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Abstract

We present a novel task and dataset for evaluating
the ability of vision and language models to conduct
visio-linguistic compositional reasoning, which we call
Winoground. Given two images and two captions, the goal
is to match them correctly—but crucially, both captions
contain a completely identical set of words, only in a dif-
ferent order. The dataset was carefully hand-curated by ex-
pert annotators and is labeled with a rich set of fine-grained
tags to assist in analyzing model performance. We probe a
diverse range of state-of-the-art vision and language mod-
els and find that, surprisingly, none of them do much better
than chance. Evidently, these models are not as skilled at
visio-linguistic compositional reasoning as we might have
hoped. We perform an extensive analysis to obtain insights
into how future work might try to mitigate these models’
shortcomings. We aim for Winoground to serve as a useful
evaluation set for advancing the state of the art and driv-
ing further progress in the field. The dataset is available at
https://huggingface.co/datasets/facebook/winoground.

1. Introduction
Despite the impressive performance of pretrained vision

and language transformers on a wide variety of multimodal
tasks [43, 47, 50], they remain poorly understood [6, 15, 42,
61]. One important question is to what extent such mod-
els are able to conduct unimodal and multimodal compo-
sitional reasoning. For humans, the visual differences be-
tween images depicting “the tree is in the shopping cart”
and “the shopping cart is in the tree” will be blatantly obvi-
ous, even when the words in the captions are identical—but
is the same true for machines?

While matching simple images and captions may seem
almost too trivial a task, recent work in NLP has shown
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(a) some plants
surrounding a

lightbulb

(b) a lightbulb surrounding some plants

Figure 1. An example from Winoground. The two sentences con-
tain the same words but in a different order. The task of under-
standing which image and caption match is trivial for humans but
proves much more difficult for vision and language models. Ev-
ery model that we tested (UNITER, ViLLA, VinVL, VisualBERT,
ViLT, LXMERT, ViLBERT, UniT, CLIP, VSE++, and VSRN) fails
to correctly pair the images and captions, except the large check-
point of ViLLA by a very thin margin (0.00013 confidence). Image
above is a compilation of assets, including ©Getty Images/Natasha
Breen, Maki Nakamura.

that transformers are often remarkably insensitive to word
order [63]. Understanding the relationship between text in
captions and corresponding visual content is a fundamental
goal of computer vision, and the fact that different word or-
ders correspond to wildly different visual depictions should
be reflected in the capabilities of our models.

Motivated by this, we propose a novel task, called
Winoground, for measuring visio-linguistic compositional
reasoning, whereby two images and two captions have to be
matched correctly; both captions contain exactly the same
set of words, ordered in such a way that each describes pri-
marily one of the images. To perform well on Winoground,
models must not only encode text and images well (i.e.,
be sensitive to the compositional structure present in each
modality), but they also must be able to synthesize informa-
tion across the two modalities.

We draw inspiration from the Winograd Schema Chal-
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lenge [40], which tests the commonsense capabilities of
models. In the challenge, a model is given two sentences
that minimally differ and is tasked with performing coref-
erence resolution. The Winograd twin sentence format has
been used for a variety of language-related tasks [53,54,82].
In this work, we study the image-grounding of twin sen-
tences with identical but differently ordered words.

Winoground was hand-crafted by expert annotators and
is labeled with a rich set of fine-grained tags to assist in an-
alyzing model performance. In efforts to shed better light
on what exactly models learn, the NLP community has de-
signed a wide variety of “probing tasks”: specialized, tar-
geted tasks meant specifically for evaluation. The primary
purpose of Winoground is to serve as a probing task for vi-
sion and language models. See Fig. 1 for an example.

We evaluate a variety of state-of-the-art vision and lan-
guage (V&L) transformers [9, 19, 31, 36, 43, 47, 50, 68, 81]
and RNN-based models [17, 41]. Surprisingly, all of the
models rarely—and if so only barely—outperform chance.
Our findings indicate that the visio-linguistic compositional
reasoning capabilities of these models fall dramatically
short of what we might have hoped.

In what follows, we introduce the Winoground task and
dataset. We then describe the models we tested and discuss
our findings. Next, we conduct an analysis of the perfor-
mance of different models. We hope that insights from this
work will lead to more robust vision and language models.

2. Related Work
Visio-linguistic stress testing. There are a number of ex-
isting multimodal stress tests about correctly understand-
ing implausible scenes [10], exploitation of language and
vision priors [8, 23], single word mismatches [58], hate
speech detection [22, 28, 37, 83], memes [35, 67], abla-
tion of one modality to probe the other [18], distracting
models with visual similarity between images [29], dis-
tracting models with textual similarity between many suit-
able captions [13], collecting more diverse image-caption
pairs beyond the predominately English and North Amer-
ican/Western European datasets [46], and probing for an
understanding of verb-argument relationships [26] or spe-
cific model failure modes [59, 62]. Many of these stress
tests rely only on synthetically generated images, often with
minimal visual differences, but no correspondingly mini-
mal textual changes [71]. Other datasets test models with
a single caption [66] or a single image [5, 33]. There
are also purely visual stress tests with naturalistic images:
ImageNet-C/ImageNet-P [27] tests models on perturbations
for a variety of image features. Unlike Winoground, these
stress tests tend to come from existing datasets that have
images and text from typical training domains, such as
Conceptual Captions [57], COCO [44], Visual7W [84] and
VQA [2, 23]. None of them hold the set of words constant

in the captions, which is what allows us to carefully test for
compositional reasoning without any biases stemming from
the presence of altogether different words. While it is the-
oretically possible for unstructured bag of words models to
do well on these previous datasets, that is not possible on
Winoground.

Probing. Measuring what exactly a model knows about
word order and linguistic structure has been explored in nat-
ural language processing. Sinha et al. [63] found that word
order information does not have a large impact on perfor-
mance when pretraining large transformer language models,
across a variety of metrics. This suggests that transformers
use high-level word co-occurence statistics, which gives the
illusion of an understanding of word order. Other work in
this space has tried to understand what models know about
syntax [20, 24, 30, 45, 49, 64, 74] or the complex interaction
between syntactic and semantic categories [34, 69, 72, 73].

Winograd schemas. The Winograd Schema Chal-
lenge [40] was named after a coreference resolution
problem presented by Terry Winograd [76]. The goal
is to correctly resolve (an) ambiguous referent(s) in two
English sentences. The sentences have a minor difference
that changes how a human resolves the referent. Winograd
schema examples are easily handled by humans, and
commonsense reasoning is said to be required [3]. For
example, in the sentence “The city councilmen refused the
demonstrators a permit because they [feared/advocated]
violence”, the pronoun they can either refer to the coun-
cilmen or to the demonstrators depending on which word
is chosen. The format has been used in a variety of other
tasks and datasets. For instance, Sakaguchi et al. [54]
introduce WinoGrande: a large-scale approach to building
a Winograd Schema dataset that uses Amazon Mechanical
Turk to generate sentences instead of expert annotators like
the original work of Levesque et al. [40]. Other approaches
use ambiguous pronouns in sentences to probe for gender
biases in models [53, 82]. See Kotcijan et al. [38] for an
in-depth review. Winoground is the first work to apply
these ideas to the vision and language domain, by using
twin captions with identical word content and two images
that are each associated with one caption over the other.

3. Winoground
In this section, we describe how the dataset was con-

structed and how performance on the task is to be measured.

3.1. Dataset

The Winoground dataset was hand-curated by four ex-
pert annotators with extensive experience in vision and
language research as well as computational linguistics.



(a) there is [a mug] in
[some grass]

(b) there is [some
grass] in [a mug]

Object

(c) a person [sits] and a
dog [stands]

(d) a person [stands]
and a dog [sits]

Relation

(e) it’s a [truck] [fire]

(f) it’s a [fire] [truck]

Both

(a) the kid [with the
magnifying glass]
looks at them []

(b) the kid [] looks at
them [with the magni-
fying glass]

Pragmatics

(c) the person with the
ponytail [packs] stuff
and other [buys] it

(d) the person with the
ponytail [buys] stuff
and other [packs] it

Series

(e) there are [three]
people and [two] win-
dows

(f) there are [two] peo-
ple and [three] win-
dows

Symbolic

Figure 3. Examples from our dataset for the swap-dependent lin-
guistic tags (top) and visual tags (bottom). The visual examples
are additionally tagged with the Relation tag, and 1, 2, and 1 main
predicates from left to right. The linguistic examples are addition-
ally tagged with 2, 1, and 1 main predicates from left to right. Im-
age above is a compilation of assets, including ©Getty Images/ Vu
Le, Toson Rueangsuksut, Nisian Hughes, Tanja Walter, Douglas
Sacha, PBNJ Productions, Glow Images, 10’000 Hours, zoranm,
Marlene Ford, Westend61.

Let (C0, I0) and (C1, I1) be two image-caption pairs. An
example satisfies the Winoground schema if and only if:

• (C0, I0) and (C1, I1) are preferred by the annotator
over (C1, I0) and (C0, I1); and

• C0 and C1 have the same words and/or morphemes but
the order differs.

We have secured a license from Getty Images to dis-
tribute images for research purposes. Thus, the expert an-
notators were given access to the Getty Images API [21],
and tasked with jointly creating captions and finding images

Category Tag Count

Object 141
Linguisticswap-dep. Relation 233

Both 26

Linguisticswap-indep. 1 Main Pred 293
2 Main Preds 108

Symbolic 41
Visual Series 31

Pragmatics 24

Table 1. Linguistic and visual tag counts in the Winoground
dataset. Every example has a linguistic tag; only examples that
contain the visual phenomena have visual tags.

to compose examples. We encouraged them to be as cre-
ative as possible, and to mark each of their examples with
fine-grained linguistic tags. If applicable, annotators also
marked examples with one or more visual reasoning tags.

The annotators created a total of 70 linguistic tags for
the swaps that make caption pairs different. This set of tags
can be split into three broad groups: objects, relations, and
swaps involving both relations and objects. Object swaps
reorder elements such as noun phrases that tend to refer
to objects in the real world. Relation swaps reorder el-
ements such as verbs, adjectives, prepositions, and/or ad-
verbs, which tend to take nouns referring to objects as se-
mantic arguments [1]. Swaps of both relations and objects
can involve two separate swaps, or can involve a single swap
that changes parts of speech (e.g., “it’s a [fire] [truck]” vs.
“it’s a [truck] [fire]”). Examples of each broad tag group
can be seen in Fig. 3. For examples for each fine-grained
linguistic tag, see Appendix C.

Separately, the annotators tagged examples for how
many main predicates were in the captions, which is not
dependent on the specific swap happening between the two
captions. For example, “left is blue and right is red” has
two main predicates and “water is in a bottle” has one main
predicate. It turned out that all examples in Winoground
have either one main predicate or two.

Finally, examples were tagged from a set of three non-
mutually exclusive visual reasoning tags, which are tied in
some way to the images in an example, and not necessar-
ily the captions. The “Pragmatics” tag comprises examples
where the images need to be interpreted non-literally due to
idiomatic uses of language in a caption (e.g. “it starts with Z
and ends with A” describing an image of a Zebra) or due to
attachment preferences of prepositional phrases in the cap-
tions (e.g. “the kid looks at them with the magnifying glass”
describing an image of a child looking at someone through
a magnifying glass with greater confidence than an image
of a child looking at someone while holding a magnifying



glass at their side). The “Symbolic” tag represents whether
a symbolic depiction of something must be understood to
make a correct prediction (e.g., objects in a child’s draw-
ing). Lastly, the “Series” tag is given to examples where
both images come from the same photo series on Getty,
which typically means that the same people occur in both
images, with a similar background and in similar lighting.

See Fig. 3 for representative examples of the tags, and
Tab. 1 for tag counts. As noted, Winoground is a probing
dataset and so we prioritize clean, expert annotations over
mere size. Our dataset has 1600 image-text pairs in total,
with 800 correct and 800 incorrect pairings. These comprise
400 examples, with 800 unique captions and images.

3.2. Metrics

Performance on Winoground is computed according to
three different metrics that evaluate different aspects of the
models’ visio-linguistic reasoning abilities. The first metric
is the text score, which measures whether a model can se-
lect the correct caption, given an image. Given images I0
and I1 and captions C0 and C1, the text score for an exam-
ple (C0, I0, C1, I1) is computed according to:

f(C0, I0, C1, I1) =


1 if s(C0, I0) > s(C1, I0)

and s(C1, I1) > s(C0, I1)

0 otherwise
(1)

where s(·) is the model’s score for the image/caption pair.
This metric tests whether the ground truth caption for a
given image in our dataset is scored higher than the al-
ternative caption and whether this holds for the other im-
age/caption pair in the example too.

The second metric is the image score, which measures
whether a model can select the correct image, given a cap-
tion. Given images I0 and I1 and captions C0 and C1, the
image score for an example is computed according to:

g(C0, I0, C1, I1) =


1 if s(C0, I0) > s(C0, I1)

and s(C1, I1) > s(C1, I0)

0 otherwise
(2)

This metric tests whether the ground truth image for a given
caption is scored higher than the image corresponding to the
alternative caption and whether this holds vice versa.

Our final metric combines the previous two. In their
analysis of the Winograd Schema Challenge, Elazar et
al. [16] find that evaluation metrics tend to overestimate
model performance by computing scores for the twin sen-
tences individually instead of as a set. So, we also evalu-
ate using the group score, where every combination for a
given example {(C0, I0), (C0, I1), (C1, I0), (C1, I1)} must
be correctly scored by the model in order for the example to

be considered correct. The group score in our framework is
computed according to:

h(C0, I0, C1, I1) =


1 if f(C0, I0, C1, I1)

and g(C0, I0, C1, I1)

0 otherwise
(3)

4. Experimental Setup
We evaluate various configurations of the following mul-

timodal transformers: CLIP [50], LXMERT [68], UniT
[31], UNITER [9], VILLA [19], VinVL [81], ViLT [36],
VisualBERT [43] and ViLBERT [47]. We also evaluate
several configurations of two types of RNN-based models:
VSE++ [17] and VSRN [41]. We detail differences between
these models and provide a high-level overview in Tab. 2.
We also establish a human baseline using crowdworkers, as
described in Sec. 4.3.

4.1. Vision & Language Transformers

Image and language embedding. All transformer mod-
els we evaluate use a pretrained BERT tokenizer [12], ex-
cept CLIP, which uses a Byte-Pair Encoding tokenizer [56]
trained from scratch. For the image embedding, five trans-
formers (VisualBERT, ViLBERT, LXMERT, UNITER,
ViLLA) [9,19,43,47,68] use region features extracted from
the fc6 layer of a Faster R-CNN [52] trained on Visual
Genome [39]. VinVL trains its own feature extractor on a
large combined dataset from public sources with a unified
object vocabulary [81]. The CLIP and ViLT that we test
both use Vision Transformer (ViT) [14]. In ViT, images are
flattened into patches that are linearly projected and com-
bined with a position encoding. UniT [31] alternatively
uses a transformer network [70] on top of a convolutional
network following Carion et al. [7].

Single-stream vs. dual-stream encoders. Vision and
language transformers are mainly single- or dual-stream
models: the embeddings for the image and text modalities
are either concatenated and then jointly encoded (single-
stream), or encoded by two separate modality-specific en-
coders with optional cross-modality fusion (dual-stream).
Five of our transformers are single-stream [9,19,36,43,81].
VinVL additionally concatenates object tags, which are
the set of objects detected by the X152-C4 model dur-
ing feature extraction, to the language tokens before en-
coding. All single-stream models use merged attention,
where the language and visual input attend to both them-
selves and the other modality. The dual-stream transform-
ers we evaluate are CLIP, UniT, LXMERT and ViLBERT
[31, 47, 50, 68]. CLIP lacks cross-modal attention. ViL-
BERT has language-only transformer layers that are then
fused by cross-modal transformer layers. LXMERT and



Model Datasets # Images, Captions (Millions) Architecture Attention

VinVL [81] VQA, GQA, VG-QA, COCO, Flickr30k, CC, SBU 1.89, 4.87 single-stream merged
UNITER [9] COCO, VG, CC, SBU 4.20, 9.58 single-stream merged
ViLLA [19] COCO, VG, CC, SBU 4.20, 9.58 single-stream merged
VisualBERT [43] COCO, NVLR2 0.30, 0.52 single-stream merged
ViLT [36] COCO, VG, SBU, CC 4.10, 9.85 single-stream merged
LXMERT [68] COCO, VG 0.18, 9.18 dual-stream modality-specific, co-attn, merged
ViLBERT [47] CC 3.30, 3.30 dual-stream modality-specific, co-attn, merged
UniT [31] COCO detect., VG detect., VQAv2, SNLI-VE QNLI, MNLI-mm, QQP, SST-2 0.69, 1.91 dual-stream modality-specific, merged
CLIP [50] − 400.00, 400.00 dual-stream modality-specific
VSE++ and VSRN COCO COCO 0.11, 0.57 dual-stream −
VSE++ and VSRN Flickr30k Flickr30k 0.03, 0.16 dual-stream −

Table 2. A high-level overview of the differences between the models we evaluate by the pretraining datasets, architecture, and attention
mechanisms between the modalities. We omit datasets that were only used to train backbones. We exclude the language embedding from
this table as every model uses a pretrained BERT tokenizer, except CLIP, VSE++, and VSRN. The pretraining datasets include COCO [44],
Visual Genome (VG) [39], Conceptual Captions (CC) [57], SBU Captions [48], Flickr30k [79], VQA 2.0 [23], VCR [80], NLVR2 [66],
SNLI-VE [78], QNLI [51], MLNI-mm [75], QQP [32], and SST-2 [65]. CLIP uses their own dataset for pretraining.

UniT each use language-only and vision-only layers that
are also fused by cross-modal transformer layers, which
perform a combo of modality-specific attention and co-
attention across modalities.

Pretraining objectives. V&L transformers use a num-
ber of pretraining objectives including but not limited to
masked language modeling, masked region modeling (clas-
sification of object classes and regression over image fea-
tures) and image-text matching. As we are evaluating a
model’s ability to determine if an image and a correspond-
ing caption match, we specifically select V&L transformers
that are pretrained with an image-text matching classifica-
tion head or that produce a similarity score between the two
modalities1.

4.2. Multimodal RNNs

To determine whether low performance on Winoground
is unique to transformer-based models, we include results
for two sequence-based models, which are VSRN [41] and
VSE++ [17]. Both VSE++ and VSRN have a loss func-
tion that prioritizes minimizing the hardest negative’s score.
The hardest negative is the highest-scoring image-caption
pair that is not correct. Intuitively, this type of loss function
could enable models to get higher scores on Winoground in
particular and may be useful in future work. Although we
show later in the paper that VSRN and VSE++ do not do
well, perhaps due to issues besides the loss function. Both
models use a GRU [11] to get language embeddings and
a separate pipeline to get image embeddings. Scores for
image-caption pairs are found by taking an inner-product of
the embeddings. VSE’s image encoder is a linear projection
of the embedding from a backbone (either ResNet152 [25]
or VGG19 [60]). In VSRN, a ResNet101-based Faster R-
CNN with graph convolutions on top is used to get a se-

1UniT is the only model we selected that was not pretrained on image-
text matching. To get image-text alignment scores, we finetuned UniT on
image-text matching loss using MS-COCO [44]

quence of features which are fed into a GRU. The GRU’s
last hidden state is then used as the image embedding.

4.3. Human Performance

We employed crowd workers on the Amazon Mechani-
cal Turk platform to establish a more conservative human
baseline than the expert annotator upper bound of a perfect
score. Like the models, annotators are shown one image
and one caption at a time. Annotators are asked the binary
choice question “Does the caption match the image?” All
1600 combinations of images and captions are labeled by at
least ten annotators. We compute the human image-caption
score as the ratio of annotators who said the image/caption
pair match over the total number of annotators for the pair.
More details about the human labelling interface, onboard-
ing criteria, and quality control are provided in Appendix E.

5. Results
5.1. Compared to humans

As observed in Tab. 3, the models struggle across the
board on Winoground, often performing close to or below
random chance. Comparatively, as expected, the human
performance is high across the full range of linguistic and
visual phenomena. For the text score, we observe ∼50%
absolute difference between humans and the best perform-
ing models—UNITER, VILLA VinVL, ViLT and CLIP—
with the remaining models at or below chance performance.

The human performance is only slightly lower for the
image score, whereas all models perform much worse.
Even the highest performing model, VinVL, has a ∼70%
performance gap compared to humans. This gap is not
unique to our dataset: in prior work [17] [50], models
also tend to perform significantly better on caption retrieval
compared to image retrieval. More investigation is re-
quired to pinpoint the reasons: perhaps textual encoders are
stronger, or the text modality has different biases.

Lastly, we consider the group score. For humans, it is



Model Text Image Group

MTurk Human 89.50 88.50 85.50
Random Chance 25.00 25.00 16.67

VinVL 37.75 17.75 14.50
UNITERlarge 38.00 14.00 10.50
UNITERbase 32.25 13.25 10.00
ViLLAlarge 37.00 13.25 11.00
ViLLAbase 30.00 12.00 8.00
VisualBERTbase 15.50 2.50 1.50
ViLT (ViT-B/32) 34.75 14.00 9.25
LXMERT 19.25 7.00 4.00
ViLBERTbase 23.75 7.25 4.75
UniTITMfinetuned 19.50 6.25 4.00
CLIP (ViT-B/32) 30.75 10.50 8.00
VSE++COCO (ResNet) 22.75 8.00 4.00
VSE++COCO (VGG) 18.75 5.50 3.50
VSE++Flickr30k (ResNet) 20.00 5.00 2.75
VSE++Flickr30k (VGG) 19.75 6.25 4.50
VSRNCOCO 17.50 7.00 3.75
VSRNFlickr30k 20.00 5.00 3.50

Table 3. Results on the Winoground dataset across the text, image
and group score metrics. Results above random chance in bold.

not appreciably lower than their text and image scores. All
of the models are below random chance here as well. We
report confidence intervals for these results in Appendix A.

5.2. Results by Tags

For the swap-dependent linguistic tags, human perfor-
mance is highest on object, followed by the relation and
then both. For the swap-independent linguistic tags, hu-
mans do better on examples with two main predicates,
which tend to contain longer and more complicated sen-
tences. The models perform poorly on every category, but
they largely show the opposite pattern. They perform bet-
ter on examples with simpler and shorter sentences which
more often have swaps at the morpheme level (see Tab. 4).
One exception to the low model performance is that CLIP
performs comparably to the humans on the both tag text
score—the 26 examples with the both tag have some of the
shortest and least compositional captions in our dataset (e.g.
“presenting the watch” vs “watching the present”).

We also evaluate performance for the visual reasoning
tags as shown in Tab. 5. Models and humans are partic-
ularly good at the symbolic examples, but the models are
poor comparatively. On the pragmatics tag, humans have
the lowest performance. Ten crowdworkers probably didn’t
capture slight pragmatics preferences that our expert lin-
guist annotators agreed on. One example that the crowd-
workers failed is Fig. 3(a): “the kid [with the magnifying

glass] looks at them []”. All ten annotators said that “the
kid with the magnifying glass looks at them” was accept-
able for both images, but captured the correct preference
for the second caption. This reveals a limitation in how the
task was presented to humans: our hypothesis is that if we
gave humans both images and both captions at the same
time, or if significantly more human annotators gave their
judgements, then the human scores would be substantially
higher. Finally, models do worst on the series tag where
most get a 0% group score, which indicates that they are
always choosing one image over the other regardless of the
caption (or vice versa).

6. Discussion
Despite the fact that every model struggled on

Winoground compared to humans, we hope to gain further
insights by analyzing which aspects of these models could
contribute to their performance differences.

6.1. Capabilities of Encoders

Richer features. UNITER, VILLA, VinVL, ViLT and
CLIP are the only models that get above random chance
performance in Tab. 3, and only for the text score. We hy-
pothesize that these models perform better than others due
to their richer features (unimodal features for CLIP, mul-
timodal features for the others). A potential explanation
could be the large-scale pretraining used by CLIP, the large
training dataset used to train the object detector for VinVL,
or the ViT approach for image features used by ViLT and
CLIP that encodes every portion of the image.

Common failure modes. We highlight again that nearly
all of the models fail (with 0% group score) on the same
image series tag. One explanation is that the models’ vi-
sual encoders might be too weak to correctly discriminate
between substantially similar images. This could cause the
models to fall back on their unimodal priors, picking one
caption or image over the other in the majority of the four
potential caption-image pairings.

Heat maps. We show a heatmap in Fig. 4 of the word-
region alignment between ViLT’s vision and language fea-
tures as a visualization for a model with some of the best
performance on our dataset. ViLLA and UNITER are also
trained with word-region alignment and we provide their
heatmaps in Appendix D.

Complicated captions. The above-chance models do
worse on examples with longer captions, possibly due to
weak language encoding abilities. As shown in Tab. 6, cap-
tion length and lower model performance significantly cor-
relate for the best models, even though the correlation is re-
versed for humans. The examples with the shortest captions
are also the least compositional; they are primarily the ex-
amples where the parts of speech change between swapped
words, or where there is a morpheme-level swap. Finally,



Object Relation Both 1 Main Pred 2 Main Preds
Model Text Image Group Text Image Group Text Image Group Text Image Group Text Image Group

MTurk Human 92.20 90.78 88.65 89.27 90.56 86.70 76.92 57.69 57.69 87.33 85.62 82.53 95.37 96.30 93.52
VinVL 36.88 17.73 14.18 37.77 17.60 14.16 42.31 19.23 19.23 39.38 21.23 17.47 33.33 8.33 6.48
UNITERlarge 39.01 12.77 9.93 36.05 14.16 9.87 50.00 19.23 19.23 40.07 16.44 13.36 32.41 7.41 2.78
UNITERbase 34.04 11.35 9.22 30.04 14.16 10.30 42.31 15.38 11.54 35.27 14.73 11.99 24.07 9.26 4.63
ViLLAlarge 36.88 14.89 11.35 37.34 12.88 11.16 34.62 7.69 7.69 39.73 17.12 14.38 29.63 2.78 1.85
ViLLAbase 33.33 15.60 9.93 27.04 9.01 6.01 38.46 19.23 15.38 33.22 14.04 10.27 21.30 6.48 1.85
VisualBERTbase 19.15 2.13 0.71 12.88 2.15 1.72 19.23 7.69 3.85 16.44 2.74 1.71 12.96 1.85 0.93
ViLT (ViT-B/32) 31.91 15.60 9.22 36.91 11.59 8.15 30.77 26.92 19.23 35.27 17.12 11.64 33.33 5.56 2.78
LXMERT 22.70 9.22 6.38 17.60 5.58 2.58 15.38 7.69 3.85 19.18 8.56 5.14 19.44 2.78 0.93
ViLBERTbase 29.08 10.64 7.09 19.31 3.00 1.72 34.62 26.92 19.23 23.97 8.90 5.82 23.15 2.78 1.85
UniTITMfinetuned 17.73 5.67 2.13 18.03 4.72 3.43 42.31 23.08 19.23 21.58 6.85 4.11 13.89 4.63 3.70
CLIP (ViT-B/32) 34.75 7.80 6.38 22.75 8.58 5.58 80.77 42.31 38.46 35.27 13.01 10.27 18.52 3.70 1.85
VSE++COCO (ResNet) 21.99 6.38 1.42 23.61 9.01 5.58 19.23 7.69 3.85 25.00 9.59 4.79 16.67 3.70 1.85
VSE++COCO (VGG) 17.73 2.13 2.13 18.45 7.30 3.86 26.92 7.69 7.69 18.49 4.79 2.74 19.44 7.41 5.56
VSE++Flickr30k (ResNet) 20.57 6.38 3.55 18.88 4.29 2.15 26.92 3.85 3.85 21.58 6.51 3.42 15.74 0.93 0.93
VSE++Flickr30k (VGG) 17.73 4.96 2.84 19.74 6.87 5.15 30.77 7.69 7.69 20.55 6.16 4.79 17.59 6.48 3.70
VSRNCOCO 15.60 4.96 2.13 18.88 7.73 4.72 15.38 11.54 3.85 17.12 7.19 3.77 18.52 6.48 3.70
VSRNFlickr30k 16.31 4.96 2.13 21.03 4.29 3.86 30.77 11.54 7.69 20.89 5.82 3.77 17.59 2.78 2.78

Table 4. The results by linguistic tag. Results above chance are in bold.

Symbolic Pragmatics Same Image Series
Model Text Image Group Text Image Group Text Image Group

MTurk Human 96.43 92.86 92.86 58.82 41.18 41.18 95.65 91.30 91.30
VinVL 25.00 17.86 14.29 29.41 5.88 5.88 34.78 17.39 13.04
UNITERlarge 39.29 28.57 17.86 35.29 0.00 0.00 4.35 8.70 0.00
UNITERbase 46.43 14.29 14.29 29.41 17.65 11.76 8.70 8.70 0.00
ViLLAlarge 39.29 14.29 10.71 17.65 0.00 0.00 17.39 4.35 0.00
ViLLAbase 42.86 17.86 14.29 29.41 5.88 5.88 13.04 8.70 4.35
VisualBERTbase 28.57 0.00 0.00 5.88 0.00 0.00 13.04 0.00 0.00
ViLT (ViT-B/32) 28.57 17.86 10.71 35.29 0.00 0.00 26.09 0.00 0.00
LXMERT 28.57 3.57 3.57 17.65 5.88 0.00 8.70 4.35 0.00
ViLBERTbase 28.57 10.71 7.14 29.41 5.88 5.88 13.04 0.00 0.00
UniTITMfinetuned 14.29 10.71 7.14 17.65 5.88 5.88 21.74 4.35 4.35
CLIP (ViT-B/32) 39.29 3.57 3.57 35.29 5.88 5.88 8.70 0.00 0.00
VSE++COCO (ResNet) 32.14 10.71 10.71 23.53 11.76 0.00 13.04 4.35 4.35
VSE++COCO (VGG) 17.86 14.29 7.14 17.65 0.00 0.00 13.04 4.35 4.35
VSE++Flickr30k (ResNet) 21.43 3.57 0.00 23.53 0.00 0.00 17.39 4.35 0.00
VSE++Flickr30k (VGG) 28.57 10.71 10.71 11.76 0.00 0.00 13.04 4.35 0.00
VSRNCOCO 7.14 3.57 0.00 11.76 0.00 0.00 13.04 0.00 0.00
VSRNFlickr30k 21.43 3.57 3.57 35.29 11.76 5.88 8.70 4.35 4.35

Table 5. The results by visual tag. Results above chance are in bold.

we show in Tab. 6 correlations between caption perplexity2

and model scores. We found that there is typically a weak
correlation between models assigning an image-caption pair
a higher score and a caption having low perplexity.

6.2. By Architecture & Type of Attention

As shown in Tabs. 3 to 5, both single-stream and dual-
stream models perform significantly worse than humans on
the text, image and group scores. We find at least one
single-stream model and at least one dual-stream model are
above chance for most of our experiments, suggesting there
is not a distinct performance difference by architecture. Al-
though, six single-stream models do above chance over-
all, compared to only one dual-stream model (CLIP). CLIP

2We used the standard size GPT2 checkpoint from Hugging Face trans-
formers to get perplexity [77].

was trained on an order of magnitude more data than the
other models. Across all types of attention, models strug-
gled compared to humans. But, compared to the random
baseline, models that use merged attention (VinVL, VILLA,
UNITER and ViLT) and modality-specific attention (CLIP)
performed above chance on the full Winoground dataset;
none of the remaining models, which all use co-attention in
conjunction with single-modality and/or merged attention,
performed above chance.

6.3. By Multimodal Pretraining Dataset Size

We find highly significant correlations between the size
of the multimodal pretraining dataset and the scores, if we
remove CLIP as an outlier. Tab. 7 shows these correla-
tions, and Appendix B has graphs showing each model’s
score versus the pretraining data size. The training data



a brown dog is on a white couch

a white dog is on a brown couch

circular food on heart-shaped wood

heart-shaped food on circular wood

Figure 4. Word-region alignment scores between the image and text features for ViLT [36] on examples from Winoground. In this case
study, ViLT appears to disregard the information from adjectives. E.g., the heatmaps highlight the brown dog just as strongly regardless
of whether the text was “brown dog” or “white dog”. Image above is a compilation of assets, including ©Getty Images/Jessica Peterson,
Kundanlall Sharma, lacaosa, Alberto Bogo

Perplexity Caption Length
Model Corr. p-value Corr. p-value

MTurk Human 0.05 0.07 0.20 0.00
VinVL -0.05 0.04 -0.20 0.00
UNITERlarge -0.01 0.57 -0.16 0.00
UNITERbase -0.03 0.22 -0.14 0.00
ViLLAlarge -0.02 0.39 -0.12 0.01
ViLLAbase -0.04 0.13 -0.11 0.03
VisualBERTbase -0.04 0.15 -0.06 0.22
ViLT (ViT-B/32) -0.04 0.16 -0.16 0.00
LXMERT -0.04 0.12 -0.11 0.02
ViLBERTbase -0.04 0.11 -0.14 0.00
UniTITMfinetuned -0.01 0.73 -0.02 0.73
CLIP (ViT-B/32) -0.04 0.09 -0.22 0.00
VSE++COCO (ResNet) -0.05 0.04 0.01 0.90
VSE++COCO (VGG) -0.04 0.08 0.03 0.56
VSE++Flickr30k (ResNet) -0.02 0.43 0.02 0.67
VSE++Flickr30k (VGG) 0.01 0.74 -0.10 0.04
VSRNCOCO -0.07 0.01 -0.05 0.36
VSRNFlickr30k -0.02 0.32 -0.05 0.29

Table 6. (left) The correlation between model image-caption
scores and the caption perplexity from GPT2. (right) The correla-
tion between the model group scores and the caption length.

for unimodal components (e.g. an image backbone or pre-
initialized unimodal language model embeddings) is not in-
cluded in these calculations.

Pretraining Modality Score Corr. p-value

Text 0.84 0.00
Image Image 0.76 0.00

Group 0.75 0.00

Text 0.77 0.00
Caption Image 0.75 0.00

Group 0.71 0.00

Table 7. Correlations between the number of pretraining images
and captions and the model text, image, and group scores. CLIP is
excluded as an outlier.

7. Conclusion

We introduced a novel task and dataset, Winoground,
aimed at measuring visio-linguistic compositional reason-
ing in state of the art vision and language models. We
demonstrate that models fall short, in most cases perform-
ing no better than chance. Our findings highlight that there
is more work to be done. Particularly, the field could investi-
gate possible strengths of single-stream models, the compi-
lation of more pretraining data, improving image-encoding
capabilities, and pretraining objectives that emphasize sim-
ilar but wrong images. We hope that our task and dataset
will help guide research in this important direction.

Broader Impact & Limitations. Winoground is English-
only and translation to other languages may be nontriv-
ial [46]. Expert curation is time-consuming and our dataset



is limited in size. Multimodal datasets containing images
of people require thoughtful consideration of how peo-
ple are represented (see [4] for a detailed analysis of the
stereotypes present in many multimodal datasets). We used
gender underspecified human denoting terms (e.g., person,
child) to avoid issues with inferring gender identity from
images [55]. Our annotators disproportionately come from
the USA and the same could be true for our crowdworkers.
See Appendix F for our ethics statement.
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