and the second subscript is the test dataset ID on which the model
is evaluated. The higher the precision for a model is, the less often it has made the right decision without looking at the right
evidence. On the other hand, the higher the recall, the less often it makes a wrong decision despite looking at the correct evidence.
We show our evaluation on these metrics in Table 2 for ER and TOPICwith and withoutRRR on CUB200 whereRRR increases
both precision and recall across all methods, demonstrating that our approach continually makes better predictions because it
finds the right evidence for its decisions.
In our final analysis, we would like to visualize the evolution of saliency maps across learning a sequence of tasks. Figure 4

illustrates the evolution of saliency maps for an image from the test-set of the second task, which both ER without RRR (top
row) and with RRR (bottom row) have seen during training for the second task. We only visualize the generated saliencies after
finishing tasks #2, #5, #7, #9, and #11 for simplicity. We indicate the correctness of the prediction made by each model with
‘correct’ or ‘incorrect’ written on top of their corresponding saliency map. Our goal is to visualize if adding the loss term RRR
prevents the drifting of explanations. Given the same input image, the ER without RRR model makes an incorrect prediction
after being continually trained for 11 tasks while never recovering from its mistake. On the other hand, when it is combined with
RRR. it is able to recover from an early mistake after task 5. Considering the saliency map obtained after finishing task one as
a reference evidence, we can see that ER’s evidence drifts further from the reference. On the bottom row, the region of focus
of ER+RRR remains nearly identical to its initial evidence, apart from one incorrect prediction. As applying RRR corrects its
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Correct Incorrect Correct Correct Correct

Incorrect Incorrect IncorrectCorrect Correct

ER

𝐄𝐑 + 𝐑𝐑𝐑

After Task 2 After Task 5 After Task 7 After Task 9 After Task 11

FIGURE 4 An illustration of the progression of saliencies on an image from the test set of the second task, evaluated after the
model is trained on tasks #2, #5, #7, #9, and #11 on CUB200. Failure case for ER w.o. RRR (top row), where saliency drifts
from the original and the prediction becomes incorrect. ER+RRR (bottom row) retains close to the original saliency as the
model trains on more tasks, with the exception of Task #5 which it is able to correct later on. Its performance is retained as well,
for saliencies that are close to the original.

saliency back to the original, this prediction is corrected as well. This supports the conclusion that retaining the original saliency
is important for retaining the original accuracy.

7 CONCLUSIONS

In this paper, we proposed the use of model explanations with continual learning algorithms to enhance better knowledge transfer
as well as better recall of the previous tasks. The intuition behind our method is that encouraging a model to remember its
evidence will increase the generalisability and rationality of recalled predictions and help retrieving the relevant aspects of each
task.We advocate for the use of explainable AI as a tool to improvemodel performance, rather than as an artifact or interpretation
of the model itself. We demonstrate that models which incorporate a “remember for the right reasons” constraint as part of a
continual learning process can both be interpretable and more accurate. We empirically demonstrated the effectiveness of our
approach in a variety of settings and provided an analysis of improved performance and explainability.
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APPENDIX

A GRAD-CAM TARGET LAYERS

Table A1 shows the target layer names used in Grad-CAM for different network architectures according to their standard
PyTorch57 implementations. Saliency map size is equal to the activation map of the target layers.

TABLE A1 Target layer names and activation maps size for saliencies generated by different network architectures in
Grad-CAM.

Target layer name in PyTorch torchvision package Saliency map size

SqueezeNet1_1 features.0.12.expand3x3 13 × 13
AlexNet features.0.10 13 × 13
ResNet18 features.7.1.conv2 7 × 7

B POINTING GAME VISUALIZATION

Figure B1 shows an example from CUB200 in the Pointing Game. We used the segmentation annotation to verify whether the
peak of the predicted saliency map (marked with red cross) falls inside the object region. It is regarded as hit as the red cross is
inside the segmentation mask for the bird.

FIGURE B1 An example of PG evaluation as hit for an image in CUB200. Left: image saliency map overlaid on the image.
Right: the segmentation label where the red cross marks the peak saliency.

C TABULAR RESULTS

In this section, we have tabulated results shown in Figure 2 and Figure 3 with means and standard deviations averaged over 3
runs.
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TABLE C2 Classification accuracy of few-shot CIL learning of CUB200 at the end of 11 tasks for ER with and without RRR
using different backbone architectures and saliency map techniques. Results are averaged over 3 runs. Figure 2 (left) in the main
paper is generated using numbers in this Table.

1 2 3 4 5 6 7 8 9 10 11
RN18-RRR-GCam 67.8 ± 0.8 53.5 ± 0.7 45.6 ± 0.6 39.6 ± 0.7 35.3 ± 0.9 32.3 ± 1.1 29.4 ± 0.9 25.9 ± 0.8 25.7 ± 0.6 26.3 ± 0.7 23.6 ± 0.7
RN18-ER 67.8 ± 0.8 49.7 ± 0.9 41.7 ± 0.8 35.8 ± 0.7 31.4 ± 0.9 28.5 ± 0.8 25.5 ± 0.8 22.1 ± 0.8 21.8 ± 0.8 22.5 ± 1.1 19.8 ± 0.9
RN18-RRR-Smooth 67.8 ± 0.8 50.9 ± 0.6 43.5 ± 0.9 37.0 ± 0.8 33.0 ± 0.7 29.5 ± 0.6 26.8 ± 0.8 23.9 ± 0.8 23.9 ± 0.8 23.4 ± 0.8 21.5 ± 0.5
RN18-RRR-BP 67.8 ± 0.8 50.8 ± 0.8 43.9 ± 0.6 36.6 ± 0.4 32.7 ± 0.6 28.9 ± 0.6 27.2 ± 0.5 23.8 ± 0.6 23.8 ± 0.6 24.0 ± 0.4 21.5 ± 0.6
RN18-Finetune 67.8 ± 0.8 44.8 ± 0.6 32.2 ± 0.5 25.8 ± 0.7 25.6 ± 0.7 25.2 ± 0.7 20.8 ± 0.6 16.8 ± 0.7 18.8 ± 0.5 18.3 ± 0.4 17.1 ± 0.6
Alex-RRR-GCam 56.7 ± 0.7 46.6 ± 0.5 43.9 ± 0.7 41.3 ± 0.7 33.7 ± 0.5 27.4 ± 0.7 25.3 ± 0.7 22.0 ± 0.5 21.5 ± 0.6 21.4 ± 0.6 21.2 ± 0.6
Alex-ER 56.7 ± 0.7 44.6 ± 0.7 41.3 ± 0.7 38.7 ± 0.7 31.1 ± 0.7 24.5 ± 0.7 22.6 ± 0.7 19.6 ± 0.6 19.1 ± 0.8 18.7 ± 0.8 19.1 ± 0.8
Alex-Finetune 56.7 ± 0.7 42.8 ± 0.8 39.6 ± 0.8 36.9 ± 0.8 29.5 ± 0.7 23.3 ± 0.6 21.4 ± 0.8 17.9 ± 0.7 18.0 ± 0.7 17.0 ± 0.5 16.9 ± 0.4
SQ-RRR-GCam 46.8 ± 0.5 36.2 ± 0.4 30.1 ± 0.6 28.3 ± 0.4 25.1 ± 0.5 23.4 ± 0.5 19.3 ± 0.6 19.0 ± 0.6 18.5 ± 0.5 18.4 ± 0.5 18.2 ± 0.6
SQ-ER 46.8 ± 0.5 33.2 ± 0.5 27.1 ± 0.6 25.3 ± 0.6 22.1 ± 0.5 20.5 ± 0.5 16.3 ± 0.4 16.0 ± 0.6 15.5 ± 0.6 15.4 ± 0.6 15.2 ± 0.7
SQ-Finetune 46.8 ± 0.5 32.0 ± 0.7 25.2 ± 0.7 23.9 ± 0.7 20.2 ± 0.8 19.4 ± 0.4 14.9 ± 0.4 14.4 ± 0.5 13.8 ± 0.4 14.2 ± 0.5 13.7 ± 0.6

TABLE C3 Performance of the state-of-the-art existing approaches with and without RRR on CUB200 including TOPIC23,
EEIL5, iCaRL7. Results for baselines are obtained using their original implementation. Results are averaged over 3 runs. Figure 2
(right) in the main paper is generated using numbers in this Table.

1 2 3 4 5 6 7 8 9 10 11

EEIL 68.6 ± 0.4 53.6 ± 0.4 47.9 ± 0.3 44.2 ± 0.8 36.3 ± 0.9 27.4 ± 1.2 25.9 ± 0.7 24.7 ± 0.5 23.9 ± 0.7 24.1 ± 0.7 22.1 ± 0.5
EEIL+RRR 68.6 ± 0.4 56.6 ± 0.5 50.9 ± 0.6 48.3 ± 0.5 39.7 ± 1.2 31.4 ± 0.7 28.3 ± 1.2 28.0 ± 0.6 26.5 ± 0.6 27.4 ± 0.6 25.2 ± 0.9
iCaRL 68.6 ± 0.4 52.6 ± 0.7 48.6 ± 1.2 44.1 ± 0.5 36.6 ± 0.3 29.5 ± 0.9 27.8 ± 0.4 26.2 ± 0.5 24.0 ± 0.6 23.8 ± 0.6 21.1 ± 0.7
iCaRL+RRR 68.6 ± 0.4 55.6 ± 1.2 53.6 ± 0.7 47.1 ± 0.8 39.6 ± 0.5 32.5 ± 0.8 31.8 ± 0.4 29.2 ± 0.6 27.0 ± 0.8 27.8 ± 0.6 24.1 ± 0.3
TOPIC 68.6 ± 0.4 62.4 ± 0.8 54.8 ± 0.4 49.9 ± 1.2 45.2 ± 0.6 41.4 ± 0.3 38.3 ± 0.8 35.3 ± 0.6 32.2 ± 0.3 28.3 ± 0.6 26.2 ± 1.2
TOPIC+RRR 68.6 ± 0.4 62.5 ± 0.9 56.8 ± 0.4 51.5 ± 0.5 48.2 ± 0.4 44.4 ± 0.4 42.3 ± 0.7 38.3 ± 0.6 35.2 ± 0.9 32.3 ± 0.9 29.2 ± 0.5
FT 68.6 ± 0.4 44.8 ± 0.5 32.2 ± 0.8 25.8 ± 0.4 25.6 ± 1.1 25.2 ± 0.7 20.8 ± 1.1 16.7 ± 0.4 18.8 ± 1.1 18.2 ± 0.3 17.1 ± 0.8
ER 67.8 ± 0.8 49.7 ± 0.9 41.7 ± 0.8 35.8 ± 0.7 31.4 ± 0.9 28.5 ± 0.8 25.5 ± 0.8 22.1 ± 0.8 21.8 ± 0.6 22.5 ± 1.1 19.8 ± 0.9
RRR 67.8 ± 0.8 53.5 ± 0.7 45.6 ± 0.6 39.6 ± 0.7 35.3 ± 0.9 32.3 ± 1.1 29.4 ± 0.9 25.9 ± 0.8 25.7 ± 0.6 26.3 ± 0.7 23.6 ± 0.7

JT 68.6 ± 0.4 62.4 ± 0.4 57.2 ± 0.4 52.8 ± 0.5 49.5 ± 0.9 46.1 ± 0.5 42.8 ± 1.1 40.1 ± 0.8 38.7 ± 0.7 37.1 ± 0.5 35.6 ± 0.9

TABLE C4 Performance of the state-of-the-art existing approaches with and without RRR on CIFAR100 in 10 tasks. Results
for iTAML6, BiC8, and EEIL5 are produced with their original implementation while EWC24 and LwF13 are re-implemented
by us. Results are averaged over 3 runs. Figure 3a in the main paper is generated using numbers in this Table.

1 2 3 4 5 6 7 8 9 10

iTAML+RRR 89.2 ± 0.5 92.3 ± 0.7 89.5 ± 1.2 87.5 ± 1.2 84.1 ± 0.8 83.5 ± 0.9 83.9 ± 0.7 81.2 ± 0.3 79.6 ± 0.9 79.7 ± 0.5
iTAML 89.2 ± 0.5 88.9 ± 0.5 87.0 ± 1.1 85.7 ± 1.1 84.1 ± 1.1 81.8 ± 0.3 80.0 ± 0.6 79.0 ± 0.3 78.6 ± 0.8 77.8 ± 0.6
BiC 90.3 ± 0.7 82.1 ± 0.7 75.1 ± 0.4 69.8 ± 1.2 65.3 ± 0.8 61.3 ± 0.9 57.4 ± 0.7 54.9 ± 0.5 53.2 ± 0.9 50.3 ± 0.7
BiC+RRR 90.3 ± 0.7 84.9 ± 1.1 76.4 ± 0.6 69.3 ± 0.3 65.1 ± 0.9 63.3 ± 0.4 59.7 ± 1.1 55.4 ± 0.8 55.8 ± 0.7 52.1 ± 0.5
EEIL 80.0 ± 0.7 80.5 ± 1.2 75.5 ± 0.9 71.5 ± 0.4 68.0 ± 1.2 62.0 ± 0.9 59.0 ± 0.7 55.1 ± 1.2 51.4 ± 0.8 48.7 ± 0.4
EEIL+RRR 80.0 ± 0.7 83.5 ± 0.3 78.7 ± 1.2 74.0 ± 1.2 71.7 ± 0.3 65.1 ± 0.4 61.2 ± 0.5 57.6 ± 0.5 54.1 ± 0.4 51.7 ± 0.3
LwF 86.1 ± 1.2 69.0 ± 0.7 55.0 ± 0.3 45.8 ± 0.3 40.4 ± 0.5 36.7 ± 0.9 30.8 ± 0.7 28.6 ± 0.5 26.1 ± 0.7 24.2 ± 0.7
LwF+RRR 86.1 ± 1.2 72.4 ± 0.8 57.0 ± 1.1 48.3 ± 0.3 43.2 ± 0.8 39.3 ± 0.5 34.1 ± 0.6 32.1 ± 1.1 29.8 ± 0.7 27.1 ± 0.6
EWC 86.1 ± 1.2 52.6 ± 0.4 48.6 ± 0.4 38.5 ± 0.5 31.1 ± 0.9 26.5 ± 0.3 21.7 ± 0.6 20.0 ± 0.7 18.9 ± 0.5 16.6 ± 0.9
EWC+RRR 86.1 ± 1.2 56.0 ± 0.4 53.9 ± 1.2 44.4 ± 0.9 35.1 ± 0.5 28.6 ± 0.6 25.1 ± 1.1 23.1 ± 0.5 18.8 ± 0.9 19.0 ± 1.2
ER 86.1 ± 1.2 74.5 ± 0.9 65.2 ± 0.8 62.5 ± 0.8 56.7 ± 0.7 50.5 ± 0.3 47.6 ± 0.4 43.4 ± 0.3 41.6 ± 0.9 38.1 ± 1.1
RRR 86.1 ± 1.2 78.5 ± 0.9 69.2 ± 1.1 63.5 ± 1.2 58.7 ± 0.8 53.5 ± 1.1 49.6 ± 0.7 44.4 ± 0.3 42.6 ± 1.2 39.1 ± 1.1
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TABLE C5 Performance of the state-of-the-art existing approaches with and without RRR on CIFAR100 in 20 tasks. Results
for iTAML6, BiC8, and EEIL5 are produced with their original implementation while EWC24 and LwF13 are re-implemented
by us. Results are averaged over 3 runs. Figure 3b in the main paper is generated using numbers in this Table.

(a) Tasks 1-10

1 2 3 4 5 6 7 8 9 10

iTAML 84.7 ± 0.6 85.7 ± 0.4 86.5 ± 0.3 86.5 ± 0.8 86.3 ± 1.2 85.7 ± 0.8 84.9 ± 1.1 82.6 ± 0.3 80.8 ± 0.7 82.4 ± 0.3
iTAML+RRR 84.7 ± 0.6 89.9 ± 0.5 89.2 ± 0.9 89.2 ± 0.6 89.0 ± 1.1 87.2 ± 0.6 88.0 ± 0.4 85.6 ± 1.1 86.6 ± 0.3 85.4 ± 0.3
BiC 95.7 ± 0.6 90.3 ± 0.9 80.9 ± 0.8 75.8 ± 0.8 73.5 ± 0.6 71.5 ± 1.2 67.8 ± 0.4 65.4 ± 0.8 62.7 ± 1.2 61.9 ± 1.2
BiC+RRR 95.7 ± 0.6 93.3 ± 0.6 84.7 ± 1.1 77.5 ± 0.9 73.4 ± 0.6 74.8 ± 0.6 69.6 ± 0.7 67.4 ± 0.3 65.7 ± 0.5 64.9 ± 0.6
EEIL 81.9 ± 0.5 86.3 ± 0.3 84.9 ± 0.4 80.7 ± 0.3 77.7 ± 0.6 74.9 ± 0.3 70.9 ± 0.7 67.4 ± 0.7 64.9 ± 0.5 62.4 ± 0.3
EEIL+RRR 81.9 ± 0.5 88.4 ± 0.8 87.6 ± 0.7 82.6 ± 1.2 78.5 ± 0.6 76.9 ± 0.4 71.2 ± 0.7 67.3 ± 0.4 67.0 ± 1.2 64.5 ± 0.3
LwF 85.1 ± 0.7 68.8 ± 0.9 58.6 ± 1.1 50.5 ± 1.2 43.5 ± 0.9 37.5 ± 0.6 33.7 ± 0.9 30.4 ± 0.9 26.8 ± 1.1 24.9 ± 0.7
LwF+RRR 85.1 ± 0.7 71.6 ± 0.6 61.8 ± 0.7 54.2 ± 0.5 46.2 ± 0.9 40.7 ± 0.7 36.7 ± 1.2 34.4 ± 0.4 29.8 ± 0.7 27.2 ± 1.2
EWC 85.1 ± 0.7 61.3 ± 0.5 47.4 ± 0.8 36.2 ± 0.3 31.3 ± 0.6 27.9 ± 0.5 23.7 ± 1.1 22.5 ± 0.4 20.8 ± 0.8 18.9 ± 0.7
EWC+RRR 85.1 ± 0.7 68.9 ± 0.5 52.2 ± 0.9 39.9 ± 0.9 35.2 ± 0.3 30.0 ± 0.3 24.3 ± 0.8 24.0 ± 0.6 23.7 ± 0.4 21.0 ± 1.1
ER 85.1 ± 0.7 83.1 ± 0.9 81.8 ± 0.7 74.9 ± 0.3 70.4 ± 0.3 61.5 ± 1.2 60.8 ± 1.1 57.0 ± 0.7 54.3 ± 0.4 48.2 ± 0.6
RRR 85.1 ± 0.7 85.1 ± 0.9 83.8 ± 0.4 77.9 ± 0.4 72.4 ± 1.2 64.5 ± 0.7 62.8 ± 0.7 59.0 ± 0.3 57.3 ± 0.8 51.2 ± 1.1

(b) Tasks 11-20

11 12 13 14 15 16 17 18 19 20

iTAML 80.0 ± 1.1 80.6 ± 0.5 74.3 ± 0.8 70.7 ± 0.6 71.3 ± 1.1 68.3 ± 0.5 70.3 ± 0.8 68.3 ± 0.6 69.5 ± 0.3 66.0 ± 0.6
iTAML+RRR 85.5 ± 0.5 85.2 ± 0.8 79.7 ± 0.6 74.3 ± 0.4 74.0 ± 0.9 73.4 ± 1.1 74.8 ± 0.9 74.4 ± 0.4 73.9 ± 0.5 71.8 ± 0.9
BiC 59.2 ± 0.4 57.0 ± 0.6 56.1 ± 1.2 55.7 ± 0.6 53.8 ± 0.5 52.4 ± 1.2 49.7 ± 0.6 49.2 ± 1.2 47.7 ± 1.1 46.7 ± 1.2
BiC+RRR 62.2 ± 0.5 59.1 ± 0.7 58.2 ± 0.5 57.8 ± 0.5 54.4 ± 1.2 56.6 ± 0.9 53.9 ± 0.7 52.4 ± 1.1 49.5 ± 0.8 49.4 ± 0.9
EEIL 60.9 ± 0.6 59.5 ± 0.6 57.8 ± 0.6 55.1 ± 0.3 53.9 ± 0.5 51.7 ± 0.3 50.1 ± 0.8 49.4 ± 0.5 47.4 ± 0.6 46.9 ± 0.9
EEIL+RRR 63.7 ± 0.6 62.9 ± 0.4 59.7 ± 0.4 57.0 ± 0.3 55.6 ± 0.8 53.5 ± 0.4 53.5 ± 0.3 52.7 ± 0.4 49.1 ± 0.3 47.8 ± 0.4
LwF 23.9 ± 0.7 21.4 ± 0.7 20.0 ± 0.7 19.1 ± 0.9 18.7 ± 0.8 17.1 ± 0.8 15.6 ± 0.8 14.7 ± 0.8 14.0 ± 0.8 13.7 ± 1.1
LwF+RRR 27.7 ± 0.7 26.9 ± 0.9 25.7 ± 0.7 24.5 ± 1.2 23.6 ± 0.6 22.6 ± 0.7 19.5 ± 0.3 18.6 ± 0.5 19.7 ± 0.8 18.4 ± 1.2
EWC 17.2 ± 1.1 16.0 ± 0.5 15.0 ± 0.8 14.5 ± 0.8 13.4 ± 1.1 12.4 ± 0.4 12.3 ± 0.4 11.5 ± 0.8 11.2 ± 0.8 9.44 ± 0.5
EWC+RRR 20.7 ± 0.3 19.5 ± 0.4 18.4 ± 0.7 17.3 ± 0.5 16.2 ± 0.4 15.8 ± 0.5 15.0 ± 0.7 16.6 ± 0.9 14.3 ± 0.4 13.2 ± 0.3
ER 45.8 ± 0.6 42.7 ± 0.7 41.6 ± 0.6 41.2 ± 0.6 36.5 ± 0.4 36.5 ± 0.6 33.8 ± 0.4 32.4 ± 1.2 31.4 ± 0.7 30.2 ± 0.5
RRR 48.8 ± 0.3 46.7 ± 0.9 43.6 ± 1.1 44.2 ± 0.7 39.5 ± 0.3 38.5 ± 0.9 35.8 ± 0.3 33.4 ± 0.3 32.4 ± 0.3 31.2 ± 0.3

TABLEC6 Performance of the state-of-the-art existing approaches with and withoutRRR on ImageNet100 in 10 tasks. Results
for iTAML6, BiC8, and EEIL5 are produced with their original implementation while EWC24 and LwF13 are re-implemented
by us. Results are averaged over 3 runs. Figure 3c in the main paper is generated using numbers in this Table.

1 2 3 4 5 6 7 8 9 10

iTAML 99.4 ± 0.8 96.4 ± 0.9 94.4 ± 0.9 93.0 ± 0.3 92.4 ± 1.2 90.6 ± 0.3 89.9 ± 0.4 90.3 ± 0.8 90.3 ± 1.1 89.8 ± 0.4
iTAML+RRR 99.4 ± 0.8 97.3 ± 0.5 96.6 ± 0.7 96.3 ± 1.1 95.3 ± 0.5 93.1 ± 0.5 92.1 ± 0.6 92.1 ± 0.6 92.9 ± 0.9 91.9 ± 0.4
EEIL 99.5 ± 0.4 98.8 ± 1.1 95.9 ± 0.9 93.0 ± 0.4 88.3 ± 1.1 86.7 ± 1.2 83.0 ± 1.2 81.1 ± 0.5 78.2 ± 0.7 75.4 ± 0.4
EEIL+RRR 99.5 ± 0.4 98.1 ± 0.7 97.4 ± 1.1 96.7 ± 0.4 93.3 ± 0.5 89.4 ± 1.1 86.5 ± 0.3 86.1 ± 1.1 81.8 ± 0.4 77.0 ± 0.3
BiC 98.3 ± 0.7 94.9 ± 0.8 93.5 ± 0.7 90.9 ± 1.2 89.0 ± 1.2 87.3 ± 0.6 85.2 ± 0.7 83.2 ± 0.4 82.5 ± 0.9 81.1 ± 1.1
BiC+RRR 98.3 ± 0.7 98.9 ± 0.3 96.5 ± 0.6 93.9 ± 0.4 92.0 ± 0.7 89.3 ± 1.1 87.2 ± 0.8 87.2 ± 1.1 85.5 ± 0.9 84.1 ± 0.6
iCaRL 99.3 ± 0.4 97.2 ± 0.9 93.5 ± 0.9 91.0 ± 0.3 87.5 ± 1.2 82.1 ± 1.2 77.1 ± 0.4 72.8 ± 0.6 67.1 ± 0.8 63.5 ± 1.1
iCaRL+RRR 99.3 ± 0.4 97.9 ± 1.2 94.1 ± 0.7 92.8 ± 0.7 91.7 ± 0.9 85.7 ± 1.1 82.1 ± 0.6 74.4 ± 0.9 72.2 ± 0.8 68.1 ± 0.9
LwF 99.3 ± 0.5 95.2 ± 0.9 85.9 ± 0.9 73.9 ± 1.1 63.7 ± 0.8 54.8 ± 0.8 50.1 ± 0.6 44.5 ± 0.9 40.7 ± 0.5 36.7 ± 0.3
LwF+RRR 99.3 ± 0.5 97.1 ± 1.2 89.3 ± 0.6 79.1 ± 0.5 69.1 ± 1.1 59.4 ± 1.1 57.2 ± 0.7 48.2 ± 1.1 45.1 ± 0.6 41.5 ± 0.5
FT 99.3 ± 0.5 49.4 ± 0.3 32.6 ± 0.3 24.7 ± 0.6 20.0 ± 1.2 16.7 ± 0.3 13.9 ± 0.3 12.3 ± 0.7 11.1 ± 0.6 9.9 ± 0.7
ER 99.3 ± 0.5 95.2 ± 0.8 88.1 ± 0.8 78.1 ± 0.9 72.5 ± 0.6 69.1 ± 0.8 67.1 ± 0.6 61.8 ± 0.6 55.1 ± 0.3 50.1 ± 1.1
RRR 99.3 ± 0.5 96.5 ± 0.3 93.4 ± 0.8 84.8 ± 0.7 78.7 ± 0.4 74.7 ± 0.4 73.1 ± 0.5 68.4 ± 0.8 60.2 ± 0.3 55.1 ± 0.7
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