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Abstract

Fine-tuning large pre-trained language models on downstream tasks is apt to suffer
from overfitting when limited training data is available. While dropout proves
to be an effective antidote by randomly dropping a proportion of units, existing
research has not examined its effect on the self-attention mechanism. In this paper,
we investigate this problem through self-attention attribution and find that dropping
attention positions with low attribution scores can accelerate training and increase
the risk of overfitting. Motivated by this observation, we propose Attribution-
Driven Dropout (AD-DROP), which randomly discards some high-attribution
positions to encourage the model to make predictions by relying more on low-
attribution positions to reduce overfitting. We also develop a cross-tuning strategy
to alternate fine-tuning and AD-DROP to avoid dropping high-attribution positions
excessively. Extensive experiments on various benchmarks show that AD-DROP
yields consistent improvements over baselines. Analysis further confirms that
AD-DROP serves as a strategic regularizer to prevent overfitting during fine-tuning.

1 Introduction

Pre-training large language models (PrLMs) on massive unlabeled corpora and fine-tuning them
on downstream tasks has become a new paradigm [1–3]. Their success can be partly attributed
to the self-attention mechanism [4], yet these self-attention networks are often redundant [5, 6]
and tend to cause overfitting when fine-tuned on downstream tasks due to the mismatch between
their overparameterization and the limited annotated data [7–13]. To address this issue, various
regularization techniques such as data augmentation [14, 15], adversarial training [16, 17]), and
dropout-based methods [11, 13, 18] have been developed. Among them, dropout-based methods
are widely adopted for their simplicity and effectiveness. Dropout [19], which randomly discards a
proportion of units, is at the core of dropout-based methods. Recently, several variants of dropout have
been proposed, such as Concrete Dropout [20], DropBlock [21], and AutoDropout [22]. However,
these variants generally follow the vanilla dropout to randomly drop units during training and pay
little attention to the effect of dropout on self-attention. In this paper, we seek to fill this gap from the
perspective of self-attention attribution [23] and aim to reduce overfitting when fine-tuning PrLMs.

Attribution [24] is an interpretability method that attributes model predictions to input features via
saliency measures such as gradient [25, 26]. It is also used to explain the influence patterns of
self-attention in recent literature [23, 27, 28]. Our prior experiment of self-attention attribution
(Section 2.2) reveals that attention positions are not equally important in preventing overfitting, and
dropping low-attribution positions is more likely to cause overfitting than discarding high-attribution
positions. This observation suggests that attention positions should not be treated the same in dropout.
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Vanilla dropout AD-DROP

Figure 1: Attention maps of vanilla dropout and our
AD-DROP. Darker attention positions indicate higher
attribution scores, and crossed circles mean dropped
attention positions. Red-dotted boxes refer to can-
didate discard regions with high attribution scores.
Unlike vanilla dropout which randomly discards atten-
tion positions, AD-DROP focuses on dropping high-
attribution positions in candidate discard regions.

Motivated by the above, we propose
Attribution-Driven Dropout (AD-DROP)
to better fine-tune PrLMs based on self-
attention attribution. The general idea of AD-
DROP is to drop a set of self-attention posi-
tions with high attribution scores. We illus-
trate the difference between vanilla dropout
and AD-DROP by their attention maps in Fig-
ure 1. When fine-tuning a PrLM on a batch
of training samples, AD-DROP involves four
steps. First, predictions are made through a
forward computation without dropping any
attention position. Second, we compute the
attribution score of each attention position
by gradient [25] or integrated gradient [26]
attribution methods. Third, we sample a set
of positions with high attribution scores and
generate a mask matrix for each attention
map. Finally, the mask matrices are applied
to the next forward computation to make predictions for backpropagation. AD-DROP can be regarded
as a strategic dropout regularizer that forces the model to make predictions by relying more on
low-attribution positions to reduce overfitting. Nevertheless, excessive neglect of high-attribution
positions would leave insufficient information for training. Hence, we further propose a cross-tuning
strategy that performs fine-tuning and AD-DROP alternately to improve the training stability.

To verify the effectiveness of AD-DROP, we conduct extensive experiments with different PrLMs
(i.e., BERT [1], RoBERTa [2], ELECTRA [29], and OPUS-MT [30]) on various datasets (i.e., GLUE
[31], CoNLL-2003 [32], WMT 2016 EN-RO and TR-EN [33], HANS [34], and PAWS-X [35]).
Experimental results show that the models tuned with AD-DROP obtain remarkable improvements
over that tuned with the original fine-tuning approach. For example, on the GLUE benchmark, BERT
achieves an average improvement of 1.98/0.87 points on the dev/test sets while RoBERTa achieves an
average improvement of 1.29/0.62 points. Moreover, ablation studies and analysis demonstrate that
gradient-based attribution [25, 26] is a more suitable saliency measure for implementing AD-DROP
than directly using attention weights or simple random sampling. Moreover, they also demonstrate
that the cross-tuning strategy plays a crucial role in improving training stability.

To sum up, this work reveals that self-attention positions are not equally important for dropout
when fine-tuning PrLMs. Arguably, low-attribution positions are more difficult to optimize than
high-attribution positions, and dropping these positions tends not to relieve but accelerate overfitting.
This leads to a novel dropout regularizer, AD-DROP, driven by self-attention attribution. Although
proposed for self-attention units, AD-DROP can be potentially extended to other units as dropout.

2 Methodology

2.1 Preliminaries

Since Transformers [4] are the backbone of PrLMs, we first review the details of self-attention in
Transformers and self-attention attribution [23]. Let X ∈ Rn×d be the input of a Transformer block,
where n is the sequence length and d is the embedding size. Self-attention in this block first maps X
into three matrices Qh, Kh and Vh via linear projections as query, key, and value respectively for
the h-th head. Then, the attention output of this head is calculated as:

Attention (Qh,Kh,Vh) = AhVh = softmax

(
QhKh

T

√
dk

+Mh

)
Vh, (1)

where
√
dk is a scaling factor. Mh is the mask matrix to apply dropout in self-attention, and elements

in Mh will be −∞ if the corresponding positions in attention maps are masked and 0 otherwise.
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Based on the attention maps A = [A1,A2, · · · ,AH ] for H attention heads, gradient attribution
[25, 36] directly produces an attribution matrix Bh by computing the following partial derivative:

Bh =
∂Fc (A)

∂Ah
, (2)

where Fc(·) denotes the logit output of the Transformer for class c.

To provide a theoretically more sound attribution method, Sundararajan et al. [26] propose integrated
gradient, which is employed by Hao et al. [23] as a saliency measure for self-attention attribution.
Specifically, Hao et al. [23] compute the attribution matrix Bh as:

Bh =
Ah

m
⊙

m∑
k=1

∂Fc

(
k
mA

)
∂Ah

, (3)

where m is the number of steps for approximating the integration in integrated gradient, and ⊙ is
the element-wise multiplication operator. Despite its theoretical advantage over gradient attribution,
integrated gradient requires m times more computational effort, which is especially expensive when
it is applied to all the attention heads in Transformers. Moreover, our experiments in Section 3.4 show
that gradient attribution achieves comparable performance with integrated gradient but requires much
less computational cost, suggesting that gradient attribution is more desirable for AD-DROP.

2.2 A Prior Attribution Experiment
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Figure 2: Results of training and validation losses when fine-
tuning RoBERTa with different dropping strategies on MRPC.
The dropping rate is set to 0.3 if it applies.

To better motivate our work, we first
conduct a prior experiment on MRPC
[37] to investigate how different po-
sitions in self-attention maps affect
fine-tuning performance based on at-
tribution results. RoBERTa_base [2]
is used as the base model. To begin
with, we first perform a forward com-
putation of the model on each batch
of training samples to obtain the logit
output of each sample corresponding
to the gold label. Then, we obtain
an attribution matrix Bh for the self-
attention positions in the first layer2

by gradient attribution with Eq. (2)
and sort each row of the matrix. Finally, we sample a set of self-attention positions with high or low
attribution scores in each row to generate a mask matrix Mh, which is fed into Eq. (1) to make the
final predictions. After each epoch of training, we evaluate the model on the development set. Two
baseline dropping strategies (i.e., dropping by random sampling and without dropping any position)
are employed for comparison. We plot the loss curves of the model with these dropping strategies on
both training and development sets in Figure 2. The observations are threefold. First, dropping low-
attribution positions makes the model fit the training data rapidly, whereas it performs poorly on the
development set, indicating that the model is not properly trained. Second, compared with the other
dropping strategies, dropping high-attribution positions reduces the fitting speed significantly. Third,
random dropping only slightly reduces overfitting, compared to the training without dropping. These
observations suggest that attention positions are of different importance in preventing overfitting. We
conjecture that low-attribution positions are more difficult to optimize than high-attribution positions.
While dropping low-attribution positions tends to accelerate overfitting, discarding high-attribution
positions helps reduce overfitting.

2.3 Attribution-Driven Dropout

Inspired by the observations in Section 2.2, we propose a novel regularizer, AD-DROP, to better
prevent overfitting when adapting PrLMs to downstream tasks. The motivation of AD-DROP is to
minimize the over-reliance of these models on particular features which may affect their generalization.

2We provide more results and discussions in Appendix B.
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Formally, given a training set D = {(xi, yi)}Ni=1 of N samples, where xi is the i-th sample and yi is
its label, the goal of AD-DROP is to fine-tune a PrLM F (·) of L layers on D. Same as the vanilla
dropout [19], AD-DROP is only applied in the training phase.
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Figure 3: Illustration of AD-DROP in four steps. (1) Conduct the first forward computation to obtain
pseudo label c̃. (2) Generate attribution matrices B via computing the gradient of logit output Fc̃ (A)
with respect to each attention head. (3) Sort B and strategically drop some positions to produce mask
matrices M. (4) Feed M into the next forward computation to compute the final loss.

As shown in Figure 3, the idea of AD-DROP can be described in four steps. First, we conduct a
forward computation of the model to obtain the label with the highest probability as the pseudo label.
The reason we adopt pseudo labels rather than gold labels for attribution will be explained shortly.
Specifically, for the input xi with n tokens, we apply F (·) to encode it and obtain its pseudo label c̃:

c̃ = argmax
c

(PF (c|xi)) , (4)

where PF (c|xi) is the probability of class c for xi. After the forward computation, we also obtain a
set of attention maps A = [A1,A2, · · · ,AH ] for each layer according to Eq. (1).

Second, we compute the attribution matrices B = [B1,B2, · · · ,BH ] for H heads according to
Eq. (2). Specifically, the attribution matrix Bh for the h-th head is computed as:

Bh =
∂Fc̃ (A)

∂Ah
, (5)

where Fc̃ (A) is the logit output of pseudo label c̃ before softmax.3

Third, we generate a mask matrix Mh based on Bh. To this end, we first sort each row of Bh in
ascending order and obtain a sorted attribution matrix B̂h. Then, we define a candidate discard region
Sh, in which each element si,j is defined as:

si,j =

{
1, bi,j < b̂i,int(n(1−p))

0, otherwise
(6)

where bi,j and b̂i,j are elements of Bh and B̂h, respectively, int(·) is an integer function, and
p ∈ (0, 1) is used to control the size of the candidate discard region. Next, we apply dropout in the
region to produce the mask matrix Mh as:

mi,j =

{
−∞, (si,j+ui,j) = 0
0, otherwise

(7)

where ui,j ∼ Bernoulli(1− q) is an element of matrix Uh ∈ Rn×n, and q is the dropout rate.

Finally, Mh is fed into self-attention of Eq. (1) for the second forward computation, and the final
output is used to calculate the loss for backpropagation.

3The negative loss will be used for both regression and token-level tasks, as introduced in Appendix A.
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Discussion The reasons that AD-DROP uses pseudo labels for attribution are twofold. First,
adopting gold labels will divulge label information and lead to inconsistency between training and
inference. Second, for misclassified samples in the first forward computation, AD-DROP with gold
labels tends to continue to make incorrect predictions because high-attribution attention positions
derived from gold labels may be located in low-attribution regions derived from pseudo labels.
Therefore, dropping these positions does not help the model correct wrong predictions, while AD-
DROP with pseudo labels urges the model to rely on important features in the current pass and may
correct the wrong predictions. The attribution with gold labels will be investigated in Section 3.4.

2.4 Cross-Tuning Algorithm

We further design a cross-tuning algorithm to avoid dropping high-attribution positions excessively
when applying AD-DROP. The idea of cross-tuning is to execute the original fine-tuning and AD-
DROP alternatively. Specifically, it performs the original fine-tuning at odd epochs and AD-DROP at
even epochs. The overall process of cross-tuning is described in Algorithm 1, where Lines 3-5 are
the original fine-tuning operations and Lines 7-9 describe the process of AD-DROP.

Algorithm 1 Cross-tuning

Input: shuffled training samples D = {(xi, yi)}Ni=1, PrLM F with parameters W
Output: updated parameters W̃
1: Initialize F with W, epoch = 1
2: while not converged do
3: Calculate the prediction PF (yi|xi) and loss via forward computation.
4: if epoch%2 == 1 then
5: Backpropagate the loss to update model parameters W.
6: else
7: Perform AD-DROP by Eq. (4)-(7) to obtain mask matrices M = [M1,M2, · · · ,MH ].
8: Calculate the new prediction PF (yi|xi) and new loss by feeding M into Eq. (1).
9: Backpropagate the new loss to update model parameters W.

10: epoch = epoch+ 1

11: return W̃ = W

3 Experiments

3.1 Datasets

We conduct our main experiments on eight tasks of the GLUE benchmark [31], including SST-2
[38], MNLI [39], QNLI [40], QQP [41], CoLA [42], STS-B [43], MRPC [37], and RTE [44]. The
evaluation metrics are Matthew’s Corrcoef (Mcc) [45] for CoLA, Pearson Corrcoef (Pcc) [46] for
STS-B, and Accuracy (Acc) for the others. To demonstrate that AD-DROP applies to token-level tasks
as well, we conduct experiments on Named Entity Recognition (CoNLL-2003 [32]) and Machine
Translation (WMT 2016 [33]) datasets, the results of which are shown in Appendix A.2. Besides,
we also evaluate AD-DROP on two out-of-distribution (OOD) datasets, including HANS [34] and
PAWS-X [35]. The details of these datasets are introduced in Appendix C.1.

3.2 Implementation Details

We implement our AD-DROP in Pytorch with the Transformers package [47]. We train the selected
PrLMs on GeForce RTX 3090 GPUs. We tune the learning rate in {1e-5, 2e-5, 3e-5} and the batch
size in {16, 32, 64}. Following Miao et al. [17], we perform early stopping to choose the number of
training epochs on GLUE. The two critical hyperparameters p and q are searched within [0.1, 0.9]
with step size 0.1. For integrated gradient in Eq. (3), we follow Hao et al. [23] and set m to 20. We
apply AD-DROP only in the first layer for the datasets of SST-2, MNLI, QNLI, QQP, and STS-B
since the fine-tuning on these datasets is stable and less likely to cause overfitting. For the rest
datasets, we apply AD-DROP in all layers. We provide the detailed hyperparameter settings on each
dataset in Appendix C.2. Our code is available at https://github.com/TaoYang225/AD-DROP.
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Table 1: Overall results of fine-tuned models on the GLUE benchmark. The symbol † denotes results
directly taken from the original papers. The best average results are shown in bold.

Methods SST-2 MNLI QNLI QQP CoLA STS-B MRPC RTE Average

Development
BERTbase 92.3 84.6 91.5 91.3 60.3 89.9 85.1 70.8 83.23

+SCAL† [17] 92.8 84.1 90.9 91.4 61.7 - - 69.7 -
+SuperT† [48] 93.4 84.5 91.3 91.3 58.8 89.8 87.5 72.5 83.64
+R-Drop† [18] 93.0 85.5 92.0 91.4 62.6 89.6 87.3 71.1 84.06
+AD-DROP 93.9 85.1 92.3 91.8 64.6 90.4 88.5 75.1 85.21

RoBERTabase 95.3 87.6 92.9 91.9 64.8 90.9 90.7 79.4 86.69
+R-Drop [18] 95.2 87.8 93.2 91.7 64.7 91.2 90.5 80.5 86.85
+HiddenCut† [15] 95.8 88.2 93.7 92.0 66.2 91.3 92.0 83.4 87.83
+AD-DROP 95.8 88.0 93.5 92.0 66.8 91.4 92.2 84.1 87.98

Test
BERTbase 93.6 84.7 90.4 89.3 52.8 85.6 81.4 68.4 80.78

+AD-DROP 94.3 85.2 91.6 89.4 53.3 86.6 84.1 68.7 81.65
RoBERTabase 94.8 87.5 92.8 89.6 58.3 88.7 86.3 75.1 84.14

+AD-DROP 95.9 87.6 93.4 89.5 58.5 89.3 87.9 76.0 84.76

3.3 Overall Results

We report the overall results of the fine-tuned models in Table 1. We first compare AD-DROP with
existing regularization methods on the development sets, including the original fine-tuning, SCAL
[17], SuperT [48], R-Drop [18], and HiddenCut [15]. We observe that AD-DROP surpasses the
baselines on most of the datasets. Specifically, AD-DROP yields an average improvement of 1.98
and 1.29 points on BERTbase and RoBERTabase, respectively. We then discuss the performance of
AD-DROP on the test sets. Results in Table 1 show that AD-DROP achieves consistent improvement,
boosting the average scores of BERTbase and RoBERTabase by 0.87 and 0.62, respectively. Besides,
compared with large datasets, AD-DROP achieves more gains on small datasets, which are more
likely to cause overfitting, illustrating that AD-DROP is more suitable for small data scenarios.

3.4 Ablation Study

Table 2: Results of ablation studies, in which r/w means
“replace with” and w/o means “without”.

Methods CoLA STS-B MRPC RTE

BERTbase 60.3 89.9 85.1 70.8
+AD-DROP (GA) 64.6 90.4 88.5 75.1

r/w IGA 63.8 90.7 88.5 74.4
r/w AA 63.6 90.0 88.0 74.7
r/w RD 62.1 90.2 87.8 74.7
r/w gold labels 63.2 - 88.0 74.4
w/o cross-tuning 62.1 90.4 87.3 71.5

RoBERTabase 64.8 90.9 90.7 79.4
+AD-DROP (GA) 66.8 91.4 92.2 84.1

r/w IGA 68.1 91.6 91.4 82.7
r/w AA 66.3 91.5 91.2 82.3
r/w RD 66.5 91.5 92.2 82.0
r/w gold labels 66.4 - 91.2 82.0
w/o cross-tuning 67.3 91.3 90.4 80.5

We conduct ablation experiments on four
small datasets to investigate the impact of
different components. Due to the limited
number of submissions imposed by the
GLUE server for evaluation, the results
here are reported on the development sets.

Attribution methods AD-DROP can
be implemented with different attribution
methods to generate the mask matrix in
Eq. (1), such as integrated gradient attri-
bution (IGA) introduced Eq. (3), atten-
tion weights for attribution (AA), and ran-
domly generating the discard region (RD)
in Eq. (6). We replace the gradient attribu-
tion (GA) in Eq. (5)-(6) with these methods.
From Table 2, we can make three obser-
vations. First, AD-DROP with gradient-
based attribution methods (GA and IGA)
surpasses that with the other methods (AA or RD) on most of the datasets, illustrating that gradient-
based methods are better at finding features that are likely to cause overfitting. Second, IGA
outperforms GA in some cases. Although IGA provides better theoretical justification than GA for
attribution, it requires prohibitively more computational cost than GA (see Section 4.7 for efficiency
analysis), making GA a more desirable choice for AD-DROP. Third, AD-DROP improves the original
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BERTbase and RoBERTabase with any of the masking strategies, demonstrating the robustness of
AD-DROP to overfitting when fine-tuning these models.

Pseudo labels vs gold labels In Section 2.3, we discuss the motivation of using pseudo labels for
attribution in AD-DROP. To verify the reasonability, we conduct an experiment with gold labels
for attribution. As the results show in Table 2, using gold labels for attribution deteriorates the
performance, illustrating that AD-DROP with pseudo labels for attribution is preferable.
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Figure 4: Results of AD-DROP with and without
cross-tuning when enumerating p and q in [0.1,
0.9]. RoBERTa is chosen as the base model. Re-
sults show that "with cross-tuning" leads to much
lower variance and higher performance.

Cross-tuning To verify the effectiveness of
the cross-tuning strategy, we ablate it and ap-
ply only AD-DROP in all training epochs. As
shown in Table 2, removing cross-tuning causes
noticeable performance degradation on most of
the datasets. This can be explained by the intu-
ition that AD-DROP without cross-tuning tends
to discard high-attribution positions excessively
and make the model difficult to converge nor-
mally. To vividly demonstrate the effect of AD-
DROP with or without cross-tuning, we visual-
ize the distributions of the performance on the
RTE4 development set when enumerating the
parameters p and q in the range of [0.1, 0.9].
The results are plotted in Figure 4, where each
blue/orange point denotes the accuracy with a
pair of p and q values. We observe from the fig-
ure that AD-DROP without cross-tuning cannot
be trained properly under some parameter set-
tings. However, it works well for most parameter settings when cross-tuning is applied, demonstrating
that cross-tuning is vital for improving training stability.

4 Analysis

In this section, we further conduct several experiments for more thorough analysis.

4.1 Repeated Experiments

Table 3: Results of repeated experiments. Each score is the
average of five runs with a standard deviation.

Methods CoLA STS-B MRPC RTE

BERTbase 61.8±1.9 89.4±0.5 85.2±1.3 71.2±1.2

+AD-DROP 63.4±0.4 90.1±0.5 87.4±0.9 73.9±1.1

RoBERTabase 64.3±0.9 91.0±0.2 89.8±0.8 79.1±1.7

+AD-DROP 66.4±0.9 91.2±0.1 91.3±0.7 82.5±0.9

To reduce the influence of random-
ness, we conduct repeated experi-
ments on four small datasets (i.e.,
CoLA, STS-B, MRPC and RTE). We
repeat the training of each model
with five random seeds and report the
average score and standard deviation
on the development sets. From Table
3, we observe that AD-DROP outper-
forms the original fine-tuning on all
the datasets. In addition, AD-DROP results in lower standard deviations on most of the datasets,
showing that AD-DROP is more robust in fine-tuning PrLMs than the original approach.

4.2 Effect of Data Size

To study the impact of data size, we compare AD-DROP with the original fine-tuning (FT) approach
on QNLI and QQP,5 two relatively large datasets, and report their performance when the number of
training samples changes. RoBERTa is chosen as the base model. Figure 5 shows that AD-DROP

4Results on the other datasets are shown in Appendix D.1.
5Results on QQP are shown in Appendix D.2.
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Figure 5: Results of AD-DROP and FT as
the number of training samples changes.

outperforms FT consistently on QNLI. Moreover, AD-
DROP improves the efficiency of data use as training AD-
DROP with 60% training samples produces comparable
performance to FT with full data.

4.3 Hyperparameter Sensitivity

AD-DROP involves two hyperparameters p and q to con-
trol the number of discarded attention positions. To inves-
tigate the sensitivity of AD-DROP to them, we show the
results of different p and q combinations on CoLA and
RTE in Figure 6, in which we apply MaxAbsScaler6 to
project the difference between the results of AD-DROP
and FT into the interval of [−1.0, 1.0]. We observe that
BERT with AD-DROP is not hyperparameter-sensitive
as it outperforms the baseline under most settings. In
contrast, RoBERTa with AD-DROP is more sensitive and requires a careful search for optimal
hyperparameter settings. The possible reason is that RoBERTa is pre-trained with more data and
more effective tasks than BERT, making it less prone to overfitting than BERT.
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(c) BERT on RTE
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(d) RoBERTa on RTE

Figure 6: Results of sensitivity study on CoLA and RTE. Rows correspond to p and columns refer to
q. Blue blocks indicate the results of AD-DROP below the baseline (FT), and red blocks mean the
results of AD-DROP above the baseline. Darker colors mean greater gaps with the baseline.

4.4 Larger Model Size

Table 4: Testing AD-DROP on a larger model.

Methods MRPC RTE

RoBERTalarge 90.83±0.75 85.99±0.86

+AD-DROP 91.62±0.53 88.01±0.48

To verify the scalability of AD-DROP for a
larger model size, we evaluate AD-DROP with
RoBERTalarge on the RTE and MRPC datasets. Ta-
ble 4 shows the average scores and standard devi-
ations of five random seeds. There are two main
observations. First, AD-DROP achieves consistent
improvements over the larger RoBERTa model, il-
lustrating that AD-DROP is scalable to large models. Second, compared with RoBERTabase on RTE
in Table 3, the larger model significantly reduces the deviation (from 1.7 to 0.86), suggesting that a
larger model size indeed helps to improve the stability. AD-DROP further improves the performance
and reduces the deviation.

4.5 Few-shot Scenario

In this subsection, we test the performance of AD-DROP under few-shot scenarios. Specifically, we
carry out 16-, 64-, and 256-shot experiments on SST-2 and CoLA with RoBERTabase as the base
model and the baseline. We report the average scores and standard deviations of five random seeds in
Table 5. We observe that RoBERTa with AD-DROP consistently outperforms the original fine-tuning
approach. Besides, AD-DROP tends to bring more benefits when fewer samples are available.

6https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
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Table 5: Testing AD-DROP in few-shot settings. RoBERTa with AD-DROP achieves higher perfor-
mance and lower deviations than that with the original fine-tuning approach.

Methods SST-2 CoLA
16-shot 64-shot 256-shot 16-shot 64-shot 256-shot

RoBERTabase 74.50±3.03 89.06±0.83 91.44±0.17 23.18±6.38 39.70±4.68 51.11±1.64

+AD-DROP 80.16±1.51 91.61±0.52 92.61±0.13 26.70±4.96 46.41±1.98 52.47±1.16

4.6 Out-of-Distribution Generalization

Table 6: Testing AD-DROP on OOD datasets.

Methods HANS PAWS-X

RoBERTabase 69.83 47.90
+AD-DROP 70.49 51.25

To further demonstrate AD-DROP is beneficial
to reducing overfitting, we test AD-DROP with
RoBERTabase on two out-of-distribution (OOD)
datasets, i.e., HANS and PAWS-X. For HANS, we
use the checkpoints trained on MNLI and test their
performance on the validation set (the test set is not
supplied). For PAWS-X, we use the checkpoints
trained on QQP and examine its performance on the test set. The evaluation metric is accuracy. From
Table 6, we can see that RoBERTa with AD-DROP achieves better generalization, where AD-DROP
boosts the performance by 0.66 on HANS and 3.35 on PAWS-X, illustrating that the model trained
with AD-DROP generalizes better to OOD data.

4.7 Computational Efficiency

To analyze the computational efficiency, we quantitatively study the computational cost of AD-DROP
with different dropping strategies (GA, IGA, AA, and RD) relative to the original fine-tuning on
CoLA, STS-B, MRPC, and RTE. BERT is chosen as the base model for this experiment. As shown
in Table 7, although IGA achieves more favorable performance on one of the datasets, it requires
higher computational costs than its counterparts, especially when applied in all the layers. In contrast,
AD-DROP with GA is more competitive in both performance and computational cost.

Table 7: Results of performance and computational cost of AD-DROP with different masking
strategies (GA, IGA, AA, and RD) relative to the original fine-tuning. The symbol ‡ means AD-
DROP is only applied in the first layer. BERT is chosen as the base model.

Methods CoLA STS-B‡ MRPC RTE
Mcc Time Pcc Time Acc Time Acc Time

RD +1.8 ×1.42 +0.3 ×1.38 +2.7 ×1.31 +3.9 ×1.42
AA +3.3 ×1.42 +0.1 ×1.48 +2.9 ×1.94 +3.9 ×1.58
GA +4.3 ×3.58 +0.5 ×1.95 +3.4 ×4.13 +4.3 ×4.50
IGA +3.5 ×99.61 +0.8 ×15.00 +3.4 ×110.12 +3.6 ×125.67

5 Related Work

Dropout Dropout is a widely used regularizer to mitigate overfitting when training deep neural
networks. Vanilla dropout [19] randomly selects neurons with a predefined probability and sets their
values to zeros during training. By doing so, the neurons cannot co-adapt and the trained networks
can lead to better generalization. In recent years, many variants of dropout have emerged. One
body of research aims to adopt different strategies to drop units in neural networks. For example,
DropConnect [49] randomly selects connections between neurons to discard. DropBlock [21] defines
a structured dropout that randomly drops the units in a specific contiguous region of a feature map.
AutoDropout [22] aims to improve the dropout pattern of DropBlock by introducing an automatic
method to design dropout structures. HiddenCut [15] drops contiguous spans within the hidden space,
in which the attention weights are utilized to select the dropped spans strategically.
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Another body of research devotes to addressing the inconsistency between training and inference
when dropout is applied. For instance, mixout [11] randomly replaces selected parameters with
original pre-trained weights rather than setting them to zeros. CHILD-TUNING [13] selects a
child network and masks out the gradients of the non-child network during the backward step, only
updating weights in the child network. R-Drop [18] performs dropout twice in the forward steps to
produce two sub-models and then applies KL-divergence for their output distributions, forcing the
two sub-models to be consistent with each other. However, most of these methods follow the random
sampling strategy of dropout and pay little attention to the different importance of self-attention
positions in PrLMs.

Attribution Numerous studies have been undertaken to interpret the behaviors of deep neural
networks (DNNs). As a theory for interpretability, attribution aims to evaluate the impact of input
features on predictions [24]. Generally, attribution methods can be divided into perturbation-based
[50–52], gradient-related [25, 53, 26], and attention-based [54–56] methods. We focus on reviewing
the gradient-related methods as they are more relevant to our work. Specifically, earlier works
[25, 57, 58] try to explain model decisions via gradients since gradients indicate the direction and rate
that changes the loss the fastest. However, Sundararajan et al. [26] point out that gradient attribution
violates the sensitivity axiom in some cases that the gradients will be zero for the function in saturated
areas, and propose integrated gradient as a theoretically more sound attribution method.

Other efforts have been devoted to revealing the behavior patterns of PrLMs. Kovaleva et al. [8] and
Clark et al. [9] use attention weights for attribution to investigate what specific knowledge BERT
[1] learns. Jain and Wallace [27] and Brunner et al. [59] investigate the identifiability of attention
weights and conclude that attention weights are not a faithful explanation for model predictions. Hao
et al. [23] apply integrated gradient [26] as a saliency measure for self-attention attribution in BERT,
and use the attribution result to interpret information interactions inside Transformers. Similarly,
Lu et al. [28] develop influence patterns based on integrated gradient to explain information flow
in BERT. Unlike these works, we aim to examine the effect of dropout on self-attention through
self-attention attribution and to reduce overfitting when fine-tuning PrLMs.

6 Conclusion

We propose a novel dropout regularizer, AD-DROP, to mitigate overfitting when fine-tuning PrLMs
on downstream tasks. Unlike previous dropout-based methods that generally adopt the random
sampling strategy to discard units, AD-DROP draws inspiration from self-attention attribution which
reveals that attention positions are not equally important in reducing overfitting and that dropping
inappropriate positions may exacerbate the problem. Therefore, AD-DROP focuses on discarding
high-attribution attention positions to prevent the model from relying heavily on these positions to
make predictions. Besides, we propose a cross-tuning strategy that performs the original fine-tuning
and our AD-DROP alternately to stabilize the fine-tuning process. Extensive experiments and analysis
on the GLUE benchmark demonstrate the effectiveness of AD-DROP. Although originally proposed
and evaluated based on self-attention attribution, AD-DROP can be potentially extended to other
neural network units as vanilla dropout, which deserves further research efforts.
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A Appendix: AD-DROP for Token-Level Tasks

A.1 Attribution Matrix

Note that AD-DROP is naturally suitable for classification tasks since we can obtain one single
attribution matrix with respect to the only logit output for each attention map. For token-level tasks
(e.g., NER and text generation), as we have several logit outputs to produce the corresponding
attribution matrices for each attention map, applying AD-DROP has the challenge of how to fuse
these attribution matrices. We provide a simple alternative to calculate the attribution matrix in Eq. (5)
as:

B̃h = − ∂L
∂Ah

, (8)

where L is the pseudo loss in terms of the pseudo labels. Given a sequence x with n input tokens, we
represent each pseudo label as a one-hot vector of C elements and compute L as:

L =

n∑
i=1

Li = −
n∑

i=1

C∑
c=1

yi,clogPF (c|x, i) = −
n∑

i=1

yi,c̃logPF (c̃|x, i), (9)

where yi,c is the c-th element in the one-hot vector for token i, PF (c|x, i) is the softmax output of
class c for token i, and c̃ is the pseudo label. Then, Eq. (8) can be updated as:

B̃h = − ∂L
∂Ah

= −
n∑

i=1

∂Li

∂Fi,c̃ (A)
· ∂Fi,c̃ (A)

∂Ah
=

n∑
i=1

(yi,c̃ − PF (c̃|x, i))Bi,h. (10)

Therefore, we can use Eq. (10) to compute a single attribution matrix for each attention map when
applying AD-DROP in token-level tasks. Besides, as regression tasks (e.g., STS-B) cannot infer
pseudo labels, we directly use the actual loss instead.

A.2 Token-Level Experiments

We conduct additional experiments of AD-DROP on NER (CoNLL-2003) and Machine Translation
(WMT 2016) tasks.7 The results on the test sets are reported in Table 8 and Table 9. Moreover,
to verify that AD-DROP can be adapted to other pre-trained models, for CoNLL-2003 NER, we
choose ELECTRA as the base model. For WMT 2016, OPUS-MT is chosen. The results show that
AD-DROP consistently improves the baselines on both NER and Machine Translation tasks.

Table 8: Test results of AD-DROP on the
CoNLL-2003 NER dataset.

Methods Accuracy F1

ELECTRAbase 97.83 91.23
+AD-DROP 97.95 91.77

B Appendix: More Prior Experiments

Table 9: Test results of AD-DROP on Transla-
tion datasets. The evaluation metric is BLEU.

Methods EN-RO TR-EN

OPUS-MT 26.11 23.88
+AD-DROP 26.43 23.96

Our observations in Figure 2(a) show that dropping low-attribution positions makes the model fit
the training data rapidly, while dropping high-attribution positions reduces the fitting speed. To
further probe the effect of dropping low- or high-attention positions, we fine-tune a RoBERTa on
the training set and evaluate its performance on the development set by applying the two dropping
strategies. The results on MRPC, SST-2, and QNLI are plotted in Figure 7. Similar phenomena can be
observed that the model rapidly fits the data while dropping only a small proportion of low-attribution
positions. As the dropping rate increases, the accuracy remains stable until discarding too many
low-attribution positions. When dropping high-attribution positions, we observe an opposite trend
that the performance deteriorates sharply. These results further confirm the observations in Section
2.2 that attention positions should not be treated equally important in dropout.

7We follow the official colab implementation (https://huggingface.co/transformers/v4.7.0/
notebooks.html) for the two tasks.
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Note that we only drop positions in the first layer of RoBERTa for the above experiments to exclude
the impact of different layers. We also conduct experiments in the other layers on SST-2, and the
overall results are shown in Figure 8. We note that similar results are obtained in the first few layers,
while the trend becomes less obvious as the number of layers increases. It could be caused by the
over-smoothing [60] issue that the representations of all tokens are similar in the last few layers.
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Figure 7: Performance of fine-tuned RoBERTa on development sets, where two dropping strategies
(i.e., drop low-/high-attribution positions) are applied. Gold labels are used for the attribution.

C Appendix: Experimental Details

C.1 Details of Datasets

Table 10: Statistics of the used datasets.

Dataset Train Dev Test

SST-2 67349 872 1821
MNLI 392702 9815 9796
QNLI 104743 5463 5463
QQP 363846 40430 390965
CoLA 8551 1043 1063
STS-B 5749 1500 1378
MRPC 3668 408 1725
RTE 2490 277 3000
CoNLL-2003 14041 3250 3453
EN-RO 610320 1999 1999
TR-EN 205756 1001 3000
HANS 30000 30000 -
PAWS-X 49401 2000 2000

The details of the used datasets are introduced as
follows. (1) Stanford Sentiment Treebank (SST-2)
[38] is a sentence sentiment prediction task. (2)
Multi-Genre Natural Language Inference (MNLI)
[39] is a pairwise sentence classification task that
aims to predict whether the relationship between
two sentences is entailment, contradiction, or neu-
tral. (3) Question Natural Language Inference
(QNLI) [40] is a binary sentence classification
task that aims to predict whether the sentence in a
question-sentence pair contains the correct answer
to the question. (4) Quora Question Pairs (QQP)
[41] is a binary pairwise sentence classification
task that aims to predict whether two questions
are semantically equivalent. (5) The Corpus of
Linguistic Acceptability (CoLA) [42] aims to pre-
dict whether a single English sentence conforms
to linguistics. (6) The goal of Semantic Textual
Similarity Benchmark (STS-B) [43] is to predict how two given sentences are semantically simi-
lar. (7) Microsoft Research Paraphrase Corpus (MRPC) [37] aims to predict if two sentences are
semantically equivalent. (8) Recognizing Textual Entailment (RTE) [44] is similar to MNLI but has
binary labels. (9) CoNLL-2003 [32] is to recognize the named entities in a sentence, which contains
four types of named entities. (10) WMT 2016 [33] is a multilingual translation database. In this
study, we choose English-Romanian (EN-RO) and Turkish-English (TR-EN) for the experiment.
(11) Heuristic Analysis for NLI Systems (HANS) [34] aims to evaluate whether NLI models adopt
syntactic heuristics. (12) PAWS-X [35] is a cross-lingual adversarial dataset for paraphrase identifica-
tion. HANS and PAWS-X are typically used for the OOD generalization test. The statistics of these
datasets are shown in Table 10.
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Figure 8: Results of dropping self-attention positions in different layers of RoBERTa on SST-2.
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C.2 Hyperparameter Settings

Table 11 presents the final hyperparameter settings of AD-DROP for BERT/RoBERTabase. The
setting with only one value means the parameter is shared by BERT and RoBERTa.

Table 11: Hyperparameter settings of AD-DROP for BERT and RoBERTa.

Dataset Learning rate Batch size Length p q

SST-2 1e-5 16/64 120 0.6/0.3 0.8/0.7
MNLI 1e-5 16/32 128 0.5/0.4 0.9/0.2
QNLI 1e-5 16 128 0.8 0.8/0.4
QQP 1e-5 16 120 0.2/0.7 0.7/0.9
CoLA 1e-5/2e-5 16 47 0.3/0.8 0.4/0.3
STS-B 1e-5/2e-5 16 100 0.9/0.1 0.7/0.5
MRPC 1e-5/2e-5 16 100 0.5/0.8 0.8/0.3
RTE 1e-5 16 128 0.6/0.7 0.7/0.1

D Appendix: More Experimental Results

D.1 Ablation of Cross-Tuning

We further report the results of removing cross-tuning in AD-DROP when enumerating p and q in the
range of [0.1, 0.9] on the CoLA and MRPC datasets. We observe consistent performance degradation
in Figure 9 after removing the cross-tuning strategy from AD-DROP.
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Figure 9: Results of AD-DROP with and without cross-tuning when enumerating p and q in the range
of [0.1, 0.9] on the CoLA and MRPC datasets.

D.2 Effect of Data Size on QQP
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Figure 10: Results of comparison between
AD-DROP and original FT as the size of
training data changes on QQP.

Figure 10 shows a comparison between AD-DROP and
the original fine-tuning (FT) as the size of training exam-
ples changes. We observe from the figure that AD-DROP
performs consistently better than original FT with differ-
ent sizes of training data.

E Appendix: Limitations

We discuss potential limitations of AD-DROP as fol-
lows. First, as reported in Section 4.7, training with AD-
DROP requires more computational cost than the original
fine-tuning approach especially when integrated gradi-
ent is applied for attribution in all the attention heads.
Therefore, we propose to use gradient for attribution in
AD-DROP as it achieves competitive performance with
acceptable computational cost. Second, AD-DROP intro-
duces additional hyperparameters (p and q) and requires
more effort to search for the best hyperparameters.
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