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Abstract

Knowledge-intensive language tasks require NLP systems to both provide the cor-
rect answer and retrieve supporting evidence for it in a given corpus. Autoregressive
language models are emerging as the de-facto standard for generating answers,
with newer and more powerful systems emerging at an astonishing pace. In this
paper we argue that all this (and future) progress can be directly applied to the
retrieval problem with minimal intervention to the models’ architecture. Previous
work has explored ways to partition the search space into hierarchical structures
and retrieve documents by autoregressively generating their unique identifier. In
this work we propose an alternative that doesn’t force any structure in the search
space: using all ngrams in a passage as its possible identifiers. This setup allows
us to use an autoregressive model to generate and score distinctive ngrams, that
are then mapped to full passages through an efficient data structure. Empirically,
we show this not only outperforms prior autoregressive approaches but also leads
to an average improvement of at least 10 points over more established retrieval
solutions for passage-level retrieval on the KILT benchmark, establishing new state-
of-the-art downstream performance on some datasets, while using a considerably
lighter memory footprint than competing systems. Code and pre-trained models
are available at https://github.com/facebookresearch/SEAL.

1 Introduction

Surfacing knowledge from large corpora is a crucial step when dealing with knowledge intensive
language tasks [Levy et al., 2017, Dinan et al., 2019, Elsahar et al., 2018, Petroni et al., 2021], such
as open-domain question answering [Voorhees et al., 1999, Joshi et al., 2017, Yang et al., 2018,
Kwiatkowski et al., 2019] and fact checking [Thorne et al., 2018]. A popular paradigm to approach
such tasks is to combine a search engine with a machine reader component. The former retrieves
relevant context, usually in the form of short passages, which the latter then examines to produce
answers [Chen et al., 2017, Lewis et al., 2020, Izacard and Grave, 2021].

In recent years we have witnessed a surge of research and development in autoregressive language
models [Radford et al., 2019, Lewis et al., 2019, Raffel et al., 2019, Brown et al., 2020, Rae et al., 2021,
Artetxe et al., 2021, Smith et al., 2022], with ever increasing size and natural language understanding
(NLU) capabilities. Such models are currently the de-facto implementation of the machine reader
component in retrieval-reader architectures, and have contributed to rapid progress on a wide range
of benchmarks [Joshi et al., 2017, Kwiatkowski et al., 2019, Petroni et al., 2021]. However, these
tremendous advances in aggressive modelling has yet to bring similar transformational changes in
how retrieval is approached.

Transferring the NLU capabilities of modern autoregressive models to retrieval is non-trivial. Some
works have demonstrated that knowledge stored in the parameters of these models can be retrieved
to some extend by directly generating evidence given a query [Petroni et al., 2019, 2020, Roberts
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Figure 1: High-level SEAL architecture, composed of an autoregressive LM paired with an FM-Index,
for which we show the first (F) and last (L) columns of the underlying matrix (more details in Sec 3.1).
The FM-index constrains the autoregressive generation (e.g., after carbon the model is contrained
to generate either tax, dioxide or atom in the example) and provides the documents matching (i.e.,
containing) the generated ngram (at each decoding step).

et al., 2020]. However, such approaches have been shown to be unreliable because of their tendency
to hallucinate non-factual content [Massarelli et al., 2019, Metzler et al., 2021, Ji et al., 2022]. To
alleviate this issue, previous work proposes to only use generation for query expansion in traditional
search engines [Mao et al., 2021], but these solutions don’t exploit the full potential of autoregressive
architecture, such as word order sensitivity and conditional probability modeling, and still lag behind
vector-based approaches [Karpukhin et al., 2020].

Recently, another line of work has investigated using autoregressive language models to generate
identifier strings for documents as an intermediate target for retrieval, such as Wikipedia page
titles [De Cao et al., 2021b], or root-to-leaf paths in a hierarchical cluster tree [Tay et al., 2022].
Employing identifiers, rather than generating evidence directly, induces structure in the search space,
(i.e., index documents by their title or their cluster tree) which can be easier to memorize, learn, and
retrieve from, than full unstructured passages. Moreover, it is relatively easy to constrain decoding
with a prefix tree “index” so that only valid identifiers are generated. As a downside, if appropriate
metadata (e.g., titles) are not available, one needs to create the identifiers, hence the structure (e.g.,
with hierarchical clustering), which has not been thoroughly evaluated on a large-scale benchmark.

In this work, we propose a solution that does not force any structure in the search space, but rather uses
all the ngrams occurring in a document as its identifiers. Concretely, we introduce Search Engines
with Autoregressive LMs (SEAL), a retrieval solution that combines an autoregressive model, i.e.,
BART [Lewis et al., 2019], with a compressed full-text substring index, i.e., the FM-Index [Ferragina
and Manzini, 2000] — see Figure 1 for an high-level overview. This configuration comes with
a twofold benefit: i) we can constrain BART’s generations with the FM-Index, hence preventing
the generation of invalid identifiers (i.e., ngrams not occurring in any document); ii) the FM-Index
provides information on all documents in the corpus containing a specific ngram (for every decoding
step), thus allowing to retrieve them. This setup allows SEAL to generate any span from any position
in the corpus, without needing to explicitly encode all substrings in a document. Moreover, we design
a novel scoring function to intersect the results of multiple ngrams combining LM probabilities with
FM-index frequencies (i.e., number of occurrences of the ngram in the whole corpus).

Our experimental evaluation shows that SEAL matches or outperforms recent retrieval solutions
(including autoregressive ones) on Natural Questions [Kwiatkowski et al., 2019], while requiring
substantially less memory (∼2 to 7 times smaller in footprint). Moreover, SEAL’s intersection
formulation improves the state-of-the-art on passage-level retrieval by more than 10 points on the
KILT benchmark [Petroni et al., 2021], contributing in establishing new state-of-the-art downstream
results on multiple datasets when paired with existing reader technologies.

2 Related Work

One way to approach retrieval with autoregressive models makes use of unique identifiers, i.e., string
pointers to documents that are in some way easier to generate than the full document itself [De Cao
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et al., 2021b, Tay et al., 2022]. In our work the identifiers are generated ngrams, which do not
necessarily occur in just one document. Note that the idea of using phrases to retrieve passages has
shown promise already in the context of dense retrieval [Lee et al., 2021a,b].

Our approach is quite conceptually distinct from document [Nogueira et al., 2019, Nogueira and
Lin, 2021] and query expansion approaches [Mao et al., 2021], that use autoregressive models to
boost search, but still rely on black-box systems like BM25 [Robertson and Zaragoza, 2009] for the
retrieval: in our work the boundary between generation and retrieval is blurred, since we generate
grounded passage spans. The same reasoning applies to models that generate queries for web search
engines [Komeili et al., 2021, Shuster et al., 2022, Nakano et al., 2021, Lazaridou et al., 2022].

Virtually all modern approaches to string-matching-based retrieval use bag-of-words representations.
Many recent works propose learned contextualized weighting for both queries and documents
terms [Dai and Callan, 2019, Gao et al., 2021, Lin and Ma, 2021, Mallia et al., 2021, Dai and Callan,
2020, Bai et al., 2020, Zhao et al., 2021, Formal et al., 2021b,a]. Many of these methods can also
weigh terms that are not present in the query, addressing so-called vocabulary mismatch. In contrast,
SEAL generates (and scores) ngrams of arbitrary size. These approaches are partly orthogonal to
SEAL, as many of the proposed techniques could be used to rescore higher-order ngrams.

Finally, a connected strand of research is that of query likelihood models, which use autoregressive
models to (re)rank passages according to the probability P (q|p) of a query q given the passage
p [Nogueira dos Santos et al., 2020, Zhuang and Zuccon, 2021, Lesota et al., 2021, Sachan et al.,
2022]. In our case, the autoregressive architecture models the likelihood of an ngram given the query,
i.e., P (n|q).

3 Background

In retrieval, the automatic system is required to return an ordered list of documents d1, d2, . . . , dn
from a retrieval corpus R, given a query q. Both queries and documents are texts, i.e., lists of tokens
⟨t1, t2, . . . , tN ⟩, where each token t is drawn from a vocabulary V . A span of tokens in a text is
called an ngram; ngrams of size 1 are known as unigrams. We denote with F (n,R) the frequency of
an ngram n in R, i.e., the total number of times it appears in the whole retrieval corpus.

3.1 The FM-Index

Our method requires a data structure that can support the efficient identification of occurring substrings
to guarantee that all decoded sequences are located somewhere in the retrieval corpus. Moreover, to
perform retrieval, we require the ability to identify which documents the generated ngrams appear in.
Neither inverted indices (which have no efficient way to search for phrases of arbitrary length), nor
prefix trees (which would force us to explicitly encode all k suffixes in a document), are viable options.
The core data structure that satisfies our requirements is the FM-index [Ferragina and Manzini, 2000],
i.e., a compressed suffix array that, as a self-index, requires no additional storage for the original text.
FM-index space requirements are linear in the size of the corpus, and, with small vocabularies such as
those used by modern subword-based language models, is thus usually significantly smaller than the
uncompressed corpus. The FM-index can be used to count the frequency of any sequence of tokens n
in O(|n|log|V |), i.e., independently from the size of the corpus itself. For constrained decoding, the
list of possible token successors can be obtained in O(|V |log|V |). Internally, the FM-index relies on
the Burrows-Wheeler Transform [Burrows and Wheeler, 1994], or BWT, an invertible transformation
that permutes a string to make it easier to compress, defined as follows: all the rotations of the string
are sorted lexicographically and laid out in a matrix; the last column of the matrix is the strings’s
BWT.1 For example, given the string CABAC, the corresponding matrix would be:

F L
$6 C A B A C5

A2 B A C $ C1

A4 C $ C A B3

B3 A C $ C A2

C5 $ C A B A4

C1 A B A C $6

1Since our corpus contains multiple documents, we concatenate them with a separator token.
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where $ is a special end-of-string token. The first (F) and last (L) columns are the only ones that will
be explicitly stored in the FM-index; F is just an array of runs (i.e., sequences of repeated tokens),
due to the rotations being sorted, so it can be represented with one count for each alphabet symbol; L,
the string’s BWT, will be stored in a data structure known as the Wavelet Tree [Grossi et al., 2003],
which allows efficient rank-select-access queries, while exploiting the compressibility induced by
the transformation. FM-indices have the useful property that for each symbol, the relative rank stays
the same: that is, the ith occurrence of a symbol σ in F points to the same location in the corpus of
the ith occurrence of σ in L. Thanks to this property, we can locate any string ⟨σ1, σ2, . . . , σn⟩ in
the index by starting from σn and going backwards. First, we select the contiguous range of rows
corresponding to the symbol σn in F, then we check the ranks of the first and last occurrences of
σn−1 in the same range of rows in L. We use the ranks to select a new, smaller or equal range of rows
looking up the symbol σn−1 in F . The procedure can be applied iteratively to find ngrams of any
size.

4 Method

In our retrieval methodology, SEAL, we generate multiple ngrams, conditioning on a query. The
ngrams are then used to find the documents they appear in within the corpus, which are then returned
to the user. In Figure 1 we show this process at a high-level. We use our indexing structure, i.e., the
FM-index to do constrained decoding so that each ngram occurs at least once in the retrieval corpus.
Jointly, we use the FM-index to efficiently find matching documents. Documents are ranked using
the scores of the generated ngrams.

Autoregressive Retrieval We generate ngrams identifiers with constrained beam search, using the
FM-index to identify the set of possible next tokens in at most O(|V |log|V |): tokens corresponding to
unattested continuations are blocked by masking the logit to −∞. As a result, after a single decoding
pass, we get a set of ngrams (K), along with their autoregressively-computed probabilities according
to the model. It is also trivial to find the positions in the corpus where the decoded ngrams appear, as
constrained decoding already requires selecting the relevant range of rows in the FM-index. Note that
autoregressive scoring entails monotonically decreasing scores—any string will be assigned a lower
probability than any of its prefixes. To address this issue, we use fixed-length ngrams. Each document
is assigned the score (P (n|q)) of its most probable decoded occurring ngram, i.e., the probability of
the ngram as autoregressively computed by the decoder, conditioned on the encoder input We refer to
this as the LM scoring.

Factoring in FM-index frequencies To counterbalance the monotonic probability decrease, we
integrate in scoring unconditional ngram probabilities, computed as normalized index frequencies:

P (n) =
F (n,R)∑

d∈R |d|
(1)

This also enables us to promote distinctive ngrams, i.e., those that have high probability according
to the model and low probability according to the FM-index. We take inspiration from the theory
behind TF-IDF and BM25 [Robertson and Zaragoza, 2009] and use the following scoring function:

w(n, q) = max
(
0, log

P (n|q)(1− P (n))

P (n)(1− P (n|q))

)
(2)

This formulation addresses the problem of length, as the unconditional probability of an ngram will
also be equal or lower than that of any of its prefixes. To make better use of the computational
resources, we slightly modify the beam search implementation to keep track of all the partially
decoded sequences that have been considered. Thanks to this, we score a larger number of ngrams
than the size of the beam. We refer to this formulation as the LM+FM scoring.

An Intersective Scoring for Multiple Ngrams One problem with the previous scoring formulations
is that it is impossible to break ties among documents whose highest scoring ngram is the same, as
they receive exactly the same score. Moreover, it might be difficult to capture all relevant information
within a document by considering only a single ngram, for instance when salient ngrams are non-
contiguous (e.g., separated by unrelated text). To address these issues we propose a novel scoring
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formulation that aggregates the contribution of multiple ngrams contained in the same document. To
avoid repeated scoring of overlapping ngrams, for each document d ∈ R we only consider a subset
of the generated ngrams K(d) ⊂ K. An ngram n belongs to K(d) if there is at least one occurrence
of n in d that does not overlap in the corpus with an occurrence of another ngram n′ such that a)
n′ ∈ K(d) b) w(n′, q) > w(n, q). The document-level score, then, is the weighted sum of all ngrams
in K(d):

W (d, q) =
∑

n∈K(d)

w(n, q)α · cover(n,K(d)) (3)

where α is a hyperparameter and the coverage weight cover(n,K) (controlled by the second hyperpa-
rameter β) is a function of how many ngram tokens are not included in the coverage set C(n,K) ⊂ V ,
i.e., the union of all tokens in ngrams with a higher score. We define this coverage weight as follows:

cover(n,K) = 1− β + β · |set(n) \ C(n,K)|
|set(n)|

(4)

where set(n) is the set of all tokens in n. The purpose of the coverage weight is to avoid the
overscoring of very repetitive documents, where many similar ngrams are matched. Note that by
saving the probability distribution at the first decoding step we can compute scores for all unigrams
with no additional forward pass. We refer to this last approach, which can be thought of as a
higher-order generalization of the bag-of-words assumption, as the LM+FM intersective scoring.

5 Experimental Setting

Our experimental setting evaluates SEAL on English knowledge-intensive NLP tasks. Each con-
sidered dataset is a collection of queries, each of which can be answered by looking for piece(s)
of evidence in the corpus. We consider both an in vivo evaluation, in which we assess the model
by looking at how well the document ranking matches with the ground truth, and, in addition, we
perform a downstream evaluation, in which we feed the retrieved documents to a trained reader, that
uses the documents to generate the answer.

5.1 Data

Natural Questions Natural Questions (NQ) is dataset containing query-document pairs, where the
query is a question (e.g., “who wrote photograph by ringo starr”), and the document is a Wikipedia
page, in which a span is marked as an answer [Kwiatkowski et al., 2019]. We experiment on both
the customary retrieval setup used by, among others, Karpukhin et al. [2020] and Mao et al. [2021],
and the substantially different setup used by Tay et al. [2022]. We refer to these two settings as,
respectively, NQ and NQ320k. In NQ, retrieval is performed on an entire Wikipedia dump, chunked
in around 21M passages of 100 tokens. Performance is measured as accuracy@k, i.e., the fraction
of instances for which at least one of the top-k retrieved passages contains the answer. NQ320k is
a much more restricted setting, in which the retrieval set is limited to the union of all ground truth
document in the training, dev or test set. Different revisions of the same Wikipedia page count as
different documents. Note that the exact splits used by Tay et al. [2022], the retrieval corpus and the
preprocessing code have not been yet released at the time of writing. Therefore, we have tried to
replicate the setting as closely as possible, but the exact numbers are not precisely comparable with
those reported in the original paper. In NQ320k, performance is measured as hits@k, i.e, the fraction
of instances for which at least one of the top-k retrieved passages is in the ground truth.

KILT is a comprehensive benchmark collecting different datasets including question answering,
fact checking, dialogue, slot filling, and entity linking [Petroni et al., 2021]. All these tasks are
solvable by retrieving information from a unified corpus — a Wikipedia dump. In KILT, the evidence
is usually the paragraph that contains the answer. Following Maillard et al. [2021], we have re-
chunked KILT’s retrieval corpus, which is originally paragraph-based, in around 36M passages of
100 tokens. We do not use the entity linking and ELI5 KILT tasks, where a ground truth passage
is not provided in the training set. KILT’s retrieval performance is measured with R-precision, a
precision-oriented measure that considers only gold documents as correct answers, not just any
document containing the answer. R-precision can be computed at either passage level or at page level.
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Table 1: Language model and index size on Natural Questions (around 21M passages). SEAL’s
index is ~1.5 times smaller than uncompressed plain text.

System Model Index
Params Size Params GPU?

plain text - 13.4GB - -

DPR 220M 64.6 GB 16.1B ✓
BM25 - 18.8 GB - ✗
GAR 406M 18.8 GB - ✗
DSI-BART 406M - - -
SEAL 406M 8.8GB - ✗

5.2 SEAL configuration

Training We finetune BART large [Lewis et al., 2019] to generate ngrams of length k = 10 from
the ground truth document. Since there are |d| − k ngrams in a document d, we sample (with
replacement) 10 ngrams from it, biasing the distribution in favor of ngrams with a high character
overlap with the query. We also add the title of the document to the set of training ngrams. To expose
the model to more possible pieces of evidence, we also add different “unsupervised” examples for
each document in the retrieval corpus to the training set. In each of these examples the model takes
as input a uniformly sampled span from the document, and predicts either another sampled span, or
the title of the page. We append special tokens to the input to signal to the model a) whether the pair
comes from the supervised or unsupervised training pairs (in the same spirit as the co-training task
prompts used by Tay et al. [2022]) b) whether a title or span is expected as output. On KILT we train
SEAL on all datasets at once. We report training and inference hyperameters in Appendix (§A).

How to choose ngrams In preliminary experiments, we have found that training SEAL with ngrams
of fixed length sampled uniformly from the training chunk did not lead to good performances. Instead,
we have biased the ngram distribution towards ngrams that were relevant to the query. As a simple
proxy for relevance, we have use the Levenshtein (character-based) distance between the query and
the ngram overlap. The final distribution to sample from is defined by the following formula:

eL(q,di:i+k)/τ∑|d|−k+1
j=1 eL(q,dj:j+k)/τ

(5)

where L is the Levenshtein distance and τ (= 1.5 in our experiments) is a temperature parameter,
controlling the peakiness of the distribution.

Index We use the C++ FM-index implementation in sdsl-lite. While the FM-index construction
(which requires a sort of all rotations) takes around 6 hours in our single-threaded implementation,
parallel algorithms are available [Labeit et al., 2017]. Each document is encoded as the subword
tokenization of the concatenation of the title and the passage, separated by a special token. We report
in Table 1 the index statistics for Natural Questions. As can be seen, SEAL’s FM-index is more
than 7 times lighter compared to DPR’s full document embeddings for exact inner product search,
and needs neither a GPU for search on top of that, nor separate storage for the text itself. While
vector compression methods can reduce dense retrievers’ index size, this still comes at the expense
of performance [Yamada et al., 2021, Lewis et al., 2021a]. In addition, our the size of our index is
less than 50% of that of the well-optimized Lucene BM25 index used by pyserini, but also roughly
65% of the uncompressed plain text itself.

5.3 Retriever Baselines

We compare SEAL against well-established systems in the literature on each benchmark. On NQ and
NQ320k we also compare against our BART-based replication of DSI [Tay et al., 2022, DSI-BART].2
On NQ320k, a page-level benchmark, we include our own replication of GENRE [De Cao et al.,
2021b]. Unless otherwise specified, we use pyserini to compute the BM25 baseline. For other
systems, we either take figures from the literature, or use publicly released model predictions.

2We report reproduction details in Appendix (§B).

6



Table 2: Results on NQ320k. Reporting hits@1 and hits@10. Best in bold.

System hits@k
1 10

BM25 (gensim) 15.3 44.5
BM25 22.7 59.0
DSI-BART 25.0 63.6
GENRE 26.3 71.2

SEAL (LM, |n| = 3) 21.3 66.5
SEAL (LM, |n| = 4) 22.2 68.2
SEAL (LM, |n| = 5) 22.6 68.7
SEAL (LM+FM) 25.3 72.0
SEAL (LM+FM, intersect.) 26.3 74.5

Table 3: Retrieval results on the NQ test set. Column blocks (left to right): retrieval results (accu-
racy@5/20/100); retrieval results on the test splits of Lewis et al. [2021b], partitioned according to
whether the query/answer is a paraphrase of one in the training set; downstream performances (exact
match). Except for Izacard and Grave [2021], all downstream results are computed with the same
FiD reader trained on DPR predictions. Best in bold.

System accuracy@k Overlap? (A@100) EM5 20 100 ans. ✓ ✗ ques. ✓ ✗

BM25 43.6 62.9 78.1 82.9 70.1 80.9 76.6 40.4
DPR [Karpukhin et al., 2020] 68.3 80.1 86.1 91.4 76.8 93.2 83.2 47.2
GAR [Mao et al., 2021] 59.3 73.9 85.0 91.6 74.4 94.1 80.4 46.2
DSI-BART 28.3 47.3 65.5 77.8 44.2 84.9 57.7 31.4
Izacard and Grave [2021] - - - - - - - 48.2

SEAL (LM, |n| = 5) 40.5 60.2 73.1 82.2 57.1 85.2 64.9 36.0
SEAL (LM+FM) 43.9 65.8 81.1 86.9 70.9 89.5 78.1 42.9
SEAL (LM+FM, intersective) 61.3 76.2 86.3 91.2 77.7 93.2 84.1 48.0

5.4 Reader

For downstream results, we use the Fusion-in-Decoder abstractive reader [Izacard and Grave, 2021],
which takes in the query along with 100 contexts and produces a task-specific answer. We train FiD
on training set predictions.

6 Results

NQ320k We report results on NQ320k in Table 2. SEAL outperforms BM25 and DSI-BART
in hits@10 in all its formulations. When taking into account ngram frequencies (i.e., LM+FM),
SEAL achieves even higher results than GENRE, despite the fact that this benchmark only requires
page-level retrieval capabilities (that is the focus of GENRE). Finally, our intersective formulation
achieves the highest results, both in hits@1 and @10, indicating that multiple ngrams identifiers
might capture complementary information, which can be aggregated for stronger performances.

Natural Questions We report in Table 3 the results of our evaluation on Natural Questions, a
passage-level retrieval benchmark with a larger collection of documents (i.e., ~21M w.r.t. 200k in
NQ320k). In this setting, the gap in performance between DSI-BART and SEAL is larger, possibly
because memorizing documents identifiers in the parameters of the model becomes more challenging
with larger corpora. Remarkably, the intersective formulation of SEAL achieves results comparable
or superior to more established retrieval paradigms (e.g., BM25, DPR and GAR), at high-recall
(accuracy@100). To better understand the generalization capabilities of our retrieval solution we use
the question/answer overlap split of Lewis et al. [2021b]. This study reveals that SEAL achieves the
highest performance for question/answer pairs never seen during training (i.e., no overlap), suggesting
a better ability to generalize to completely novel questions with novel answers (e.g., 3.5 points better
than GAR on average).
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Table 4: Retrieval results on individual KILT dev set(s), with the average in the rightmost column.
Reporting passage-level R-precision (higher is better). We mark model that are also trained on
additional synthetic data [Lewis et al., 2021c] with †. All SEAL models are multitask. Best among
models trained only on KILT queries in bold.

Model FEV T-REx zsRE NQ HoPo TQA WoW AVG

BM25 40.1 51.6 53.0 14.2 38.4 16.2 18.4 33.1
DPR Maillard et al. [2021] 43.9 58.5 78.8 28.1 43.5 23.8 20.7 42.5
MT-DPR [Maillard et al., 2021] 52.1 53.5 41.7 28.8 38.4 34.2 24.1 39.0
MT-DPR [Oğuz et al., 2021] 52.1 61.4 54.1 40.1 41.0 34.2 24.6 43.9

MT-DPR† [Oğuz et al., 2021] 61.4 68.4 73.3 44.1 44.6 38.9 26.5 51.0
MT-DPR† (large) [Oğuz et al., 2021] 62.8 66.6 66.9 42.6 42.1 37.9 23.4 48.9

SEAL (LM+FM) 31.5 42.0 34.0 21.7 24.7 21.4 17.6 27.6
SEAL (LM+FM, intersective) 67.8 58.9 78.8 43.6 54.3 41.8 36.0 54.5

Table 5: Downstream results on the KILT test set(s). Downstream metrics are accuracy (FEVER,
T-REx, zero-shot RE), exact match (Natural Questions, HotpotQA, TriviaQA), or F1 (Wizard of
Wikipedia). Best in bold. †: result taken from the eval.ai KILT leaderboard.

System FEV T-REx zsRE NQ HoPo TQA WoW
ACC ACC ACC EM EM EM F1

KGI [Glass et al., 2021]† 85.6 84.4 72.6 45.2 - 61.0 18.6
Hindsight [Paranjape et al., 2021] - - - - - - 19.2
DPR+BART [Petroni et al., 2021] 86.7 59.2 30.4 41.3 25.2 58.6 15.2
RAG [Petroni et al., 2021] 86.3 59.2 44.7 44.4 27.0 71.3 13.1
MT-DPR+BART [Maillard et al., 2021] 86.3 - 58.0 39.8 31.8 59.6 15.3
MT-DPR+FiD [Piktus et al., 2021] 89.0 82.5 71.7 49.9 36.9 71.0 15.7
MT-DPR-WEB+FiD [Piktus et al., 2021] 89.0 81.7 74.2 51.6 38.3 72.7 15.5

SEAL+FiD (LM+FM) 87.9 83.7 74.2 47.3 37.6 65.8 17.5
SEAL+FiD (LM+FM, intersective) 89.5 83.6 74.7 53.7 40.5 70.9 18.3

Table 6: Retrieval results on the NQ test set with different model sizes. DPR (large) performance
from [Oğuz et al., 2021].

System # Par. A@20 A@100

DPR (base) ~220M 80.1 86.1
DPR (large) ~350M 80.2 86.7

SEAL (large) ~400M 76.2 86.3

KILT We report retrieval results at passage level on the KILT benchmark in Table 4.3 SEAL
outperforms DPR by more than 10 points on average in passage-level R-precision, indicating that our
method is more precise in surfacing ground truth evidence as the first result. Moreover, SEAL also
performs better than MT-DPR (multi-task DPR) even when the latter is pretrained on tens of millions
of questions from PAQ [Lewis et al., 2021c], a technique that can drastically improve results and that
could potentially bring benefits to our method as well (a task we leave for future work). When it
comes to downstream performances (Table 5), FiD with passages retrieved by intersective SEAL
establishes a new state-of-the-art on 4 datasets out of 7 (FEVER, zsRE, NQ, HoPo), and achieves
very competitive results on the remaining 3.

Speed and constrained decoding The inference speed of SEAL is directly proportional to the
beam size, with a limited overhead added by constrained decoding. On the Natural Questions test
set, for instance, retrieval with the intersective scoring requires on our 1 GPU evaluation setup
~16 minutes and ~35 minutes with, respectively, a beam size of 5 or 15. Mao et al. [2021] report
a lower runtime for GAR (~5 minutes), and a comparable one for DPR (~30 minutes). Note that
more efficient approaches to constrained decoding have been proposed (e.g., De Cao et al. [2021a])

3We report page-level and KILT-score results in the Appendix (§C).
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Table 7: Ablation on Natural Questions. SEAL when using (✓) or not using (✗) FM-index constrained
decoding, for beam size values in {3, 5, 10, 15}. Reporting accuracy@k.

System Constr. Beam A@20 A@100

SEAL ✓ 15 65.8 81.1
(LM+FM) ✗ 15 65.3 80.1

✓ 3 63.3 78.0
✓ 5 64.7 79.9
✓ 10 65.4 80.8

SEAL ✓ 15 76.2 86.3
(LM+FM, ✗ 15 76.2 86.2

intersective) ✓ 3 75.2 84.9
✓ 5 75.9 85.8
✓ 10 76.4 86.4

Table 8: Performance on Natural Questions with different max ngrams sizes, using SEAL (LM+FM,
intersective).

Length A@20 A@100

3 64.7 74.8
5 73.6 83.7

10 76.2 86.3

and we leave their application to SEAL as future work. Moreover, generation is becoming the de
facto standard approach to NLP, not just as the method for materializing final outputs, but also for
modeling the computational process needed before computing the answer [Wei et al., 2022]. As such,
we expect generation latency will improve significantly and increasingly over time as a result of this
growing interest. Any improvement will be directly applicable to SEAL.

Model size In Table 4 we show that parameter size is not a crucial factor behind the good per-
formance of the method that we propose: SEAL (~400M) outperforms all model from Oğuz et al.
[2021], including the MT-DPR large model (~350M) trained on NQ and PAQ [Lewis et al., 2021c].
In fact, the results of MT-DPR are lower with a bigger backbone—which could point to an increased
difficulty in training larger models for dense retrieval. In the same direction, on vanilla NQ (Table
6), where DPR large only slightly outperforms DPR base, the performance of SEAL is in the same
ballpark.

Ablation studies In Table 7 we report results on NQ for various configurations of SEAL. While,
in general, performances increase with a larger beam, diminishing returns (or even a performance
decrease) are found between a value of 10 and 15. Disabling constrained decoding and discarding a
posteriori all generated ngrams that don’t appear in the corpus results in slightly lower performances.
We have found the decoding maximum length to have a crucial impact on the retrieval performance
of SEAL, since shorter ngrams tend to be less informative than longer ones. We report in Table 8
performances on the NQ test set when using, respectivaly, 3, 5, and 10 as ngram maximum length.
Every other SEAL figure reported in this paper uses 10.

Qualitative Analysis In Table 9, we show examples of ngrams predicted by SEAL (trained on
KILT) given the query “can you predict earthquakes”. SEAL is able to rephrase the query in ways
that preserve its lexical material producing ngrams such as earthquakes can be predicted, used to
predict earthquakes etc. Morevoer, the model is also able to explore more diverse regions of the
output space, overcoming the vocabulary mismatch problem: ngrams contain related tokens like the
subword seism- and the word forecast. SEAL’s LM+FM scoring is also able to assign a score below
0 (and, thus, exclude from the search), unrelated ngrams that are considered by the beam because of
their promising start, such as “Seismic risk in Malta @@”.
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Table 9: Best (top) and worst (bottom) generated keys for the query “can you predict earthquakes”
(left), and retrieved documents (right). Matched ngrams in bold. “@@” separates title and body.

score # identifier doc #1 doc #2

273.2 1 earthquakes can be predicted Seismology @@ for precise earth-
quake predictions, including the
VAN method. Most seismologists
do not believe that a system to pro-
vide timely warnings for individual
earthquakes has yet been developed,
and many believe that such a sys-
tem would be unlikely to give useful
warning of impending seismic events.
However, more general forecasts rou-
tinely predict seismic hazard. Such
forecasts estimate the probability of
an earthquake of a particular [...]

Earthquake prediction @@ reliably
identified across significant spatial
and temporal scales. While part of the
scientific community hold that, taking
into account non-seismic precursors
and given enough resources to study
them extensively, prediction might
be possible, most scientists are pes-
simistic and some maintain that earth-
quake prediction is inherently impos-
sible. Predictions are deemed signif-
icant if they can be shown to be suc-
cessful beyond random chance.[...]

272.7 75 Earthquake prediction @@
269.9 3 predicted earthquakes
229.7 11 Earthquake forecasting @@
217.2 2 prediction Earthquake
211.5 1 used to predict earthquakes
205.3 7 earthquakes. Earthquake

–
−77.0 9 Seismic metamaterial @@
−97.4 14 Seismic risk in Malta @@

−113.4 3 Quaternary (EP) @@
−150.3 1 used to predict the locatio[...]
−301.5 17 Precipice (Battlestar Gala[...]

7 Discussion

With SEAL we present solution that could potentially find applications outside information retrieval
(e.g., enforce generated substrings come from a white list of trusted sources). While we conduct our
experiments with a model of ~400M parameters (i.e., BART) for fast iterations, we believe the use of
larger models could considerably improve performance. Changing the model would not affect the size
of the index nor the cost of using it — O(|n|log|V |) for finding an ngram n. Moreover, we believe
that indexing very large corpora (e.g., the web) could be done more efficiently than existing attempts
(e.g., Piktus et al. [2021]) given the light memory footprint. Finally, dynamic variants [Gerlach, 2007,
Salson et al., 2009] could allow the update of the FM-index on the fly without the need of re-indexing.
While out of the scope of the current paper, we plan to tackle some of these scaling challenges in
future work.

8 Conclusion

In this paper we present SEAL, a novel retrieval system that combines an autoregressive language
model with a compressed full-text substring index. Such combination allows to constrain the genera-
tion to existing ngrams in a corpus and to jointly retrieve documents containing them. Empirically,
we show an improvement by more than 10 points in average passage-level R-precision on KILT, and
establish new state-of-the-art downstream performance on 4 out 7 datasets when paired with a reader
model. While our results show that SEAL could already compete with more established retrieval
systems, we believe there is potential in exploring existing (or yet to come) larger autoregressive
models.

9 Broader Impact

While our decoding methodology provides a way to enforce corpus-based generation constraints, this
does not fully prevent the generation and retrieval of non-factual or abusive text, since the corpus
itself may well contain non-factual or abusive text. Moreover, even if a given corpus is misinformative
or abusive, the language model could still produce undesirable text by “misquoting” material from it,
e.g., selectively copying an utterance that is being criticized in the original context of appearance.
Applications should allow user to check the original supporting text. Furthermore, while we have
only used a relatively small language model, scaling up the autoregressive model of SEAL would
come with the same environmental risks that any other large system would pose, due to the more
demanding energy requirements.
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Table 10: Retrieval results on the KILT test set(s). Reporting page-level R-precision (higher is better).
Best in bold. Results are taken from the eval.ai KILT leaderboard.

Model FEV T-REx zsRE NQ HoPo TQA WoW AVG

KGI [Glass et al., 2021] 75.6 74.4 98.5 63.7 - 60.5 55.4 -
Hindsight [Paranjape et al., 2021] - - - - - - 56.1 -
GENRE [De Cao et al., 2021b] 83.6 79.4 95.8 60.3 51.3 69.2 62.9 71.8
MT-DPR [Maillard et al., 2021] 74.5 69.5 80.9 59.4 42.9 61.5 41.1 61.4
MT-DPR+WEB [Piktus et al., 2021] 74.8 75.6 89.7 59.8 45.4 58.9 41.5 63.7

SEAL (LM+FM) 77.8 67.8 98.0 60.3 54.0 68.1 55.4 68.8
SEAL (LM+FM, intersective) 81.4 62.1 91.6 63.2 58.8 68.4 57.5 69.0

Table 11: KILT scores on the KILT test set(s). In KILT-scores an instance is considered correct if both
the predicted page and the answer match the ground truth. Metrics are accuracy (FEVER, T-REx,
zero-shot RE), exact match (Natural Questions, HotpotQA, TriviaQA), or F1 (Wizard of Wikipedia).
Best in bold. Results are taken from the eval.ai KILT leaderboard.

System FEV T-REx zsRE NQ HoPo TQA WoW
K.-ACC K.-ACC K.-ACC K.-EM K.-EM K.-EM K.-F1

KGI [Glass et al., 2021] 64.4 69.1 72.3 36.4 - 42.9 10.4
Hindsight [Paranjape et al., 2021] - - - - - - 13.4
RAG [Petroni et al., 2021] 53.5 23.1 36.8 32.7 3.2 38.1 8.8
MT-DPR+BART [Maillard et al., 2021] 63.9 - 50.6 29.1 9.5 42.4 5.9
MT-DPR-WEB+FiD [Piktus et al., 2021] 65.7 64.6 67.2 35.3 11.7 45.6 7.6

SEAL+FiD (LM+FM) 67.0 60.1 73.2 32.8 15.1 47.7 11.0
SEAL+FiD (LM+FM, intersective) 71.3 54.6 69.2 38.8 18.1 50.6 11.6

Appendix

A Hyperparameters

Training We finetune the model using fairseq. We use Adam [Kingma and Ba, 2015] with a
learning rate of 3 · 10−5, warming up for 500 updates, then using polynomial decay for at 800k
updates, evaluating every 15k steps. We stop the training run if the loss on the development set stops
improving for 5 evaluation passes. We use label smoothing (0.1), weight decay (0.01), and gradient
norm clipping (0.1). We train in batches of 4096 tokens on 8 GPUs.

Inference We decode for 10 timesteps with a beam size of 15, and set the hyperparameters α,
and β to, respectively, 2.0 and 0.8. The hyperparameters have been tuned on the Natural Questions
development set. In the constrained decoding stage, we force part of the generated ngrams to match
document titles.

B DSI-BART replication details

On NQ320k, bert-base-cased is used to compute the embeddings for the clustering. On regular
NQ, we use the public precomputed DPR embeddings. To compare fairly against SEAL, we fine-tune
the same encoder-decoder backbone, i.e., BART large.

C Additional KILT results

We report in Table 10 page-level results on the KILT test set. On most datasets, SEAL obtains results
which are comparable or better than other systems performing page-level retrieval. Furthermore,
results are within two points of the average performance of GENRE, i.e., a system that directly targets
the page-level setting. Comparing KILT-scores (Table 11), i.e., a metric combining downstream
performances and page-level R-precision, we achieve state-of-the-art results on 4 out of 7 datasets.
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Table 12: Ablation on Natural Questions. SEAL when using (✓) or not using (✗) super-
vised/unsupervised data. Reporting accuracy@k.

System Sup. Unsup. A@20 A@100
BM25 - - 62.9 78.1

SEAL ✓ ✓ 76.2 86.3
(LM+FM ✓ ✗ 74.8 85.4

intersective) ✗ ✓ 61.7 76.3

D Impact of unsupervised examples

SEAL is trained with both supervised and unsupervised examples. In Table 12 we report ablated
results, by which we assess the importance of both kind of training examples. The addition of
unsupervised examples improves purely supervised training by one point (A@100). Only training
with unsupervised examples results in performances which are slightly below BM25’s.
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