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A. Hyperparameters and details of FLAVA

We summarize the hyperparameters in our FLAVA
model in Table A.1. We also list the sampling probabilities
of the datasets for joint pretraining in Table A.2, includ-
ing PMD (multimodal paired image and text), ImageNet-1k
(unimodal unpaired images), and CCNews & BookCorpus
(unimodal unpaired text).

We find that a large batch size, a large weight decay, and
a long warmup are helpful to stabilize training and prevent
divergence under a large learning rate. Based on this find-
ing, we performed a hyperparameter search based by moni-
toring the learning curve as well as monitoring the zero-shot
image classification accuracy based on the image-text con-
trastive loss on using the text templates from CLIP [7] to
obtain the hyperparameters above.

B. Training and evaluation details

B.1. Pretraining details

Language encoder pretraining. We follow RoBERTabase
pretraining hyperparameters to train our pre-norm ViT-
based text encoder [5]. Specifically, we pretrain our text en-
coder using masked language modeling (MLM) [3] on CC-
News and BookCorpus for 125K iterations with a batch size
of 2048 and a learning rate of 5e-4. We pick the best check-
point based on the MLM loss without any further hyperpa-
rameter sweeps over RoBERTa’s default configuration.

Vision encoder pretraining. We pretrain the image en-
coder in FLAVA on the ImageNet-1k dataset following ei-
ther BEiT [1] or DINO [2]. When pretraining a ViT-B/16
image encoder with BEiT, we adopt the hyperparameters
and training details in [1] with a masked image modeling
loss by predicting the dVAE visual tokens of the masked
image patches. We also follow the training protocols in [2]
to pretrain a DINO ViT-B/16 model as our image encoder.
As discussed in Sec. C, we empirically find that the DINO-
pretrained image encoder gives better final performance.

*Equal contribution.

Hyperparameter Value

Image Encoder

hidden size 768
number of heads 12
intermediate size 3072
number of layers 12
dropout prob. 0
patch size 16× 16
input image size (pretraining) 224× 224
input image size (VQAv2 fine-tuning) 480× 480
input image size (all other evaluation) 224× 224

Text Encoder

hidden size 768
number of heads 12
intermediate size 3072
number of layers 12
dropout prob. 0

Multimodal Encoder

hidden size 768
number of heads 12
intermediate size 3072
number of layers 6
dropout prob. 0

Others

text vocabulary size 30522
image dVAE codebook size 8192
global contrastive loss projection dim 512

Training

batch size 8192
learning rate 1e-3
learning schedule warmup cosine
warmup updates 10000
AdamW weight decay 0.1
AdamW β1 0.9
AdamW β2 0.999

Table A.1. A summary of various hyperparameters in FLAVA.
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Dataset Sampling probability

PMD 0.70
ImageNet-1k 0.15
CCNews & BookCorpus 0.15

Table A.2. Sampling probabilities of PMD (multimodal paired im-
age and text), ImageNet-1k (unimodal unpaired images), and CC-
News & BookCorpus (unimodal unpaired text) for joint FLAVA
pretraining on the three modalities.

Full FLAVA pretraining. We pretrain jointly on the uni-
modal and multimodal datasets, following the sampling
probabilities of these datasets as provided in Table A.2.
Specifically, for each update, we pick a dataset based on
its sampling probability and obtain a complete batch from
it. In all our ablations, we use a training schedule such
that the PMD dataset is sampled for a total of 150K itera-
tions. We monitor the zero-shot accuracy on ImageNet clas-
sification [9] every 8K updates and select the best check-
point based on the ImageNet-1k zero-shot accuracy. We
follow [7] to calculate the zero-shot accuracy.

B.2. Vision, language and multimodal evaluation

We evaluate the pretrained FLAVA model across a broad
range of vision, natural language, and multimodal tasks. We
discuss our evaluation details of these tasks below.
Linear probing on vision tasks. We perform linear probe
evaluations on the datasets by closely following the setup
described in [7]. We extract image features from the fi-
nal layer of the image encoder (before the multi-modal en-
coder) and train a logistic regression classifier (L-BFGS im-
plementation from [6]) on the extracted image features. We
follow the hyperparameters similar to [7] : 1000 iterations,
logistic regression λ parameter sweep from 1e-6 to 1e6.
Fine-tuning on NLP tasks. For NLP tasks, we finetune
the language encoder end to end for all the GLUE tasks.
We add a classification head on top of the language encoder
for all the tasks, except for the STS-B task, where we use a
regression head. The hyperparameters we use for finetuning
follow the setup of RoBERTa [5].1

Fine-tuning on multimodal VQA, SNLI-VE, and Hate-
ful Memes. We adopt the following settings when fine-
tuning on VQA, SNLI-VE, and Hateful Memes, adding a
2-layer classifier head with a hidden dimension of 1536 on
top of hCLS,M from the multimodal encoder (corresponding
to [CLS M]). For VQAv2, we use 1e-4 learning rate, 44000
updates, and an input image size of 480×480. For SNLI-VE
and Hateful Memes, we use 1e-5 learning rate, a total itera-
tion number of 24000, and an input image size of 224×224
(we use the OCR tokens extracted from the images as the
textual input for Hateful Memes). On all these three tasks,

1We follow hyperparameters used in FairSeq RoBERTa repo for fine-
tuning on GLUE tasks without any further sweeping.

we use the AdamW optimizer with a batch size of 256, 1e-2
weight decay, and 2000 warm-up iterations followed by a
cosine decay schedule.

We use the same approach above to also evaluate the
CLIP model on VQAv2, SNLI-VE, and Hateful Memes
datasets. Since CLIP does not have a multimodal encoder,
we concatenate the image feature vector from its image en-
coder and the text feature vector from its text encoder, apply
a 2-layer classifier head (with the same hidden dimension of
1536) over the concatenated feature, and finetune the model
following the same hyperparameters as for FLAVA.
Zero-shot multimodal text and image retrieval. We also
evaluate the FLAVA model on the multimodal zero-shot re-
trieval tasks over the Flickr30K and COCO datasets, where
the model needs to select a text caption based on a query
image or select an image based on a query caption. We
use the cosine similarities between the image and text fea-
ture computed in the global contrastive loss in FLAVA as
the matching scores between the image and text modalities.
Then, the text caption (or image) with the highest matching
score to the query is retrieved. Similarly, we also evaluate
the zero-shot text and image retrieval performance of the
CLIP model using the cosine similarities between its image
and text features.

C. Additional ablations and analyses

Unimodal-pretrained vision encoders. We experiment
with initializing our model from different pretrained vision
encoders (while keeping the language encoder the same).
We study two different self-supervised ViT-B/16 models
trained on ImageNet-1k: i) BEiT and ii) DINO. Under three
FLAVA pretraining settings, FLAVAC, FLAVAMM and
FLAVA (full pretraining), initializing from any of the two
pretrained vision encoders (along with pretrained language
encoders) leads to significant improvement in all tasks. In
Table C.1, comparing columns 5 vs 6, 8 vs 9, and 11 vs
12 between BEiT and DINO initialization, DINO gives bet-
ter performance on vision and multimodal tasks. On NLP
tasks, the results are mixed and comparable, as the language
encoder is initialized from the same pretrained weights.
Global vs. local contrastive losses. In our FLAVA model,
we apply a global contrastive loss, where the image and
text features are gathered across GPUs and the loss is back-
propagated through the gathering operation to all GPUs.
This is in contrast with the implementation in [4], where the
loss is only back-propagated to local features from the same
GPU. It can be seen from Table C.1 (columns 3 vs 4) that
the global contrastive loss (column 4) leads to a noticeable
gain in the average vision and NLP performance compared
to its local contrastive counterpart and also provides a slight
boost in multimodal performance.
Observations on SST and VQA. Some of our vision tasks

https://github.com/pytorch/fairseq/tree/main/examples/roberta


MIM MLM FLAVAC FLAVAMM FLAVA CLIP CLIP

local
contrastive

BEiT
init.

DINO
init.

BEiT
init.

DINO
init.

BEiT
init.

DINO
init.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Datasets PMD PMD PMD PMD PMD+IN-1k+CCNews+BC PMD 400M [7]

MNLI – 73.22 70.65 70.99 74.12 74.23 76.82 78.59 78.74 78.06 80.96 80.32 32.84 33.52
COLA – 39.55 9.76 17.58 15.30 14.92 38.97 39.41 45.04 44.22 44.52 50.65 11.02 25.37
MRPC – 73.24 73.20 76.31 74.28 73.50 79.14 79.30 80.66 78.90 85.96 84.16 68.74 69.91
QQP – 86.68 85.08 85.94 87.29 87.02 88.48 88.52 88.82 88.60 89.27 88.74 59.16 65.33
SST-2 – 87.96 85.78 86.47 88.30 89.22 89.33 91.51 90.02 90.14 91.74 90.94 83.49 88.19
QNLI – 82.32 70.25 71.85 80.67 80.93 84.77 86.05 86.23 86.40 88.52 87.31 49.46 50.54
RTE – 50.54 49.10 51.99 52.71 49.82 51.99 57.76 50.90 54.87 51.62 57.76 53.07 55.23
STS-B – 78.89 60.08 57.28 76.93 76.17 84.29 86.70 85.86 83.21 86.64 85.67 13.70 15.98

NLP Avg. – 71.55 62.99 64.80 68.70 68.22 74.22 75.98 75.78 75.55 77.40 78.19 46.44 50.51

ImageNet 41.79 – 70.64 74.09 74.07 75.87 74.34 74.37 76.23 73.49 74.59 75.54 72.95 80.20
Food101 53.30 – 85.02 87.77 88.04 88.94 87.53 87.82 88.88 87.39 88.02 88.51 85.49 91.56
CIFAR10 76.20 – 91.74 93.44 91.65 92.49 92.37 91.17 92.29 92.63 91.91 92.87 91.25 94.93
CIFAR100 55.57 – 73.54 78.37 74.58 76.32 78.01 74.76 76.97 76.49 75.29 77.68 74.40 81.10
Cars 14.71 – 60.86 72.12 69.92 71.83 72.07 69.44 71.84 66.81 69.44 70.87 62.84 85.92
Aircraft 13.83 – 42.96 49.74 46.11 49.17 48.90 44.73 48.63 44.73 45.81 47.31 40.02 51.40
DTD 55.53 – 73.51 76.86 76.97 77.77 76.91 75.80 77.18 75.80 76.54 77.29 73.40 78.46
Pets 34.48 – 80.10 84.98 84.63 86.26 84.93 84.55 86.75 82.77 84.60 84.82 79.61 91.66
Caltech101 67.36 – 92.98 94.91 94.95 95.94 95.32 95.46 95.45 94.95 94.89 95.74 93.76 95.51
Flowers 67.23 – 94.42 96.36 96.08 96.86 96.39 96.03 96.49 95.58 96.34 96.37 94.94 97.12
MNIST 96.40 – 97.75 98.39 98.28 98.49 98.58 97.94 98.38 98.70 98.38 98.42 97.38 99.01
STL10 80.12 – 97.52 98.06 98.71 98.75 98.31 98.50 98.94 98.32 98.55 98.89 97.29 99.09
EuroSAT 95.48 – 95.76 97.00 97.04 97.24 96.98 97.36 96.72 97.04 97.40 97.26 95.70 95.38
GTSRB 63.14 – 73.81 78.92 74.76 79.27 77.93 76.13 79.01 77.71 76.96 79.46 76.34 88.61
KITTI 86.03 – 87.77 87.83 89.04 88.03 88.84 89.77 89.71 88.70 88.57 89.04 84.89 86.56
PCAM 85.10 – 86.04 85.02 85.09 85.25 85.51 85.29 85.27 85.72 84.84 85.31 83.99 83.72
UCF101 46.34 – 77.82 82.69 80.60 82.90 82.90 81.52 83.40 81.42 81.60 83.32 77.85 85.17
CLEVR 61.51 – 73.86 79.35 80.24 79.84 81.66 80.96 79.81 80.62 80.88 79.66 73.64 75.89
FER 2013 50.98 – 57.40 59.96 60.91 60.30 60.87 60.34 61.12 58.99 60.43 61.12 57.04 68.36
SUN397 52.45 – 79.43 81.27 81.96 82.75 81.41 81.99 82.16 81.05 81.76 82.17 79.96 82.05
SST 57.77 – 58.65 56.67 58.05 58.98 59.25 56.29 57.17 56.40 56.12 57.11 56.84 74.68
Country211 8.87 – 22.98 27.27 26.87 27.84 26.75 26.64 27.69 27.01 27.28 28.92 25.12 30.10

Vision Avg. 57.46 – 76.12 79.14 78.57 79.59 79.35 78.49 79.55 78.29 78.65 79.44 76.12 82.57

VQAv2 – – 65.82 67.13 66.98 68.34 71.69 73.14 73.75 71.29 72.23 72.49 59.81 54.83
SNLI-VE – – 74.03 73.27 74.37 73.59 78.36 79.05 79.01 78.14 78.49 78.89 73.53 74.27
Hateful Memes – – 59.31 55.58 63.20 59.65 70.72 69.61 79.69 77.45 74.10 76.09 56.59 63.93
Flickr30K TR R@1 – – 68.80 68.30 64.90 70.80 69.30 71.00 69.80 64.50 69.50 67.70 60.90 82.20
Flickr30K TR R@5 – – 91.80 93.50 92.20 92.90 92.90 91.80 92.00 90.30 93.00 94.00 88.90 96.60
Flickr30K IR R@1 – – 59.24 60.56 63.14 65.06 63.16 64.60 64.84 60.04 63.78 65.22 56.48 62.08
Flickr30K IR R@5 – – 84.58 86.68 87.94 89.32 87.70 87.98 88.94 86.46 87.94 89.38 83.60 85.68
COCO TR R@1 – – 48.28 43.08 44.00 45.06 43.48 42.44 44.62 39.88 42.24 42.74 37.12 52.48
COCO TR R@5 – – 76.96 75.82 75.90 77.04 76.76 75.66 77.34 72.84 75.38 76.76 69.48 76.68
COCO IR R@1 – – 37.34 37.59 38.28 39.20 38.46 37.54 38.99 34.95 37.89 38.38 33.29 33.07
COCO IR R@5 – – 64.41 67.28 67.29 68.20 67.68 66.71 67.70 64.63 66.96 67.47 62.47 58.37

Multimodal Avg. – – 66.42 66.25 67.11 68.11 69.11 69.05 70.61 67.32 69.23 69.92 62.02 67.29

Macro Avg. 28.73 35.77 69.55 71.97 73.64 73.91 76.79 77.24 77.67 76.92 78.03 78.82 61.28 66.54

Table C.1. Comparing our full FLAVA pretraining with other settings (similar to Table 4 in the main paper) with additional ablations
(see Sec. C for details). The overall best result is underlined while bold signifies the best on public data (PMD and unimodal).

involve classifying an image using the text written on the
image pixels, and require the model to perform OCR to
read text from images. For example, in the SST task in
Table C.1 (which is also evaluated as an image classifica-
tion task in [7]), the model is asked to classify the senti-
ment of a natural language sentence by printing the sen-
tence words onto an image and providing the image pixels
to the model. It can be seen from Table C.1 that our FLAVA
model does not perform well on this SST task, which we be-
lieve is mostly because our PMD dataset does not contain
enough scene text information for the model to acquire text

reading ability from images. We note that the CLIP model
pretrained on PMD (column 13) has a similar lower perfor-
mance on SST than the variant pretrained on 400M image-
text pairs (column 14), and we anticipate that FLAVA will
also be able to perform scene text reading when pretrained
on a larger dataset with enough scene text information.

Our FLAVA model reaches a final accuracy of 72.49 on
the VQAv2 dataset. While this accuracy is below the state-
of-the-art on VQAv2, we note that this is a reasonable per-
formance given the amount of data used in FLAVA pretrain-
ing. Recent models such as SimVLM [12] often use a much



larger dataset (e.g. 1.8B image-text pairs [12]), and we be-
lieve more pretraining data will also benefit FLAVA.

D. Architectural differences between FLAVA
and CLIP encoders

method
Vision
Avg.

NLP
Avg.

Multi-modal
Avg.

Macro
Avg.

1 CLIP (PMD) 76.12 46.44 62.02 61.52
2 arch optimizations 76.12 62.99 66.42 68.51

∆ +0.00 +16.55 +4.40 +6.99

Table D.1. Comparing our FLAVA image and text encoders to the
original CLIP when trained under same settings on PMD.

FLAVA and CLIP [7] use transformers [11] as the image
and text encoders in their comparable variations (column 3,
FLAVAC-local contrastive and column 13, CLIP-ViT-B/16
in Table C.1). Compared to CLIP which uses a text vo-
cabulary of size 49152, in FLAVA we use BERT’s text vo-
cabulary with a size of 30522. CLIP uses lower-cased byte
pair encoding similar to [8,10] whereas we use BERT’s tok-
enizer from [13] to tokenize the text. Furthermore, we use a
hidden size of 768 instead of 512 and use the ViT architec-
ture (based on the implementation in Hugging Face [13])
instead of the GPT-style transformer architecture in CLIP
for both text and image encoders [14]. Table D.1 shows
the comparison of macro averages for the three domains
between the original CLIP architecture and our optimized
FLAVA architecture trained on PMD under the same set-
tings with local contrastive loss (corresponding to columns
13 and 3 in Table C.1, respectively). A comparison between
rows 1 and 2 in Table D.1 shows that our architecture opti-
mizations help achieve a better macro average overall.
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