
Positive Unlabeled Contrastive Learning

Anish Acharya∗
UT Austin

Sujay Sanghavi
UT Austin & Amazon

Li Jing
Meta

Bhargav Bhushanam
Meta

Dhruv Choudhary
Meta

Michael Rabbat
McGill University & Meta

Inderjit Dhillon
UT Austin & Google

Abstract

Self-supervised pretraining on unlabeled data followed by supervised finetuning
on labeled data is a popular paradigm for learning from limited labeled examples.
In this paper, we investigate and extend this paradigm to the classical positive unla-
beled (PU) setting - the weakly supervised task of learning a binary classifier only
using a few labeled positive examples and a set of unlabeled samples. We propose
a novel PU learning objective positive unlabeled Noise Contrastive Estimation
(puNCE) that leverages the available explicit (from labeled samples) and implicit
(from unlabeled samples) supervision to learn useful representations from positive
unlabeled input data. The underlying idea is to assign each training sample an
individual weight; labeled positives are given unit weight; unlabeled samples are
duplicated, one copy is labeled positive and the other as negative with weights π
and (1− π) where π denotes the class prior. Extensive experiments across vision
and natural language tasks reveal that puNCE consistently improves over existing
unsupervised and supervised contrastive baselines under limited supervision.

1 Introduction

Figure 1: Comparison of PU Learning al-
gorithms: All-Conv trained on PU CIFAR
(vehicle / animal) for varying number of la-
beled positive samples nP = 1k(2%), 3k(6%),
10k(20%). The proposed contrastive loss
puNCE significantly improves over current
PU baselines.

Learning from limited amount of labeled data is a long-
standing challenge in modern machine learning. Owing
to its recent widespread success in both computer vision
and natural language processing tasks (Chen et al., 2020c;
Grill et al., 2020; Radford et al., 2021; Gao et al., 2021;
Dai and Le, 2015; Radford et al., 2018) self supervised
pretraining followed by supervised finetuning has become
the de-facto approach to learn from limited supervision.

These approaches typically leverage unlabeled data in a
task agnostic manner during pretraining and use the avail-
able label information during finetuning (Hinton et al.,
2006; Bengio et al., 2006; Mikolov et al., 2013; Kiros
et al., 2015; Devlin et al., 2018; Zbontar et al., 2021; As-
sran et al., 2020). In this context, contrastive learning has
emerged as one of the most promising approach to learn
useful representations from unlabeled data by encouraging
them to be invariant to distortions.

This paper investigates and extends contrastive representation learning to the Positive Unlabeled
(PU) Learning (Denis, 1998) setting - the weakly supervised task of learning a binary classifier in

∗work done while interning at Meta.

Preprint. Under review.

ar
X

iv
:2

20
6.

01
20

6v
1

 [
cs

.L
G

]
 1

 J
un

 2
02

2

Figure 2: Learning from Positive Unlabeled data. No negative examples are labeled i.e. a classifier needs
to be trained from an incomplete set of positive and a set of unlabeled samples such that it can discriminate
between samples from positive and negative classes.

absence of any explicitly labeled negative examples i.e. using an incomplete set of positive and
a set of unlabeled samples. PU learning also implies learning under distribution shift since it
involves generalization to unseen negative class (Garg et al., 2021). This setting arises naturally in
several real world applications where obtaining negative samples is either too resource intensive or
improbable. For example, consider personalized recommendation systems (Naumov et al., 2019)
where the training data is typically extracted from user feedback. Since explicit user feedback (e.g.
user ratings) is hard to obtain, most practical recommendation systems rely on implicit user feedback
(e.g. browsing history) (Kelly and Teevan, 2003) which usually indicates user’s positive preference
(e.g. if a user browses a product frequently or watched a movie then the user-item pair is labeled
positive) (Chen et al., 2021). This setup has also been motivated by applications like gene and
protein identification (Elkan and Noto, 2008), anomaly detection (Blanchard et al., 2010) and matrix
completion (Hsieh et al., 2015).

While self supervised contrastive losses e.g. InfoNCE (Gutmann and Hyvärinen, 2010) have gained
remarkable success in unsupervised representation learning; recent works (He et al., 2020; Kolesnikov
et al., 2019) have pointed out that purely self-supervised approaches often produce inferior visual
representation compared to fully supervised approaches. To address this issue, researchers (Khosla
et al., 2020; Assran et al., 2020; Graf et al., 2021) proposed supervised variants of contrastive loss
(SCL) that, by leveraging available supervision, is able to obtain equally (or even more) discriminative
representations as fully supervised cross entropy objective. Motivated by these observations, our
goal is to design a contrastive loss leveraging the available weak supervision in an efficient manner
to learn rich representation gB(x) from Positive Unlabeled dataset, which is able to discriminate
between positive and negative classes.

To this end, we propose puNCE (positive unlabeled Noise Contrastive Estimation) - a novel con-
trastive training objective that extends the standard self supervised infoNCE (Gutmann and Hyvärinen,
2010; Chen et al., 2020b) loss to the positive unlabeled setting; by incorporating available biased
supervision. Unlike recent supervised variants of infoNCE (Khosla et al., 2020; Assran et al., 2020;
Zhong et al., 2021) which can only leverage explicit (strong) supervision (e.g in form of labeled data),
puNCE is also able to leverage implicit (weak) supervision from the unlabeled data. The main idea
is to use the fact that unlabeled data is distributed as a mixture of positive and negative marginals
where the mixture proportion is given by class prior π (Elkan and Noto, 2008; Niu et al., 2016;
Du Plessis et al., 2014; Elkan, 2001). puNCE treats each unlabeled sample as a positive example
and a negative example with appropriate probabilities and further uses the available explicit label
information (i.e. set of positive labeled samples) to pull together multiple positive samples in the
embedding space (Khosla et al., 2020). Our experiments across PU and binary semi-supervised
settings suggest that in settings with limited supervision puNCE can be particularly effective and often
produce stronger representations than both infoNCE and its supervised variants (Khosla et al., 2020;
Assran et al., 2020). Our experiments on standard PU learning benchmarks reveal that even with small
amount of weak supervision, puNCE can dramatically improve the quality of the resulting embedding
compared to unsupervised contrastive training using infoNCE. For example, on PU CIFAR10 with

2

ResNet-18 puNCE achieves over 3% improvement compared to infoNCE while using 20% labeled
data, and over 2% improvement when using only 5% labeled data. We further show that the resulting
PU Learning approach i.e. contrastive training the encoder using puNCE, followed by freezing the
encoder and training a linear layer on top using standard cost-sensitive PU loss (Elkan and Noto,
2008; Du Plessis et al., 2014; Kiryo et al., 2017) results in significant improvement in generalization
performance compared to current state-of-the-art (Figure 1, Table 2). For example, on PU CIFAR-10
benchmark with only 1k positive labeled samples (i.e. rest 49k training samples unlabeled), our
contrastive approach improves over existing PU learning approaches by 8.9% with a ResNet-18.

Our contributions can be summarized as follows:

• We investigate the limitation of general self-supervised pretraining and finetuning approach on the
weakly supervised PU learning task. We observe that self supervised contrastive losses are unable
to leverage available supervision and produce inferior representations compared to fully supervised
approaches. The gains from existing supervised contrastive losses are also limited when amount of
explicitly labeled data is small (Table 1).

• We propose a novel contrastive training objective - puNCE (positive unlabeled Noise Contrastive
Estimation), that extends contrastive loss to the positive unlabeled setting by incorporating the
available biased supervision via appropriately re-weighting the samples.

• We perform experiments on three settings with limited supervision - (a) Positive Unlabeled Classi-
fication, (b) Binary semi-supervised (PNU) classification and (c) Contrastive few shot finetuning of
pretrained language model. Across all the setting, puNCE consistently outperforms supervised and
unsupervised contrastive losses and is especially powerful when available supervision is scarce.
On PU classification task, contrastive pretraining with puNCE results in large improvement over
current state-of-the-art PU learning algorithms (Table 2).

2 Problem Setup.

2.1 Positive Unlabeled Learning.

Let x ∈ Rd, d ∈ N and y ∈ {±1} be the input and output random variables respectively and p(x, y)
be the true underlying joint density of (x, y). PU dataset XPU is composed of two independent sets
of data, sampled uniformly at random from p(x, y): an incomplete set XP of np data-points with
positive class and a set XU of nu unlabeled samples:

XP = {xPi }
np

i=1 ∼ p(x|y = 1); XU = {xUi }
nu
i=1 ∼ p(x); XPU = XP ∪ XU (1)

Since information about y is unavailable for all samples, it is convenient to define an indicator random
variable s such that: s = 1 if x is labeled and 0 otherwise. Now viewing x, y, s as random variables
allows us to assume that there is some true underlying distribution p(x, y, s) over triplets (x, y, s)
however, for each sample only (x, s) is recorded. The definition of PU dataset (1) immediately
implies the following two results:

P (y = +1|s = 1) = 1 , p(s = 1|y = −1) = 0 (2)

Assumption 1 (Known Class Prior). Throughout the paper, we assume that the class prior π =
p(y = +1) is either known or can be efficiently estimated fromXPU via mixture proportion estimation
algorithm (Christoffel et al., 2016; Ramaswamy et al., 2016; Ivanov, 2020; Garg et al., 2021).

Note that, this is a standard assumption made in PU Learning literature and is at the heart of most
classical cost sensitive PU Learning algorithms (Elkan and Noto, 2008; Kiryo et al., 2017; Du Plessis
et al., 2014; Chen et al., 2020a; Niu et al., 2016).

The PU Learning task is thus to train a classifier f : Rd → R using only PU observations (x, s) and
knowledge of π, such that f(x) is a close approximation of p(y = +1|x). Where, f is parameterized
in terms of a linear layer v ∈ Rk and feature extractor gB(x) ∈ Rk×d i.e.

fv,B = vT gB(x) : Rd → R , gB(x) ∈ Rk×d , v ∈ Rk (3)

3

2.2 Contrastive Representation Learning.

The main idea of contrastive learning (Sohn, 2016; Wu et al., 2018) is to contrast semantically similar
and dissimilar samples - encouraging the representations of similar pairs to be close and that of the
dissimilar pairs to be more orthogonal.

In particular, at iteration t, given a randomly sampled batch Dt = {xi ∼ p(x)}bi=1 of b data points,
the corresponding multi-viewed batch consists of 2b data points D̃t = {xi}2bi=1 where x2i−1 and
x2i are two views of xi ∈ Dt obtained via stochastic augmentations (Chen et al., 2020d; Tian
et al., 2020). Within the multi-viewed batch, consider an arbitrary augmented data point indexed by
i ∈ I ≡ {1, . . . , 2b} and let a(i) be the index of the corresponding augmented sample originating
from the same source sample. Denote the embedding of sample xi as zi = gBt

(xi), then the self
supervised contrastive loss infoNCE (Gutmann and Hyvärinen, 2010; Oord et al., 2018) is given as:

LinfoNCE =
∑
i∈I

`
(i)
InfoNCE =

∑
i∈I

[
− log

exp (zi · za(i)/τ)∑
k∈I\{i} exp (zi · zk/τ)

]
(4)

In this context xi is commonly referred to as the anchor, xa(i) is called positive and the other 2(b−1)
samples are considered negatives. Simply put, InfoNCE loss pulls the anchor and the positive in the
embedding space while pushing away anchor from negatives.

Projection Layer. Rather than directly using the output of the encoder gB(x) to contrast samples, it
is common practice (Chen et al., 2020b; Zbontar et al., 2021; Grill et al., 2020; Khosla et al., 2020;
Assran et al., 2020) to feed the representation through a projection network hθproj to obtain a lower
dimensional representation before comparing the representations i.e. instead of using zi = gBt

(xi),
in practice we consider zi = hθproj (gBt

(xi)). The projector is only used during optimization and
discarded during downstream transfer task.

Contrastive learning with supervision. Supervised Contrastive Learning (SCL) (Khosla et al.,
2020; Zhong et al., 2021; Graf et al., 2021; Assran et al., 2020) is a supervised variant of infoNCE
that considers multiple positive pairs from other samples belonging to the same class as anchor in
addition to the augmented view. in fully supervised setting, SCL can be computed as:

LSCL =
∑
i∈I

`
(i)
SCL = −

∑
i∈I

1

|Q(i)|
∑
j∈Q(i)

log
exp (zi · zj/τ)∑

k∈I\{i} exp (zi · zk/τ)
(5)

where, Q(i) = {t ∈ {I \ {i}} : yt = yi} denote the set of all samples in the current batch that belong
to the same class as the anchor.

3 Positive Unlabeled NCE

We propose puNCE (positive unlabeled InfoNCE) that extends the self supervised InfoNCE loss to
the PU learning setting. The main idea of puNCE is to consider an unlabeled sample as positive with
probability π and negative with probability (1− π). This follows from Bayes rule since we can write
the marginal density of the unlabeled data as:

p(x) = πp(x|y = 1) + (1− π)p(x|y = −1) (6)

In particular, consider a labeled anchor xi ∈ XP , the puNCE risk corresponding to xi is computed
by pulling together normalized embeddings of all the available labeled samples in multi-viewed
batch D̃t as opposed to InfoNCE which only considers xa(i) as positive. This holds, since all labeled
samples are guaranteed to come from the same latent class as xi (2) . Given multi-view batch D̃t, let
P ≡ {k ∈ I : sk = 1} denote the set of indices of all labeled samples and U ≡ {k ∈ I : sk = 0}
indexes the unlabeled samples i.e. U ≡ I \ P. Then, puNCE empirical risk `P for the labeled
samples is given as:

`P =
∑
i∈P

`
(i)
puNCE = −

∑
i∈P

1

|P| − 1

∑
j∈P\{i}

log
exp (zi · zj/τ)∑

k∈I\{i} exp (zi · zk/τ)
(7)

On the other hand, unlabeled anchor xi ∈ XU , is treated as positive example with probability
π = p(y = 1|s = 0) and as negative example with probability (1− π). When considered positive

4

(a) infoNCE (b) puNCE (np = 1k) (c) puNCE (nP = 3k)

Figure 3: Performance with increased Label Information t-SNE visualization of learned representations on
CIFAR10. Classes are indicated by colors. Clearly the modified PUNCE objective leads to better class separation
than InfoNCE. Further, we also note that the quality of the representation improves with increasing available
positive labeled samples as expected intuitively.

Dataset gB(·) nP infoNCE DCL SCL puNCE

PU MNIST
(odd/even) MLP

1k 94.15±0.15 94.32±0.42 94.24±0.09 94.70±0.19
3k 94.84±0.25 95.09±0.36 95.82±0.18 96.01±0.21

10k 95.15±0.05 95.45±0.08 98.29±0.08 98.27±0.11

PU CIFAR
(animal / vehicle) ResNet18

1k 96.33±0.14 96.21±0.11 97.42±0.07 97.59±0.17
3k 96.51±0.06 96.49±0.03 97.66±0.04 97.87±0.04

10k 96.58±0.04 96.50±0.02 97.70±0.07 97.95±0.02

Table 1: Linear Evaluation of different contrastive losses - infoNCE (Chen et al., 2020b), DCL (Chuang et al.,
2020), SCL (Khosla et al., 2020) under Positive Unlabeled setting. puNCE is particularly effective when
available supervision is limited. As we increase supervision, SCL starts to improve and become comparable.
This interplay follows from the fact that they become equivalent in the fully supervised setting.

(y = +1), all the labeled samples along with unlabeled augmentation xa(i) are used as positive
pairs for xi. Whereas, when it is considered negative (y = −1), since there are no available labeled
negative samples puNCE treats only augmentation xa(i) as positive pair. The empirical risk on
unlabeled samples `U is thus computed as:

`U =
∑
i∈U

`
(i)
puNCE = −

∑
i∈U

 π

|P|+ 1

∑
j∈{P,a(i)}

log
exp (zi · zj/τ)∑

k∈I\{i} exp (z
t
i · zk/τ)

+(1− π) log
exp (zi · za(i)/τ)∑

k∈I\{i} exp (zi · zk/τ)

] (8)

The first term of (8) denotes the loss incurred by the positive contribution of the unlabeled samples and
the second term corresponds to the negative counterpart. Combining (7), (8) the puNCE empirical
risk can be computed as:

LpuNCE =
1

|D̃t|

∑
i∈I

`
(i)
puNCE =

1

2b

[∑
i∈P

`
(i)
puNCE +

∑
i∈U

`
(i)
puNCE

]
=

1

2b
[`P + `U] (9)

This simply says that, in essence puNCE assigns each training example an individual weight. In
particular, all the labeled samples are given unit weight and the unlabeled samples are duplicated;
one copy is labeled positive with weight π and the other copy is labeled negative with weight (1− π).
Extension to binary semi-supervised learning. PU Learning is closely related to semi-supervised
learning. In semi-supervised learning labeled samples from both the classes along with unlabeled
samples are available i.e. it contains three independent sets of samples: positive labeled, negative
labeled and unlabeled samples (referred to as positive negative unlabeled (PNU) learning). A natural
question to ask is if the idea of using implicit weak supervision from the unlabeled samples can also
help in the general binary semi-supervised learning setting i.e. when the training data is limited but
unbiased. Let P, N and U denote the set of labeled positive, labeled negative and unlabeled samples

5

respectively and Q(i) = {t ∈ {I \ {i}} : yt = yi} denote the set of all samples in the current batch
that belong to the same class as the anchor and P(i) = {P, a(i)}, N(i) = {N, a(i)}, I(i) = I \ i.
Then the puNCE loss in the PNU setting takes the following form:

LPNUpuNCE = − 1

2b

 ∑
i∈P∪N

1

|Q(i)|
∑
Q(i)

log
exp (zi · zj/τ)∑

k∈I\{i} exp (zi · zk/τ)

+
∑
i∈U

 π

|P(i)|
∑
j∈P(i)

log
exp (zi · zj/τ)∑

k∈I(i) exp (z
t
i · zk/τ)

+
1− π
|N(i)|

∑
j∈N(i)

log
exp (zi · zj/τ)∑

k∈I(i) exp (z
t
i · zk/τ)

(10)

Supervised and Unsupervised Setting. It is straightforward to see that in the fully supervised
setting puNCE reduces to SCL and in the unsupervised setting it is equivalent to infoNCE.

4 Related Work

PU Learning. Owing to its importance in several real world problems (e.g. recommendation),
developing specialized learning algorithms for PU setting have received renewed impetus in the
machine learning community. Most of the recent research in this area can be broadly categorized
into two major class of algorithms - based on how they handle unlabeled samples. At a high level,
the first class of algorithms (Liu et al., 2002, 2003; Bekker and Davis, 2020; Luo et al., 2021; Chen
et al., 2020d) tries to identify potential (with high confidence) negative, positive or both samples from
the unlabeled pool of data; then perform traditional supervised learning together with the available
labeled P data. The second set of algorithms (Elkan and Noto, 2008; Du Plessis et al., 2014; Kiryo
et al., 2017) instead rely on finding appropriate weights for the positive and unlabeled samples and
then performing standard cost sensitive training (Elkan, 2001). Our approach is closely related to the
second set of methods as we treat each unlabeled sample as a convex combination of positive and
negative samples and weight them accordingly.

Contrastive Loss. Self-supervised learning has demonstrated superior performances over supervised
methods on various benchmarks. Joint-embedding methods (Chen et al., 2020b; Grill et al., 2020;
Zbontar et al., 2021; Caron et al., 2021) are one the most promising approach for self-supervised
representation learning where the embeddings are trained to be invariant to distortions. To prevent
trivial solutions, a popular method is to apply pulsive force between embeddings from different
images, known as contrastive learning. Contrastive loss is shown to be useful in various domains,
including natural language processing (Gao et al., 2021), multimodal learning (Radford et al., 2021).
Contrastive loss can also benefit supervised learning (Khosla et al., 2020).

5 Experiments

In this section we state our experimental setup, present our empirical findings and discuss insights
about how puNCE benefits learning from weak supervision. We compare puNCE with other popular
contrastive losses including losses that can leverage available supervision. We also perform several
ablations on puNCE and downstream PU classification. To ensure reproducibility, all the experiments
are run with deterministic cuDNN back-end and repeated 5 times with different random seeds and
the confidence intervals are noted.

Datasets. We evaluate puNCE on several common PU Learning image and text classification
benchmarks consistent with recent literature (Garg et al., 2021; Chen et al., 2020d; Kiryo et al.,
2017). In particular, for vision benchmarks we consider the following binary versions of MNIST
and CIFAR10. (i) CIFAR10 (Vehicle / Animal): Animal images (bird, cat, deer, dog, frog, horse)
are treated as negative and Vehicle images (airplane, automobile, ship, truck) are treated as positive.
(ii) MNIST (Odd / Even): Separate the odd digits (1, 3, 5, 7, 9) from the even digits (0, 2, 4, 6, 8).
We perform text classification, on SST2 sentiment dataset (Socher et al., 2013) where the goal is
to classify positive and negative reviews. We simulate PU settings from the binary data as follows:
from the true positive samples in the training data we sample nP samples uniformly at random and
label them positive while we mark the remaining training samples as unlabeled. For example, PU

6

Dataset Encoder Algorithm nP = 1k nP = 3k nP = 10k

PU CIFAR
(vehicle/animal)

ResNet 18

PN (Elkan and Noto, 2008) 68.19±1.38 68.12±0.17 79.64±0.28
PvU (Elkan and Noto, 2008) 88.39±0.15 90.16±0.19 93.54±0.21
uPU(Du Plessis et al., 2014) 87.94±0.54 89.53±0.12 92.37±0.35

nnPU (Kiryo et al., 2017) 88.69±0.08 89.46±0.22 91.58±0.21
vPU(Chen et al., 2020a) 75.71±0.31 83.64±0.28 89.65±0.19

puNCE(This work) 97.59±0.17 97.87±0.04 97.95±0.02

All Conv

PvU (Elkan and Noto, 2008) 59.86±0.15 61.20±0.24 75.25±0.79
uPU (Du Plessis et al., 2014) 86.93±0.28 88.22±0.83 90.26±1.60

nnPU (Kiryo et al., 2017) 88.90±0.30 89.23±0.33 92.90±0.58
SelfPU (Chen et al., 2020d) 89.68±0.22 90.77±0.21 -

vPU (Chen et al., 2020a) 87.84±0.47 89.45±0.39 93.38±0.02
puNCE (This work) 96.37±0.14 97.13±0.10 98.34±0.09

PU MNIST
(Odd/even) MLP

PN (Elkan and Noto, 2008) 65.32±0.90 94.16±0.26 97.02±0.19
PvU(Elkan and Noto, 2008) 91.10±0.91 93.71±0.91 95.31±0.48
uPU(Du Plessis et al., 2014) 91.14±0.87 93.84±0.16 96.43±0.20

nnPU(Kiryo et al., 2017) 91.83±0.79 95.53±0.29 97.18±0.12
puNCE 94.70±0.19 96.01±0.21 98.27±0.11

Table 2: PU Computer Vision Benchmarks. We compare our contrastive PU Learning approach i.e. training
encoder gB using puNCE, subsequently freezing the encoder and only training a linear layer on top. For all
these experiments linear probing is done using nnPU loss.

MNIST(Odd / Even) training dataset with nP = 1k consists of 1k labeled samples (positive) and 59k
unlabeled (29k true positive and 30k true negatives) samples. On the other hand to simulate binary
semi-supervised PNU setting, we instead randomly sample nl indices and keep the corresponding
true label (labeled samples can contain both true positives and negatives), while all the other samples
are marked as unlabeled (s = 0).

Learner Architecture. Recall that, our PU learneris parameterized in terms of an encoder gB(·)
with parameters B and a linear layer with parameters v. On PU-CIFAR(Animal/Vehicle) we perform
experiments with ResNet18 (He et al., 2016) and All convolution net (Springenberg et al., 2014)
encoders. For PU-MNIST(Odd/Even) we train a MLP encoder with ReLU activation. For SST2
dataset we use a pretrained RoBERTa encoder (Liu et al., 2019).

Contrastive Loss Baselines. We compare puNCE with several popular contrastive losses including
unsupervised variants - InfoNCE (Chen et al., 2020b), Debiased Contrastive Learning (DCL) (Chuang
et al., 2020) as well as variants that can leverage explicit supervision - Supervised Contrastive Learning
(abbreviated SupCon) (Khosla et al., 2020; Assran et al., 2020). Following the setup of prior work on
learning with limited supervision (Chen et al., 2020c; Assran et al., 2020) we adopt SCL to the PU
setting in the following manner: At iteration t, given an augmented batch D̃t, on the labeled samples
the contrastive loss is computed using SupCon loss while on the unlabeled samples in the augmented
batch we compute the loss using standard infoNCE objective.

LPUSCL = − 1

2b

∑
i∈P

1

|P| − 1

∑
j∈P\{i}

log
exp (zi · zj/τ)∑

k∈I(i) exp (zi · zk/τ)
+
∑
i∈U

`
(i)
infoNCE

 (11)

PU Learning Baselines. We compare the downstream PU classification performance of puNCE
against many related PU Learning algorithms at different levels of supervision (nP = 1k, 3k, 10k).
Our baselines include: PN (Naumov et al., 2019; Elkan and Noto, 2008) - considering all the unlabeled
samples as negative and performing binary classification using standard loss (e.g. CE), cost sensitive
approaches like PvU (Elkan, 2001), uPU (Du Plessis et al., 2014), nnPU (Kiryo et al., 2017), and
other approaches like vPU (Chen et al., 2020a),SelfPU (Chen et al., 2020d).

5.1 Contrastive Positive Unlabeled Learning

In this section we evaluate the performance of the proposed puNCE loss on downstream PU clas-
sification problem. As discussed before, our contrastive PU learning approach involves training

7

(a) Contrastive pretraining (b) Linear Probing (c) Training Stability

Figure 4: (ResNet18 - PU CIFAR10) (4a) Comparing different contrastive learning approaches on downstream
PU classification task across different amount of supervision (nP = 1k, 3k, 10k). (4b) Linear probing on top of
puNCE features using standard supervised cross entropy (PN), nnPU (Kiryo et al., 2017), uPU (Du Plessis et al.,
2014). (4c)Test accuracy during training with puNCE initialization and random initialization of linear layer.

encoder gB(·) using contrastive loss, followed by training a linear layer on top using standard positive
unlabeled loss (e.g. nnPU (Kiryo et al., 2017)). For non contrastive classic PU baselines both the
encoder (B) and the linear layer (v) are jointly trained using the PU loss. Contrastive training is
done using LARS optimizer (You et al., 2019), temperature set to 0.5. We used batch size 2048 for
CIFAR10 experiments and 1024 for MNIST experiments. We used an initial learning rate of 0.01
with cosine annealing learning rate for 300 epochs on PU CIFAR10 and 200 epochs for PU MNIST.

Fine Tune vs Linear Probe.
Table 3: Comparing different transfer methods on train-
ing ResNet18 on PU CIFAR 10 - Linear probing per-
forms consistently better than fine-tuning.

nP LP FT

1k 97.59±0.17 92.96±0.19 (↓ 4.36)
3k 97.87±0.04 95.83±0.15 (↓ 2.04)
10k 97.95±0.02 97.41±0.09 (↓ 0.54)

After initializing the learner with the trained
encoder parameters, we explore two popular
transfer methods to transfer to the downstream
Positive Unlabeled task - fine tuning (updating
both v and B), linear probing (updating v while
freezing the lower layers) using the PU training
dataset.

In standard ID setting i.e. when finetuning data
and test data come from the same distribution, it
is well known that finetuning results in better ID generalization performance than linear probing (He
et al., 2020; Zhai et al., 2019). However, in the PU setting we observe that finetuning consistently
under-performs linear probing. In fact, as the bias increases (i.e. for lower nP), the gap becomes
more significant (see Table 3). One possible way to explain this phenomenon is through feature
distortion theorem (Kumar et al., 2022). Suppose, there exists an optimal B∗ and v∗ and suppose our
representation quality is good such that our encoder parameters B0 satisfies minU ‖B0 − UB∗‖ ≤ ε
over all rotation matrices U ∈ Rk×k and v is initialized randomly to v0. Then we know that
v0v

T
0 −B0B

T
0 = vftv

T
ft −BftBTft where vft, Bft denote the parameters post finetuning (Du et al.,

2020). This suggest that since in PU setting the training data is biased, finetuning on it can result
in significant feature distortion resulting in large error on data with large distribution shift. This is
consistent with our observation, since as we reduce number of labeled samples i.e. we increase the
bias and for small nP , the distribution shift is large resulting in larger drop in performance.

Fine tune loss. We experiment with different cost sensitive PU losses to during linear probing. We
notice that they perform similarly with nnPU performing marginally better (Figure 4b).

Stability of PU Learning. The classical cost-sensitive PU learning algorithms are notoriously
unstable and tend to overfit the data. These methods need careful hyper parameter tuning and early
stopping. Interestingly, we observe that when the model is initialized with parameters obtained from
puNCE pretraining, the PU training becomes much more stable (Figure 4c) suggesting that puNCE
pretraining is also inherently robust.

Effect of Number of Labeled Samples. To understand the benefit of increased supervision, we
perform several experiments across different values of nP . Our experiments (see Table 1 and Fig-
ure 4a) reveal that supervised approaches(SCL, puNCE) are consistently able to learn more powerful
representation when supervision is available. The downstream performance of these approaches

8

Dataset gB(·) Labeled infoNCE SCL puNCE

PNU CIFAR 10
(vehicle/animal) All Conv

1% 83.96±2.45 86.70±0.93 88.09±1.88
5% 93.92±0.43 96.16±0.06 96.14±0.34

10% 94.98±0.34 96.39±0.02 96.57±0.11

Table 4: Linear Evaluation of different contrastive losses under Semi-Supervised (PNU) setting - with 1%,
5% and 10% labeled training data. puNCE proves to be superior than infoNCE (Chen et al., 2020b) and
semi-supervised SCL (Assran et al., 2020) especially in low supervision regime.

Dataset gB(·) Labeled CE CE + SCL CE + puNCE

PNU SST2 RoBERTa
20 85.92±2.11 88.18±3.30 91.15±1.75

100 91.10±1.36 92.83±1.23 93.76±0.17
1000 94.03±0.64 94.11±0.53 94.58±0.79

Table 5: Few shot learning test results for N=10,100,1000. puNCE achieves significant gains over previous SCL
based approach (Gunel et al., 2020) and standard CE baseline.

improve with increased supervision. The results also suggest that puNCE can be particularly powerful
when available supervision is small i.e. for smaller values of nP and results in significant gains over
both unsupervised and supervised contrastive approaches further emphasizing the importance of
leveraging implicit supervision from unlabeled samples.

5.2 Contrastive Positive Negative Unlabeled learning

We further evaluate puNCE in the binary semi-supervised setting. Training data contains samples
from both the classes and a set of unlabeled samples. In particular, we perform experiments when
only 1%, 5% and 10% of the data is available (Figure 4). It is important to note that, unlike PU
Learning settings, here we perform downstream tuning only over the labeled data. We see similar
trends as in PU Learning experiments - puNCE improves over infoNCE by 4.13% and over SCL by
1.39% when using only 1% data on PU CIFAR10. With only 10% data puNCE is able to achieve
similar accuracy as a fully supervised baseline (with cross entropy) improving over semi-supervised
adaptation of SCL (Assran et al., 2020) by 0.18%.

5.3 PNU few shot learning.

Additionally, we also apply puNCE for pretrained language model finetuning (FT). In the few-shot
learning setting, the goal is to FT a pretrained model on a downstream task using only a few labeled
samples. FT with cross-entropy(CE) loss with only a few examples is highly unstable and can give
very different results across different runs (Dodge et al., 2020; Zhang and Sabuncu, 2018). To mitigate
this, recent works (Gunel et al., 2020; Chen et al., 2022) use contrastive loss in conjunction with CE
i.e. L = λLCE + (1− λ)LCL. We closely follow the same setup, however, in addition to N labeled
samples (N=10, 100, 1000), we also assume access to 500 unlabeled samples during finetuning. Note
that for unlabeled samples, the CE term has no contribution. In this setting, we adopt a pretrained
RoBERTa model for downstream SST2 binary sentiment classification and observe that puNCE
results in 2.97% (N=10), 0.93%(N=100) and 0.47% improvement over the previous state-of-the-art
that uses SCL.

6 Conclusions

In this work, we investigated the limitation of a general self-supervised pretraining and finetuning
approach on weakly-supervised tasks. We proposed a novel contrastive training objective puNCE
(positive unlabeled Noise Contrastive Estimation), that extends contrastive loss to the positive
unlabeled setting by incorporating available biased supervision. Our method achieved state-of-the-art
performances on several PU learning and semi-supervised settings across vision and natural language
processing and is particularly powerful when available supervision is limited.

9

References
Assran, M., Ballas, N., Castrejon, L., and Rabbat, M. (2020). Supervision accelerates pre-training in

contrastive semi-supervised learning of visual representations. arXiv preprint arXiv:2006.10803.

Bekker, J. and Davis, J. (2020). Learning from positive and unlabeled data: A survey. Machine
Learning, 109(4):719–760.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2006). Greedy layer-wise training of deep
networks. Advances in neural information processing systems, 19.

Blanchard, G., Lee, G., and Scott, C. (2010). Semi-supervised novelty detection. The Journal of
Machine Learning Research, 11:2973–3009.

Caron, M., Touvron, H., Misra, I., J’egou, H., Mairal, J., Bojanowski, P., and Joulin, A. (2021). Emerg-
ing properties in self-supervised vision transformers. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 9630–9640.

Chen, H., Liu, F., Wang, Y., Zhao, L., and Wu, H. (2020a). A variational approach for learning from
positive and unlabeled data. Advances in Neural Information Processing Systems, 33:14844–14854.

Chen, J.-L., Cai, J.-J., Jiang, Y., and Huang, S.-J. (2021). Pu active learning for recommender systems.
Neural Processing Letters, 53(5):3639–3652.

Chen, Q., Zhang, R., Zheng, Y., and Mao, Y. (2022). Dual contrastive learning: Text classification
via label-aware data augmentation. arXiv preprint arXiv:2201.08702.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020b). A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pages 1597–
1607. PMLR.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. E. (2020c). Big self-supervised
models are strong semi-supervised learners. Advances in neural information processing systems,
33:22243–22255.

Chen, X., Chen, W., Chen, T., Yuan, Y., Gong, C., Chen, K., and Wang, Z. (2020d). Self-pu:
Self boosted and calibrated positive-unlabeled training. In International Conference on Machine
Learning, pages 1510–1519. PMLR.

Christoffel, M., Niu, G., and Sugiyama, M. (2016). Class-prior estimation for learning from positive
and unlabeled data. In Asian Conference on Machine Learning, pages 221–236. PMLR.

Chuang, C.-Y., Robinson, J., Yen-Chen, L., Torralba, A., and Jegelka, S. (2020). Debiased contrastive
learning. arXiv preprint arXiv:2007.00224.

Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning. Advances in neural information
processing systems, 28.

Denis, F. (1998). Pac learning from positive statistical queries. In International Conference on
Algorithmic Learning Theory, pages 112–126. Springer.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A., Hajishirzi, H., and Smith, N. (2020). Fine-tuning
pretrained language models: Weight initializations, data orders, and early stopping. arXiv preprint
arXiv:2002.06305.

Du, S. S., Hu, W., Kakade, S. M., Lee, J. D., and Lei, Q. (2020). Few-shot learning via learning the
representation, provably. arXiv preprint arXiv:2002.09434.

Du Plessis, M. C., Niu, G., and Sugiyama, M. (2014). Analysis of learning from positive and
unlabeled data. Advances in neural information processing systems, 27:703–711.

Elkan, C. (2001). The foundations of cost-sensitive learning. In International joint conference on
artificial intelligence, volume 17, pages 973–978. Lawrence Erlbaum Associates Ltd.

10

Elkan, C. and Noto, K. (2008). Learning classifiers from only positive and unlabeled data. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 213–220.

Gao, T., Yao, X., and Chen, D. (2021). Simcse: Simple contrastive learning of sentence embeddings.
ArXiv, abs/2104.08821.

Garg, S., Wu, Y., Smola, A. J., Balakrishnan, S., and Lipton, Z. (2021). Mixture proportion estimation
and pu learning: A modern approach. Advances in Neural Information Processing Systems, 34.

Graf, F., Hofer, C., Niethammer, M., and Kwitt, R. (2021). Dissecting supervised constrastive
learning. In International Conference on Machine Learning, pages 3821–3830. PMLR.

Grill, J.-B., Strub, F., Altch’e, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch, C., Pires,
B. Á., Guo, Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos, R., and Valko, M. (2020).
Bootstrap your own latent: A new approach to self-supervised learning. ArXiv, abs/2006.07733.

Gunel, B., Du, J., Conneau, A., and Stoyanov, V. (2020). Supervised contrastive learning for
pre-trained language model fine-tuning. arXiv preprint arXiv:2011.01403.

Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 297–304. JMLR Workshop and Conference Proceedings.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9729–9738.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554.

Hsieh, C.-J., Natarajan, N., and Dhillon, I. (2015). Pu learning for matrix completion. In International
conference on machine learning, pages 2445–2453. PMLR.

Ivanov, D. (2020). Dedpul: Difference-of-estimated-densities-based positive-unlabeled learning. In
2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), pages
782–790. IEEE.

Kelly, D. and Teevan, J. (2003). Implicit feedback for inferring user preference: a bibliography. In
Acm Sigir Forum, volume 37, pages 18–28. ACM New York, NY, USA.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., and Krishnan,
D. (2020). Supervised contrastive learning. arXiv preprint arXiv:2004.11362.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., and Fidler, S. (2015).
Skip-thought vectors. Advances in neural information processing systems, 28.

Kiryo, R., Niu, G., Du Plessis, M. C., and Sugiyama, M. (2017). Positive-unlabeled learning with
non-negative risk estimator. Advances in neural information processing systems, 30.

Kolesnikov, A., Zhai, X., and Beyer, L. (2019). Revisiting self-supervised visual representation
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 1920–1929.

Kumar, A., Raghunathan, A., Jones, R., Ma, T., and Liang, P. (2022). Fine-tuning can distort
pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054.

Liu, B., Dai, Y., Li, X., Lee, W. S., and Yu, P. S. (2003). Building text classifiers using positive and
unlabeled examples. In Third IEEE International Conference on Data Mining, pages 179–186.
IEEE.

11

Liu, B., Lee, W. S., Yu, P. S., and Li, X. (2002). Partially supervised classification of text documents.
In ICML, volume 2, pages 387–394. Sydney, NSW.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and
Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

Luo, C., Zhao, P., Chen, C., Qiao, B., Du, C., Zhang, H., Wu, W., Cai, S., He, B., Rajmohan, S., et al.
(2021). Pulns: Positive-unlabeled learning with effective negative sample selector. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 8784–8792.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations
of words and phrases and their compositionality. Advances in neural information processing
systems, 26.

Naumov, M., Mudigere, D., Shi, H.-J. M., Huang, J., Sundaraman, N., Park, J., Wang, X., Gupta, U.,
Wu, C.-J., Azzolini, A. G., et al. (2019). Deep learning recommendation model for personalization
and recommendation systems. arXiv preprint arXiv:1906.00091.

Niu, G., du Plessis, M. C., Sakai, T., Ma, Y., and Sugiyama, M. (2016). Theoretical comparisons of
positive-unlabeled learning against positive-negative learning. Advances in neural information
processing systems, 29:1199–1207.

Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. (2021). Learning transferable visual models
from natural language supervision. In ICML.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language understand-
ing by generative pre-training.

Ramaswamy, H., Scott, C., and Tewari, A. (2016). Mixture proportion estimation via kernel
embeddings of distributions. In International conference on machine learning, pages 2052–2060.
PMLR.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. (2013).
Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings
of the 2013 conference on empirical methods in natural language processing, pages 1631–1642.

Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss objective. In Advances
in neural information processing systems, pages 1857–1865.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity:
The all convolutional net. arXiv preprint arXiv:1412.6806.

Tian, Y., Krishnan, D., and Isola, P. (2020). Contrastive multiview coding. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16,
pages 776–794. Springer.

Wu, Z., Efros, A. A., and Yu, S. X. (2018). Improving generalization via scalable neighborhood
component analysis. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 685–701.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Demmel, J., Keutzer, K.,
and Hsieh, C.-J. (2019). Large batch optimization for deep learning: Training bert in 76 minutes.
arXiv preprint arXiv:1904.00962.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). Barlow twins: Self-supervised
learning via redundancy reduction. In ICML.

Zhai, X., Puigcerver, J., Kolesnikov, A., Ruyssen, P., Riquelme, C., Lucic, M., Djolonga, J., Pinto,
A. S., Neumann, M., Dosovitskiy, A., et al. (2019). A large-scale study of representation learning
with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867.

12

Zhang, Z. and Sabuncu, M. (2018). Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in neural information processing systems, 31.

Zhong, Z., Fini, E., Roy, S., Luo, Z., Ricci, E., and Sebe, N. (2021). Neighborhood contrastive
learning for novel class discovery. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10867–10875.

13

A Appendix

A.1 Additional Experimental Details

A.1.1 Computing exact π

For our experiments we use the optimal π i.e. probability of positive sample in unlabeled data exactly
as follows: suppose nP positive samples are labeled and let P ∗ and N∗ denote true number of
positive and negatives. then we can readily use π∗ = P∗−nP

P∗+N∗−nP
.

A.1.2 Mixture Proportion Estimation

In real settings when we do not have knowledge about the dataset exact π cannot be computed and
needs to be estimated - referred to as the Mixture proportion estimation (MPE) problem. Formally
speaking, Mixture proportion estimation (MPE) refers to the task of estimating the weight of a
component distribution in a mixture, given samples from the mixture (unlabeled data) and component
(positive labeled data). We refer the reader to (Ramaswamy et al., 2016; Garg et al., 2021; Ivanov,
2020) for a detailed discussion on MPE algorithms.

A.1.3 MNIST Multi Layer Perceptron

1 MLPContrastive(
2 (backbone): Sequential(
3 (0): Linear(in_features =784, out_features =5000, bias=True)
4 (1): BatchNorm1d (5000, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
5 (2): ReLU(inplace=True)
6 (3): Linear(in_features =5000, out_features =5000, bias=True)
7 (4): BatchNorm1d (5000, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
8 (5): ReLU(inplace=True)
9 (6): Linear(in_features =5000, out_features =50, bias=True)

10 (7): BatchNorm1d (50, eps=1e-05, momentum =0.1, affine=True ,
track_running_stats=True)

11 (8): ReLU(inplace=True)
12)
13 (projector): Sequential(
14 (0): Linear(in_features =50, out_features =300, bias=True)
15 (1): BatchNorm1d (300, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
16 (2): ReLU(inplace=True)
17 (3): Linear(in_features =300, out_features =50, bias=True)
18)
19 (online_head): Linear(in_features =50, out_features =1, bias=True)
20)
21 ------------------
22 Num of Params = 29231151

A.1.4 All Convolution N/w

1 AllConv(
2 (backbone_cnn): Sequential(
3 (0): Conv2d(3, 96, kernel_size =(3, 3), stride =(1, 1), padding =(1,

1))
4 (1): BatchNorm2d (96, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
5 (2): ReLU(inplace=True)
6 (3): Conv2d (96, 96, kernel_size =(3, 3), stride =(1, 1), padding =(1,

1))
7 (4): BatchNorm2d (96, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
8 (5): ReLU(inplace=True)

14

9 (6): Conv2d (96, 96, kernel_size =(3, 3), stride =(2, 2), padding =(1,
1))

10 (7): BatchNorm2d (96, eps=1e-05, momentum =0.1, affine=True ,
track_running_stats=True)

11 (8): ReLU(inplace=True)
12 (9): Conv2d (96, 192, kernel_size =(3, 3), stride =(1, 1), padding

=(1, 1))
13 (10): BatchNorm2d (192, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
14 (11): ReLU(inplace=True)
15 (12): Conv2d (192, 192, kernel_size =(3, 3), stride =(1, 1), padding

=(1, 1))
16 (13): BatchNorm2d (192, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
17 (14): ReLU(inplace=True)
18 (15): Conv2d (192, 192, kernel_size =(3, 3), stride =(2, 2), padding

=(1, 1))
19 (16): BatchNorm2d (192, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
20 (17): ReLU(inplace=True)
21 (18): Conv2d (192, 192, kernel_size =(3, 3), stride =(1, 1), padding

=(1, 1))
22 (19): BatchNorm2d (192, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
23 (20): ReLU(inplace=True)
24 (21): Conv2d (192, 192, kernel_size =(1, 1), stride =(1, 1))
25 (22): BatchNorm2d (192, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
26 (23): ReLU(inplace=True)
27 (24): Conv2d (192, 10, kernel_size =(1, 1), stride =(1, 1))
28 (25): BatchNorm2d (10, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
29 (26): ReLU(inplace=True)
30)
31 (backbone_lin): Sequential(
32 (0): Linear(in_features =640, out_features =1000, bias=True)
33 (1): ReLU(inplace=True)
34 (2): Linear(in_features =1000, out_features =1000, bias=True)
35 (3): ReLU(inplace=True)
36)
37 (projector): Sequential(
38 (0): Linear(in_features =1000, out_features =1000, bias=True)
39 (1): BatchNorm1d (1000, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
40 (2): ReLU(inplace=True)
41 (3): Linear(in_features =1000, out_features =1000, bias=True)
42)
43 (online_head): Linear(in_features =1000 , out_features =1, bias=True)
44)
45 ------------------
46 Num of Params = 5019255

A.1.5 ResNet18

1 ResNet18Contrastive(
2 (backbone): Sequential(
3 (0): Conv2d(3, 64, kernel_size =(3, 3), stride =(1, 1), padding =(1,

1), bias=False)
4 (1): BatchNorm2d (64, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
5 (2): ReLU(inplace=True)
6 (3): Sequential(
7 (0): BasicBlock(

15

8 (conv1): Conv2d (64, 64, kernel_size =(3, 3), stride =(1, 1),
padding =(1, 1), bias=False)

9 (bn1): BatchNorm2d (64, eps=1e-05, momentum =0.1, affine=True ,
track_running_stats=True)

10 (relu): ReLU(inplace=True)
11 (conv2): Conv2d (64, 64, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
12 (bn2): BatchNorm2d (64, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
13)
14 (1): BasicBlock(
15 (conv1): Conv2d (64, 64, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
16 (bn1): BatchNorm2d (64, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
17 (relu): ReLU(inplace=True)
18 (conv2): Conv2d (64, 64, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
19 (bn2): BatchNorm2d (64, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
20)
21)
22 (4): Sequential(
23 (0): BasicBlock(
24 (conv1): Conv2d (64, 128, kernel_size =(3, 3), stride =(2, 2),

padding =(1, 1), bias=False)
25 (bn1): BatchNorm2d (128, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
26 (relu): ReLU(inplace=True)
27 (conv2): Conv2d (128, 128, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
28 (bn2): BatchNorm2d (128, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
29 (downsample): Sequential(
30 (0): Conv2d (64, 128, kernel_size =(1, 1), stride =(2, 2), bias

=False)
31 (1): BatchNorm2d (128, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
32)
33)
34 (1): BasicBlock(
35 (conv1): Conv2d (128, 128, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
36 (bn1): BatchNorm2d (128, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
37 (relu): ReLU(inplace=True)
38 (conv2): Conv2d (128, 128, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
39 (bn2): BatchNorm2d (128, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
40)
41)
42 (5): Sequential(
43 (0): BasicBlock(
44 (conv1): Conv2d (128, 256, kernel_size =(3, 3), stride =(2, 2),

padding =(1, 1), bias=False)
45 (bn1): BatchNorm2d (256, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
46 (relu): ReLU(inplace=True)
47 (conv2): Conv2d (256, 256, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
48 (bn2): BatchNorm2d (256, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
49 (downsample): Sequential(

16

50 (0): Conv2d (128, 256, kernel_size =(1, 1), stride =(2, 2),
bias=False)

51 (1): BatchNorm2d (256, eps=1e-05, momentum =0.1, affine=True ,
track_running_stats=True)

52)
53)
54 (1): BasicBlock(
55 (conv1): Conv2d (256, 256, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
56 (bn1): BatchNorm2d (256, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
57 (relu): ReLU(inplace=True)
58 (conv2): Conv2d (256, 256, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
59 (bn2): BatchNorm2d (256, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
60)
61)
62 (6): Sequential(
63 (0): BasicBlock(
64 (conv1): Conv2d (256, 512, kernel_size =(3, 3), stride =(2, 2),

padding =(1, 1), bias=False)
65 (bn1): BatchNorm2d (512, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
66 (relu): ReLU(inplace=True)
67 (conv2): Conv2d (512, 512, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
68 (bn2): BatchNorm2d (512, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
69 (downsample): Sequential(
70 (0): Conv2d (256, 512, kernel_size =(1, 1), stride =(2, 2),

bias=False)
71 (1): BatchNorm2d (512, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
72)
73)
74 (1): BasicBlock(
75 (conv1): Conv2d (512, 512, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
76 (bn1): BatchNorm2d (512, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
77 (relu): ReLU(inplace=True)
78 (conv2): Conv2d (512, 512, kernel_size =(3, 3), stride =(1, 1),

padding =(1, 1), bias=False)
79 (bn2): BatchNorm2d (512, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
80)
81)
82 (7): AdaptiveAvgPool2d(output_size =(1, 1))
83)
84 (projector): Sequential(
85 (0): Linear(in_features =512, out_features =256, bias=False)
86 (1): BatchNorm1d (256, eps=1e-05, momentum =0.1, affine=True ,

track_running_stats=True)
87 (2): ReLU(inplace=True)
88 (3): Linear(in_features =256, out_features =128, bias=True)
89)
90 (online_head): Linear(in_features =512, out_features =1, bias=True)
91)
92 ------------------
93 Num of Params = 11333825

17

	1 Introduction
	2 Problem Setup.
	2.1 Positive Unlabeled Learning.
	2.2 Contrastive Representation Learning.

	3 Positive Unlabeled NCE
	4 Related Work
	5 Experiments
	5.1 Contrastive Positive Unlabeled Learning
	5.2 Contrastive Positive Negative Unlabeled learning
	5.3 PNU few shot learning.

	6 Conclusions
	A Appendix
	A.1 Additional Experimental Details
	A.1.1 Computing exact
	A.1.2 Mixture Proportion Estimation
	A.1.3 MNIST Multi Layer Perceptron
	A.1.4 All Convolution N/w
	A.1.5 ResNet18

