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Abstract

Speech emotion conversion is the task of mod-
ifying the perceived emotion of a speech
utterance while preserving the lexical con-
tent and speaker identity. In this study,
we cast the problem of emotion conversion
as a spoken language translation task. We
use a decomposition of the speech signal
into discrete learned representations, consist-
ing of phonetic-content units, prosodic fea-
tures, speaker, and emotion. First, we modify
the speech content by translating the phonetic-
content units to a target emotion, and then
predict the prosodic features based on these
units. Finally, the speech waveform is gener-
ated by feeding the predicted representations
into a neural vocoder. Such a paradigm al-
lows us to go beyond spectral and parametric
changes of the signal, and model non-verbal
vocalizations, such as laughter insertion, yawn-
ing removal, etc. We demonstrate objectively
and subjectively that the proposed method is
vastly superior to current approaches and even
beats text-based systems in terms of perceived
emotion and audio quality. We rigorously eval-
uate all components of such a complex system
and conclude with an extensive model analysis
and ablation study to better emphasize the ar-
chitectural choices, strengths and weaknesses
of the proposed method. Samples are available
under the following link: [samples].

1 Introduction

Generating spoken utterances and dialogue that
sound natural is a fundamental requirement to
improve human-computer interaction (Tits et al.,
2019). One of the main roadblock in improving nat-
uralness in speech generation is the modeling of ex-
pressive and emotional states. The difficulty is that
emotion is a phenomenon affecting all linguistic
levels simultaneously: when one goes from a happy

∗ Work done while Felix Kreuk was an Intern at Meta AI
Research.

Figure 1: An illustration of the proposed system. The
input signal is first encoded as a discrete sequence of
content units (Ec). Next, a sequence to sequence (S2S)
model is applied to translate between the sequences cor-
responding to different emotions. Then we predict the
duration (Edur) and F0 (EF0) before feeding these sig-
nals to a vocoder (G). The last 4 components are condi-
tioned by emotion (zemo). We use pink to denote mod-
els and green to denote representations.

to an angry state, one may use different vocabu-
lary, insert non-verbal vocalizations (cries, grunts,
etc), modify prosody (intonation and rhythm), and
change voice quality due to stress. Vice versa
each of the levels contributes to the perception
of the emotional state of the speaker, where the
non verbal aspects can often override the lexical
content (Mehrabian and Wiener, 1967).

Existing emotion generation or emotion con-
version techniques have a hard time producing
convincing results because they only manage to
tackle a subset of these levels. In a nutshell, signal-
based approaches are mainly focused on manipu-
lating parameters of the speech signal (Inanoglu
and Young, 2009; Aihara et al., 2012; Gao et al.,
2018; Robinson et al., 2019; Polyak et al., 2020a;
Rizos et al., 2020; Zhou et al., 2020a,b, 2021a,d,b),
and can only address changes at the level of voice
and prosody. In contrast, text based approaches
(Skerry-Ryan et al., 2018a; Ren et al., 2020; Kim
et al., 2021; Sorin et al., 2020; Hono et al., 2020;
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Tan et al., 2021; Polyak et al., 2020b) can generate
expressive speech, but struggle with nonverbal vo-
calizations because they are typically not annotated
in speech corpora.

In this work we focus on the task of speech emo-
tion conversion under the parallel dataset setting,
modifying the perceived emotion of a speech utter-
ance while preserving the speaker identity and the
lexical content (Zhou et al., 2021c).

The proposed pipeline is comprised of four main
blocks: speech tokenizer, content translation model,
prosody prediction model, and a neural vocoder.
We start by extracting discrete representation of the
speech signal. We translate these representation to
a target emotion (e.g., removing laughter, insert-
ing yawning) while preserving the lexical content.
Then, we predict prosodic features based on the
translated representations. A neural vocoder syn-
thesizes the speech waveform from the translated
phonetic-content, predicted prosody, speaker label
and target emotion label. The overall system is
depicted in Figure 1.

Our contribution is twofold: We propose a novel
textless approach by casting the task of speech emo-
tion conversion as a spoken language translation
problem. We demonstrate how such a paradigm
can be used to model expressive non-verbal com-
munication cues as well as generating high-quality
speech samples. Finally, we demonstrate for the
first time the coverage of all levels of expressive
speech modeling simultaneously. Results show that
the proposed method is vastly superior to emotion
conversion techniques based on signal only, and
also beats text-based approaches in terms of gener-
ation quality and perceived emotion.

2 Related work

Speech emotion conversion. There is an in-
creasing number of studies for speech emotion
conversion recently (Zhou et al., 2021c). Early
studies on speech emotional conversion include
Gaussian Mixture Model (GMM) technique (Ai-
hara et al., 2012), sparse representation tech-
nique (Aihara et al., 2014), or an incorporated
framework of Hidden Markov Model (HMM),
GMM and fundamental frequency segment selec-
tion method (Inanoglu and Young, 2009). Re-
cently, speech emotion conversion has seen a great
leap in performance following the advances in
deep nets. This include using multi-layer per-
ceptron (Luo et al., 2016; Lorenzo-Trueba et al.,

2018), highway networks (Shankar et al., 2019a),
deep bi-directional LSTM networks (Ming et al.,
2016), and sequence-to-sequence model (Robin-
son et al., 2019). When considering non-parallel
data, new techniques have been proposed to learn
the translation between emotional domains with
CycleGAN (Zhou et al., 2020a) and StarGAN (Ri-
zos et al., 2020), to disentangle the emotional ele-
ments from speech with auto-encoders (Cao et al.,
2020; Zhou et al., 2021b), and to leverage text-to-
speech (Kim et al., 2020) or Automatic Speech
Recognition (ASR) (Liu et al., 2020). Studies have
also revealed that the emotions can be expressed
through universal principles that are shared across
different individuals and cultures (Ekman, 1992;
Manokara et al., 2021). This motivates research on
multispeaker (Shankar et al., 2019b, 2020), and
speaker-independent emotion conversion (Zhou
et al., 2020b; Choi and Hahn, 2021).

Unsupervised speech representation learning
aims to distill features useful for downstream tasks,
such as phone discrimination (Kharitonov et al.,
2021b; Schneider et al., 2019) and semantic predic-
tion (Lai et al., 2021; Wu et al., 2020), by construct-
ing pretext tasks that can exploit large quantities
of unlabeled speech. Pretext tasks in the literature
can be roughly divided into two categories: recon-
struction and prediction. Reconstruction is often
implemented in the form of auto-encoding (van den
Oord et al., 2017), where speech is first encoded
into a low-dimensional space, and then decoded
back to speech. Various constraints can be imposed
on the encoded space, such as temporal smooth-
ness (Ebbers et al., 2017; Glarner et al., 2018;
Khurana et al., 2020), discreteness (Ondel et al.,
2016; van den Oord et al., 2017), presence of hierar-
chy (Hsu et al., 2017), and information bottlenecks
for speech representation decomposition (Qian
et al., 2020, 2021). Prediction-based approaches
task a model with predicting information of unseen
speech based on its context. Examples of informa-
tion include spectrograms (Wang et al., 2020; Chi
et al., 2021; Chung and Glass, 2020), cluster in-
dices (Hsu et al., 2021), derived signal processing
features (Ravanelli et al., 2020), and binary labels
of whether a candidate is the target unseen spec-
trogram (Schneider et al., 2019; Kharitonov et al.,
2021b; Baevski et al., 2020).

Spoken Language Modeling. The closest re-
lated work to ours concerns with modeling spo-



ken language without textual supervision. Lakho-
tia et al. (2021) suggested utilizing recent suc-
cess of self-supervised speech representation learn-
ing for discovering discrete units and modeling
them. Then, conditional and unconditional speech
generation can be achieved by sampling unit se-
quences from a unit-Language-Model, and syn-
thesizing them to speech using a units-to-Speech
model (Lakhotia et al., 2021). Moreover, the au-
thors proposed a set of evaluation functions to as-
sess the quality of the overall system. Next, Polyak
et al. (2021) evaluated the robustness and disen-
tanglement properties of several Speech-to-units
models and demonstrated the ability to perform
voice conversion, and lightweight speech codec.
Lastly, Kharitonov et al. (2021a) proposed a
multi-stream transformer model to jointly process
”pseudo-text“ units and prosodic features (i.e., dura-
tion and F0). This was shown beneficial in improv-
ing content modeling capabilities. In this work, we
leverage a similar approach and speech representa-
tion scheme but for speech emotion conversation
via translation.

3 Model

As emotion manifests itself in multiple aspects of
spoken language, to optimally convert emotion one
needs to consider all aspects in the conversion pro-
cess. For example, emotion can be expressed via a
prosodic features (high pitch, slow speaking rate,
etc.), speaking style (yelling, whispering, etc.), and
non-verbal vocalizations (laughing, yawning, etc.).

We suggest to use a decomposed representa-
tion of the speech signal to synthesize speech
in the target emotion. We consider four
components in the decomposition: phonetic-
content, prosodic features (i.e., F0 and duration),
speaker identity, and emotion-label, denoted by
zc, (zdur, zF0), zspk, zemo respectively.

Specifically, we propose the following cascaded
pipeline: (i) extract zc from the raw waveform us-
ing a Self-Supervised Learning (SSL) model; (ii)
translate non-verbal vocalizations in zc while pre-
serving the lexical content (e.g., when converting
from amused to sleepy, we remove laughter and
insert yawning); (iii) predict the prosodic features
of the target emotion based on the translated con-
tent; (iv) synthesize the speech from the translated
content, predicted prosody, target speaker identity
and target emotion-label. See Figure 1 for a visual
description of the method.

3.1 Speech Input Representation
Phonetic-content representation. To represent
speech phonetic-content we extract a discrete rep-
resentation of the audio signal using a pre-trained
SSL model, namely HuBERT. We use a SSL repre-
sentation for phonetic-content in order to capture
non-verbal vocalizations (unlike text where they
are often not annotated). We discretize this repre-
sentation for better modeling and sampling (as op-
posed to regressing on continuous variables). This
paradigm allows us to benefit from all recent ad-
vances in Natural Language Processing (NLP). We
chose HuBERT for the phonetic-content units as
it was shown to better disentangle between speech
content and both speaker and prosody compared to
other SSL-based models (Polyak et al., 2021).

Denote the domain of audio samples by X ⊂ R.
The representation for an audio waveform is there-
fore a sequence of samples x = (x1, . . . , xT ),
where each xi ∈ X for all 1 ≤ t ≤ T . The
content encoder Ec is a HuBERT model (Hsu
et al., 2021) pre-trained on the LibriSpeech cor-
pus (Panayotov et al., 2015). HuBERT is a self-
supervised model trained on the task of masked
prediction of continuous audio signals, similarly
to BERT (Devlin et al., 2019). During training,
the targets are obtained via clustering of MFCCs
features or learned representations from earlier it-
erations. The input to the content encoder Ec is
an audio waveform x, and the output is a spec-
tral representation sampled at a lower frequency
z′ = (z

′1
c , . . . , z

′L
c ) where L < T . Since HuBERT

outputs continuous representations, an additional k-
means step is needed in order to quantize these rep-
resentations into a discrete unit sequence denoted
by zc = (z1c , . . . , z

L
c ) where zic ∈ {1, . . . ,K} and

K is the size of the vocabulary. For the rest of the
paper, we refer to these discrete representations as
“units”. We extracted representations from the 9th

layer of HuBERT model and set K = 200. Fol-
lowing Lakhotia et al. (2021), repeated units were
omitted (e.g., 0, 0, 0, 1, 1, 2→ 0, 1, 2). We denote
such sequences by “deduped”.

Speaker representation. Our goal is to convert
speech emotion while keeping the speaker iden-
tity fixed. To that end, we construct a speaker-
representation zspk, and include it as an additional
conditioner during the waveform synthesis phase.
To learn zspk we optimize the parameters of a fixed
size look-up-table. Although such modeling limits
our ability to generalize to new and unseen speak-



ers, it produces higher quality generations (Polyak
et al., 2021). We additionally experimented with
representing zspk as a d-vector using a method sim-
ilar to Heigold et al. (2016). However, we observed
that such approach keeps source emotion prosodic
features, resulting in inferior disentanglement dur-
ing the waveform synthesis phase.

Emotion-label representation. We represent
the emotion-label using a categorical variable rep-
resented by a 1-hot vector. We observed that this
component controls for timbre characteristics of the
generated speech signal (e.g., roughness, smooth-
ness, etc.) during the synthesis phase.

3.2 Speech Emotion Conversion
Using the above representations we propose to
synthesize the speech signal in the target emo-
tion. We use a translation model to convert be-
tween phonetic-content units of a source emotion to
phonetic-content units of the target emotion. This
serves as a learnable insertion/deletion/substitution
mechanism for non-verbal vocalizations, while pre-
serving the lexical content (e.g., removing yawning
while preserving the verbal content). Next, we pre-
dict the prosodic features (duration and F0) based
on the translated phonetic-content units and target
emotion-label, and inflate the sequence according
to the predicted durations. This will later be used
as a conditioning for the waveform synthesis phase.

Unit translation. To translate the speech con-
tent units, we use a sequence-to-sequence Trans-
former model (Vaswani et al., 2017) denoted by
Es2s. The input to Es2s is a sequence of phonetic-
content units representing a speech utterance in
the source emotion zsrcc . The model is trained
to output a sequence of phonetic-content units
ztgtc containing the same lexical content with the
addition/deletion/substitution of speech cues re-
lated to emotion expression (e.g., inserting laugh-
ter units). The optimization minimizes the cross-
entropy (CE) loss between the predicted units
ẑc = Es2s(z

src
c , zemo) and ground-truth units for

each location in the sequence,

Ls2s =

L∑
i=1

CE(Es2s(z
src
c , zemo)i, z

tgt
c i). (1)

In our experiments, we observed that directly op-
timizing the above model for translation captures
emotion transfer, but fails to maintain the same lexi-
cal content, producing expressive yet unintelligible

Figure 2: An illustration of the sequence-to-sequence
emotion translation componentEs2s. Here different en-
coders and decoders are used for each emotions, but we
also tested shared architectures in Appendix A.2.

speech utterances (e.g., the model adds laughter
but corrupts the sentence by removing needed syl-
lables). To mitigate this, we pre-train the transla-
tion model on the task of language denoising auto-
encoder similarly to BART (Lewis et al., 2020).
To better support translation between all emotions
we use a dedicated encoder and decoder for each
emotion (see Figure 2). We additionally evaluated
a shared-encoder and shared-decoder model, in
which we condition on the target emotion, as well
as a model where only the encoder is shared. We
evaluated all approaches, results are summarized
in Table 3 Appendix A.2.

Prosody prediction. Next, using the translated
phonetic-content unit sequence we predict the
prosodic features corresponding to the target emo-
tion. We consider the prosodic representation as a
tuple of content unit durations and F0.

We start by describing the duration prediction
process. Due to working on deduped sequences, we
first need to predict the duration of each phonetic-
content unit. We follow a similar approach to
the one proposed in (Ren et al., 2020) and use
a Convolutional Neural Network (CNN) to learn
the mapping between content units to durations.
We denote this model by Edur. During training
of Edur, we input the deduped phonetic-content
units zc and use the ground-truth phonetic-content
unit durations as supervision. We minimize the
Mean Squared Error (MSE) between the network’s
output and the target durations. We also evaluated
n-gram-based duration prediction models. The n-
gram models were trained by counting the mean
frequency µ and the standard deviation σ of each
n-gram in the training set. During inference, we
predict the duration of each n-gram by sampling
from N (µ, σ). For unseen n-grams we back-off to
a smaller n-gram model. Results can be found on



Table 5 in the Appendix A.2.
We now turn to describe the F0 prediction pro-

cess. We use a F0 estimation model to predict the
pitch from a sequence of phonetic-content units zc.
Our model, denoted by EF0, is a CNN, followed
by a linear layer projecting the output to Rd. The
final activation layer is set to be a sigmoid such
that the network outputs a vector in [0, 1]d. We ex-
tract the F0 using the YAAPT (Kasi and Zahorian,
2002) algorithm to serve as targets during training.
Next, we normalize the F0 values using the mean
and standard deviation per speaker. We follow a
similar approach to Kim et al. (2018) and discretize
the range of F0 values into d bins represented by
one-hot encodings. Next, we apply Gaussian-blur
on these encodings to get the final supervision tar-
gets denoted by zF0 = (z1F0, . . . , z

T ′
F0) where each

ziF0 ∈ [0, 1]d, and d = 50. Formally, we minimize
the binary-cross-entropy (BCE) for each coordinate
of the target and the network output,

LF0 =

d∑
i=1

BCE(EF0(zc, z
tgt
emo)i, z

i
F0). (2)

During inference multiple frequency bins can
be activated to a different extent, similarly to Kim
et al. (2018) we output the F0 value corresponding
to the weighted-average of the activated bins. This
modeling allows for a better output range when
converting bins back to F0 values, as opposed to a
single representative F0 value per bin. For F0-to-
bin conversion, we use an adaptive binning strategy
such that the probability mass of each bin is the
same, similarly to Kharitonov et al. (2021a). Re-
sults are summarized on Table 4 Appendix A.2
together with additional comparisons to log-F0 es-
timation models, uniform binning, and argmax
decoding.

Notice, the mapping between discrete unit se-
quences and prosodic feature (F0 and durations) is
one-to-many, as it depends on the target emotion.
Hence, we additionally condition both Edur and
EF0 on the target emotion denoted by ztgtemo. Both
model were trained independently.

Speech synthesis. We follow Polyak et al.
(2021), and use a variation of the HiFi-GAN neu-
ral vocoder (Kong et al., 2020). The architecture
of HiFi-GAN consists of a generator G and a set
of discriminators D. We adapt the generator com-
ponent to take as input a sequence of predicted
phonetic-content units inflated using the predicted

durations, predicted F0, target speaker-embedding,
and a target emotion-label. The above features
are concatenated along the temporal axis and fed
into a sequence of convolutional layers that out-
put a 1-dimensional signal. The sample rates of
unit sequence and F0 are matched by means of lin-
ear interpolation, while the speaker-embedding and
emotion-label are replicated.

The discriminators are comprised of two sets:
Multi-Scale Discriminators (MSD) and Multi-
Period Discriminators (MPD). The first type oper-
ates on different sizes of a sliding window over the
signal (2, 4), while the latter samples the signal at
different rates (2,3,5,7,11). Overall, each discrim-
inator Di is trained by minimizing the following
loss function, Ladv(Di, G) =

∑
x ||1 − Di(x̂)||22

and LD(Di, G) =
∑

x ||1−Di(x)||22+ ||Di(x̂)||22,
where x̂ = G(ẑc, EF0(ẑc, zemo), zspk, zemo) is
the time-domain signal reconstructed from the de-
composed representation. There are two additional
loss terms used for optimizing G. The first is a
Mean-Absolute-Error (MAE) reconstruction loss
in the log-mel frequency domain Lrecon(G) =∑

x ||φ(x) − φ(x̂)||1. where φ is the spectral op-
erator computing the Mel-spectrogram. The sec-
ond loss term is a feature matching loss, which
penalizes for large discrepancies in the intermedi-
ate discriminator representations, Lfm(Di, G) =∑

x

∑R
j=1 ||ξj(x)− ξj(x̂)||1 where ξj is the oper-

ator that extracts the intermediate representation
of the jth layer of discriminator Di with R layers.
The overall objective for optimizing the system is:

LG(D,G) =

[ J∑
i=1

Ladv(Di, G) + λfmLfm(Di, G)

]
+ λrLrecon(G),

and LD(D,G)=
∑J

i=1 LD(Di, G), where λfm =
2 and λr = 45.

4 Experimental Setup

We use the Emotional Voices Database (EmoV) for
training and evaluating our model. EmoV consists
of 7000 speech utterances based on transcripts from
the CMU Arctic Database (Kominek and Black,
2004). Each transcript was recorded in multiple
acted emotions (neutral, amused, angry, sleepy, dis-
gusted) by multiple native speakers (two males
speakers and two females speakers).

This allows us to create a dataset of utterance
pairs for the task of translation. Specifically, we



create pairs of utterances that are based on the same
transcript but are recorded with different acted emo-
tions. Due to the small size of this dataset (∼9
hours), we further augment it by creating additional
parallel pairs from different speakers. Overall, the
size of the entire dataset is 78,324 pairs. We split
the data to train/validation/test sets with a ratio of
90/5/5 such that there is no overlap of utterances
between the sets. In our experiments, splitting ran-
domly (e.g., overlapping transcripts) led to a mem-
orization of the utterances and failed to generalize
to unseen data. We explore two data regimes for
pre-training stage: (1) large scale pre-training on a
mix of Librispeech, Blizzard2013 (Chalamandaris
et al., 2013) and EmoV (Adigwe et al., 2018). De-
noted by OURS+; (2) small scale setup in which
we pre-train on VCTK (Yamagishi et al., 2019) and
EmoV. We explore the latter for a fair comparison
with the evaluated baselines. We denote this setup
by OURS−. A full description of architecture hy-
perparameters and pre-training details can be found
in the Appendix A.1.

4.1 Baselines
We compare the proposed method to a text-
less speech emotion conversion method, VAW-
GAN (Zhou et al., 2020b), as well as a State-of-
The-Art (SOTA) text-based emotional voice conver-
sion model, Seq2seq-EVC (Zhou et al., 2021a). We
also evaluate an expressive Text-to-Speech (TTS)
system based on Tacotron2 (Shen et al., 2018). 1

For the text-based approach we use the
Tacotron2 and Seq2seq-EVC models. The input
to Tacotron2 is the ground-truth text representing
the speech content. We modify the Tacotron2 ar-
chitecture by adding a Global-Style-Token (Skerry-
Ryan et al., 2018b) to control for the target emo-
tion. The inputs to Seq2seq-EVC are the ground-
truth phonemes coupled with the source speech
utterance. The output of both systems is the Mel-
spectrogram of the speech utterance in the target
emotion. To reconstruct the time-domain signal we
use the HiFi-GAN vocoder.

All baselines were trained and evaluated on the
EmoV dataset. Seq2seq-EVC and Tacotron2 were
first pre-trained on VCTK.

4.2 Evaluation
Subjective Evaluation. Recall, our goal is to
perform speech emotion conversion. To that end,

1We consider text-based systems as ones using textual
annotations during training.

# units layer no. pre-trained WER PER

100 6 7 88.85 72.17
100 6 3 36.01 29.67
100 9 7 83.72 66.63
100 9 3 31.69 27.90
200 6 7 91.06 77.14
200 6 3 31.97 27.49
200 9 7 84.92 71.45
200 9 3 23.92 25.95

Table 1: Evaluation of different token extraction con-
figurations and the effect of pre-training the translation
model. # units denotes the vocabulary size, layer no.
denotes the layer index used in HuBERT.

we propose a new subjective metric called Emotion-
Mean-Opinion-Classification (eMOC). In an
eMOC study, a human rater is presented with a
speech utterance and a set of emotion categories.
The rater is instructed to select the emotion that best
fits the speech utterance. The eMOC score is the
percentage of raters that selected the target emotion
given a speech recording. The final score is aver-
aged over all raters and utterances in the study. Ad-
ditionally, we measure the perceived audio-quality
using the Mean-Opinion-Score (MOS). When com-
paring MOS and eMOC against baselines, we re-
port results for emotion conversion from Neutral
as all baselines are constrained to Neutral as the
source emotion. With provide additional results
of our system in the any-to-any conversion setting.
The CrowdMOS package (Ribeiro et al., 2011) was
used in all subjective experiments with the recom-
mended recipes for outliers removal. Participants
were recruited using a crowd-sourcing platform.

ASR Based. Our goal is to perform speech emo-
tion conversion while preserving the lexical content
of the speech signal. However, to compare different
translation models with different vocabularies, one
cannot simply use metrics such as BLEU, hence,
we report Word Error Rate (WER) and Phoneme
Error Rate (PER) metrics extracted using a pre-
trained SOTA ASR system 2. As ASR models suf-
fer from performance degradation when evaluated
on expressive speech, WER and PER metrics are re-
ported on emotions converted to neutral: {amused,
angry, sleepy, disgusted}-neutral.

5 Results

We first tune independently the different compo-
nents of our system using objective metrics: the

2We use a BASE wav2vec 2.0 phoneme detection model
trained on LibriSpeech-960h with CTC loss from scratch.



content units extraction configuration, and the
prosodic modeling modules (F0 and duration es-
timators). Next we conduct a subjective evalua-
tion for our best system in terms of audio-quality
(MOS) and perceived emotions (eMOC) and com-
pare the proposed method against the baselines
(Section 4.1). Finally, we run an ablation study
where we measure the impact of each component
on the perceived emotion.

5.1 Model Tuning
Yang et al. (2021) found that intermediate HuBERT
representations obtained from different layers have
an impact on the downstream task at hand. Specif-
ically, when considering spoken language model-
ing, Lakhotia et al. (2021) used the 6th layer, while
Kharitonov et al. (2021a) used layer 9. Addition-
ally, Lakhotia et al. (2021) showed that the number
of units (k) also has an impact on the overall per-
formance of the system. To better understand the
effect of these architectural configurations in our
setting, we experimented with extracting HuBERT
features from layers 6 and 9, using 100 and 200
clusters for the k-means post-processing step. Ad-
ditionally, we measure the impact that pre-training
the translation model has on performance. As we
compare models with different vocabulary sizes,
we cannot use metrics such as BLEU, hence, we
report WER and PER.

For emotion conversion, we find that using the
9th HuBERT layer and 200 tokens performs best.
An evaluation of different model design architec-
tures can be found in Table 1.

5.2 Subjective Evaluation
Figure 3 depicts the MOS, and eMOC scores for
the proposed method and the evaluated baselines.
For a fair comparison against baselines, all emotion
were converted from Neutral. Results suggest that
both OURS− and OURS+ surpass the baselines in
terms of both MOS and eMOC, with the exception
MOS score for Angry and eMOC for Sleepy where
OURS− is comparable to Seq2seq-EVC.

While Tacotron2 and Seq2seq-EVC succeed in
conveying the target emotion, they produce less
natural expressive speech utterances, which is re-
flected in lower MOS. Unlike our method, both
Tacotron2 and Seq2seq-EVC are text-based sys-
tems hence they attempt to learn an alignment
(an attention map) between text inputs and au-
dio targets. This task is particularly challenging
as non-verbal cues (e.g., laughter, breathing) are

(a)

(b)
Figure 3: Sub-figure (a) reports the MOS, measuring
the perceived audio-quality. We report mean scores
with a Confidence Interval of 95%. Sub-figure (b) re-
ports the eMOC score, measuring the perceived emo-
tion. We report mean scores for each emotion (chance
level: 25%). OURS+ was pre-trained on Librispeech,
Blizzard2013 and EmoV, and OURS− was pre-trained
on VCTK and EmoV.

not annotated in the text inputs. We hypothesize
that this misalignment leads to less natural expres-
sive speech production. We provide additional
eMOC results for the proposed method, evaluated
baselines, and ground truth recordings in the Ap-
pendix A.2.

The evaluated baselines considered only Neutral
as the source emotion. As the proposed method sup-
ports many-to-many 3 emotion voice conversion,
we additionally report MOS and eMOC results
when converting from any emotion to any emotion.
Figure 4 summarizes the MOS and eMOC scores
for the many-to-many setting. We additionally pro-
vide the full eMOC results for the many-to-many
setting in the Table 6 of the Appendix A.2. In terms
of MOS, results suggest that converting to Neutral

3from a set of pre-defined emotions
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Figure 4: MOS and eMOC results for many-to-many
emotion conversion. We report MOS score for each
pair of source and target emotions. For eMOC we re-
port percentage of raters that chose the target emotion.

and from Neutral produced the most natural sound-
ing utterances. In terms of eMOC, having Amused
as the source emotion surprisingly yielded the high-
est overall accuracy, with ∼80% of conversions
successful (average of first row in Figure 4b). On
the other hand, the Sleepy emotion was the hardest
to convert, with 12% of raters still choosing Sleepy
after conversion. The pair of emotions that were
hardest to distinguish are Disgusted and Neutral.

5.3 Ablation

Recall, we use a decomposed speech representa-
tion consisting of four feature sets. Here, we gauge
the effect of each feature by gradually adding dif-
ferent components and evaluating their impact on
the eMOC metric. Specifically, we start by evaluat-
ing the source features and replacing the emotion-
token. Then, we predict the unit durations and F0
for the target emotion. Lastly, the full effect of our
method is achieved by incorporating the unit trans-
lation model. For reference, we report results for

Tokens Emotion F0 Duration
eMOC

Amused Angry Disgusted Sleepy

Original – Neutral 20.11 21.66 7.59 17.34

src src src src 20.24 18.62 8.37 17.72

src tgt src src 27.66 25.76 10.83 25.19

src tgt src pred 30.89 35.71 32.11 70.31

src tgt pred pred 79.12 86.11 69.21 79.12

pred tgt pred pred 85.16 90.61 75.89 84.23

Original – Emotion 86.31 89.92 76.18 88.01

Table 2: Effect of components in our system on per-
ceived emotion. First row denotes the ground-truth neu-
tral recordings while last row denotes the ground-truth
emotional recording. “src”, “tgt”, and “pred” denote
features extracted from source speech, target speech,
and predicted by our system respectively.

the original recording, and resynthesized one (i.e.,
using source features only) and the target recording.
Results are summarized in Table 2.

Results suggest that the proposed method is com-
parable to ground-truth recordings in terms of the
perceived emotion. Interestingly, for the Sleepy
emotion, modifying the timbre using the target
emotion-token and adjusting the unit durations is
enough to reach 70.31%, while the rest of the emo-
tions require further processing. For Amused, An-
gry and Disgusted modifying the F0 reaches per-
formance of 5% below the ground-truth recordings.
When applying the entire pipeline results are on
par with the ground-truth.

5.4 Out-of-distribution samples

Due to the size of the EmoV dataset (7000 sam-
ples overall) the number of unique utterance is
small. As a result, the model can memorize the ut-
terances and might fail to generalize to unseen sen-
tences. Hence, we experimented with converting
out-of-domain recordings. To that end, we input
our system with recordings from the LibriSpeech
dataset. As LibriSpeech consists of non-expressive
samples, we treat them as “neutral”. We convert
these samples to different emotions and evaluate
the performance. For evaluation we randomly sam-
pled 20 utterances converted to each emotion. The
proposed method reaches an average eMOC score
of 82.25% ± 7.32 and an average MOS score of
3.69±0.26 across all four emotions (amused, angry,
disgusted, sleepy). When considering the lexical
content, the WER between the ground-truth text
and ASR based transcriptions of the generated au-
dio is 27.92. These results are similar to the ones
reported for the EmoV dataset.



6 Conclusion

We presented a novel textless method for speech
emotion conversion using decomposed and discrete
representations. Using such representations we
suggested casting speech emotion conversion as a
spoken language translation problem. We learn a
mapping to translate between discrete speech units
from one emotion to another. Results suggest the
proposed method outperforms the evaluated base-
lines by a great margin. We demonstrated how
the proposed system is able to model expressive
non-verbal vocalizations as well as generate high-
quality expressive speech. We conclude with an
ablation study and analysis of the different compo-
nents composing our system.

This study serves as the foundation for improv-
ing speech emotion conversion and building gen-
eral textless expressive speech generation models.
For future work, we would like to design and eval-
uate an end-to-end system where we jointly model
content and prosody, as well as extending the cur-
rent work to the non-parallel dataset setting.
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A Appendix

A.1 Implementation Details
We use the sequence-to-sequence Transformer
model as implemented in fairseq (Ott et al.,

2019). The model contains 3 layers for both en-
coder and decoder modules, 4 attention heads, em-
bedding size of 512, FFN size of 512, and dropout
probability of 0.1.

For pre-training, we explore two settings: (1)
large scale – using a mix of LibriSpeech, Bliz-
zard2013 and EmoV, denoted by OURS+; and (2)
small scale – using a mix of VCTK and EmoV, de-
noted by OURS−. We stop training after 3M update
steps. We use the following input augmentations:
Infilling using λ = 3.5 for the Poisson distribution,
Token masking with probability of 0.3, Random
masking with probability of 0.1, and Sentence per-
mutation. Finally, we fine-tune this model on the
task of translation using paired utterances of differ-
ent emotions from EmoV and early-stop using the
loss from Equation 1.

Our F0 prediction modelEF0 consists of six 1-D
convolutional layers, where the number of kernels
per layer is 256 and the respective kernel size is
5. For non-linearity we used the ReLU activation
function followed by layer-norm and dropout (p =
0.1).

Our duration prediction model Edur consists of
two convolutional layers, where the number of ker-
nels per layer is 256 and the respective kernel size
is 3. For non-linearity we used the ReLU activa-
tion function followed by layer-norm and dropout
(p = 0.5).

Computational Resources. All experiments
done in this study are conducted using 8 NVIDIA
V100 GPUs with 32GB memory each.

A.2 Additional Results

Model Architecture We evaluated three weight-
sharing schemes for this model: (i) all emotions
use the same encoder and decoder components of
the Transformer architecture. In this case, we con-
dition the model on the target emotion. This can
be done by prepending a special target emotion
token at the beginning of the decoding procedure.
We denote this approach by “share-all”. (ii) All
emotions share the same encoder but have separate
dedicated decoders. In this case, no target emotion
conditioning is needed. We denote this approach
by “share-enc”. Finally, (iii) each emotion has a
dedicated encoder and decoder. We denote this
approach by “share-none”. We evaluated all three
approaches and summarized the results in Table 3.

We report the BLEU score (Papineni et al., 2002)
and Unit Error Rate (UER). UER measures relative

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/ICASSP40776.2020.9053541
https://doi.org/10.1109/ICASSP40776.2020.9053541
https://doi.org/10.1109/ICASSP40776.2020.9053541
https://doi.org/10.21437/Interspeech.2020-3094
https://doi.org/10.21437/Interspeech.2020-3094


edit-distance between the target unit sequence and
the generated unit sequence. We additionally report
the WER and PER metrics extracted using a pre-
trained SOTA ASR system 4. Results are reported
on emotions converted to neutral: {amused, angry,
sleepy, disgusted}-neutral. The BLEU and UER
metrics are computed using all emotion pairs from
Neutral and to Neutral.

Architecture BLEU UER WER PER

Share-all 31.97 42.56 25.47 26.44
Share-enc 32.22 41.16 23.91 25.41

Share-none 32.37 41.38 23.91 25.95

Table 3: Evaluation of three weight-sharing schemes
for the translation model.

It can be seen that the share-enc and share-none
architectures are comparable, while the share-all
configuration is inferior. Although both share-
enc and share-none configurations are similar in
terms of lexical reconstruction, in our listening tests
share-none generated more expressive speech.

F0 estimation module We evaluate the F0 es-
timation model using the Mean Absolute Error
(MAE) between ground-truth F0 and predicted F0.
In this experiment, we explore a number of config-
urations for training such an estimator. Specifically,
we evaluate different binning strategies, normal-
ization methods and prediction rules. For binning
strategies, we explore adaptive binning vs. uni-
form binning. Under normalization, we explore
no normalization, mean normalization and mean
& standard deviation normalization5. Finally, in
addition to the weighted-average prediction rule de-
scribed in Section 3.2, we also evaluate an argmax
prediction rule where the highest scoring bin is pre-
dicted. Results are summarized in Table 4, “Log”
denotes applying the logarithm function before nor-
malization.

Results suggest that the weighted-average predic-
tion rule is preferable to argmax, especially when
used in conjunction with adaptive binning. This
can be explained by large-range bins in the adap-
tive case, leading to larger MAE when selecting
a single bin using the argmax operator. Although
adaptive quantization reaches the best performance,
under specific settings uniform quantization can
reach comparable results. For normalization, it is

4We use a BASE wav2vec 2.0 phoneme detection model
trained on LibriSpeech-960h with CTC loss from scratch.

5The mean and standard deviation are computed using the
F0 values per speaker.

Log Quantization Norm. Prediction MAE

7 uniform 7 argmax 83.51
7 uniform 7 w-avg 44.92
7 uniform mean argmax 53.74
7 uniform mean w-avg 35.63
7 uniform mean-std argmax 63.01
7 uniform mean-std w-avg 35.69
7 adaptive 7 argmax 129.7
7 adaptive 7 w-avg 45.21
7 adaptive mean argmax 127.8
7 adaptive mean w-avg 36.06
7 adaptive mean-std argmax 155.7
7 adaptive mean-std w-avg 35.38
3 uniform 7 argmax 62.69
3 uniform 7 w-avg 67.40
3 uniform mean argmax 52.24
3 uniform mean w-avg 63.67
3 uniform mean-std argmax 50.95
3 uniform mean-std w-avg 51.25
3 adaptive 7 argmax 127.9
3 adaptive 7 w-avg 67.40
3 adaptive mean argmax 110.4
3 adaptive mean w-avg 54.21
3 adaptive mean-std argmax 144.9
3 adaptive mean-std w-avg 51.25

Table 4: Evaluation of different F0 estimation configu-
rations. The MAE is reported for voiced frames only.

Model MAE Acc@0ms Acc@20ms Acc@40ms

CNN 0.77 51.12 86.24 94.08
1-gram 1.47 29.41 67.34 83.26
3-gram 1.16 36.78 76.04 88.32
5-gram 1.02 37.32 81.36 90.46

Table 5: Evaluation of four duration prediction models.
CNN architecture is as described in (Ren et al., 2020).

preferable to normalize, the specific normalization
method has little impact on performance.

Duration prediction module. We evaluate the
duration prediction models using the MAE be-
tween target and predicted durations. For a more
complete analysis, we also report the accuracy us-
ing thresholds of 0ms, 20ms and 40ms. We explore
a CNN duration predictor similarly to (Ren et al.,
2020) and three n-gram based models. The results
are summarized in Table 5. As expected, the CNN
outperforms n-gram models, with ∼94% accuracy
when considering a tolerance level of 40ms.

eMOC Confusion Matrices We provide the
eMOC confusion matrices for samples generated
by each of the evaluated models and the ground
truth recordings. See Figures 5, 6, 7, 8, 9, 10. We
additionally provide the full eMOC results for the
many-to-many setting in the Table 6.
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Figure 5: Ground Truth Recordings
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Figure 6: OURS+
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Figure 7: OURS−
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Figure 8: Seq2Seq-EVC

A.3 Subjective Evaluation

For the crowed-sourced subjective evaluations we
computed the MOS and eMOC metrics. For the
MOS metric raters were asked: “Rate the quality
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Figure 9: Tacotron2
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Figure 10: VAW-GAN

and naturalness of the given speech utterance on a
scale of 1 to 5 (1 being of low quality and natural-
ness and 5 being of high quality and naturalness)”.
For the eMOC raters were asked: “Select the emo-
tion for the given emotion categories that best suits
the given speech utterance”.

All raters are native English speakers located in
the United-States.

B Risks & Limitations

The main risks in the proposed approach (as in
any generative model) is the development of a
high quality and natural speech synthesis model.
Such technology might be used to alter emotion in
speech recordings. To deal with that we limit the
number of speakers that can be synthesized with
the proposed approach using a look-up-table. An-
other potential risk of the proposed method which
is also one of its limitations is that the generated
speech content is not always perfect, hence might
lead to wrong pronunciations. As described in the
results section, the WER of the proposed system
is ∼27.92 which means we still have a big room
for improvement. Another limitation of the current
approach is the need for parallel corpus to convert
between different emotions.



Source Target Amused Angry Disgusted Sleepy Neutral

Amused

Amused - - - - -
Angry 0.06 0.81 0.04 0.04 0.05
Disgusted 0.04 0.04 0.77 0.01 0.14
Sleepy 0.06 0.02 0.03 0.85 0.04
Neutral 0.06 0.07 0.09 0.03 0.75

Angry

Amused 0.83 0.07 0.04 0.02 0.04
Angry - - - - -
Disgusted 0.05 0.12 0.59 0.07 0.17
Sleepy 0.04 0.06 0.03 0.82 0.05
Neutral 0.06 0.08 0.04 0.03 0.79

Disgusted

Amused 0.71 0.08 0.1 0.05 0.06
Angry 0.03 0.78 0.05 0.09 0.05
Disgusted - - - - -
Sleepy 0.09 0.06 0.05 0.72 0.08
Neutral 0.08 0.02 0.1 0.03 0.77

Sleepy

Amused 0.63 0.02 0.12 0.14 0.09
Angry 0.06 0.77 0.03 0.09 0.05
Disgusted 0.03 0.07 0.66 0.13 0.11
Sleepy - 0 - - -
Neutral 0.05 0.08 0.12 0.12 0.63

Neutral

Amused 0.7 0.08 0.06 0.08 0.08
Angry 0.06 0.77 0.06 0.07 0.04
Disgusted 0.08 0.07 0.63 0.1 0.12
Sleepy 0.06 0.02 0.03 0.79 0.1
Neutral - - - - -

Table 6: Subjective evaluation for any-to-any emotion
conversion. The “source” and “target” columns repre-
sent the source and target emotion respectively. Each
emotion column (Amused, Angry, Disgusted, Sleepy
and Neutral columns) represent the percentage of hu-
man raters that chose the said emotion when converting
from source to target emotion.


