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Abstract8

We study a graph reordering problem motivated by compressing massive graphs such as social9

networks and inverted indexes. Given a graph, G = (V, E), the Minimum Logarithmic Arrangement10

problem is to find a permutation, π, of the vertices that minimizes11 ∑
(u,v)∈E

(1 + ⌊lg |π(u) − π(v)|⌋) .12

This objective has been shown to be a good measure of how many bits are needed to encode13

the graph if the adjacency list of each vertex is encoded using relative positions of two consecutive14

neighbors under the π order in the list rather than using absolute indices or node identifiers, which15

requires at least lg n bits per edge.16

We show the first non-trivial approximation factor for this problem by giving a polynomial time17

O(log k)-approximation algorithm for graphs with treewidth k.18
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1 Introduction22

We study theoretical aspects of a graph reordering problem that has applications to com-23

pressing social networks and inverted indexes. The formal model of the problem has been24

suggested by Chierichetti et al. [6], who proposed a simple heuristic for reordering web-scale25

graphs. Later Dhulipala et al. [11] extended the model and described a practical approach for26

graph reordering based on recursive bisection. The algorithm of [11] is widely used in practice27

producing the most “compression-friendly” vertex orders for a large variety of real-world28

datasets and is considered the state-of-the-art in the field [31].29

A linear layout (an order or an arrangement) of a graph G = (V, E) with n = |V | vertices30

and m = |E| edges is a bijection π : V → {1, . . . , n}. Most graph encoding schemes are based31

on performing a delta-encoding of the adjacency lists using a linear layout. The basic idea is32

to sort each adjacency list according to the layout π, store the index of the first neighbor33

in the list, followed by the the gaps between two consecutive neighbors using a variable34

length encoding. As such, it is desirable that the neighborhood of each vertex is laid out35

close together, since that translates into smaller gaps and higher compression rates. This36

motivates two problems that we define next.37

The minimum linear arrangement (MLA) problem is to find a layout π so that38

LAπ(G) :=
∑

(u,v)∈E

|π(u) − π(v)|39

is minimized. This is a classical NP-hard problem [23], even when restricted to certain40

graph classes. The problem is APX-hard under Unique Games Conjecture [10] but admits41
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an O(
√

log n log log n) approximation [5, 19]. Notice that the objective measures the total42

length of the gaps across all edges.43

A closely related problem is minimum logarithmic arrangement (MLogA) in which the44

goal is to minimize45

LGAπ(G) :=
∑

(u,v)∈E

(1 + ⌊lg |π(u) − π(v)|⌋),46

where lg x denotes the logarithm base 2 of x. Note that for an integer x, 1 + ⌊lg x⌋ is the47

number of bits needed to represent x. We write LGA(G) = minπ LGAπ(G), where the48

minimum is taken over all permutations of vertices V . Seen from this perspective, LGA(G)49

is a measure of the compressed size of G. It is worth noting that in practice, the size of an50

encoded integer and the total size of a graph depends on the utilized encoding scheme; we51

refer to [2] for a survey of modern graph compression techniques.52

1.1 Our Contributions53

In this paper we study MLogA from a theoretical perspective. First, in Section 2, we54

investigate basic properties of the problem: analyze the performance of two natural heuristics,55

provide explicit optimal and near-optimal layouts for several graph classes, and describe a56

lower bound for the LGA cost of a graph.57

Section 3 describes our main result, an O(log k)-approximation for graphs with treewidth k.58

It is worth noting that the optimal ordering has cost at least m and that every ordering has cost59

O(m log n). Therefore outputting an arbitrary order is, technically speaking, a logarithmic60

approximation for MLogA. The challenge is to design an approximation algorithm with61

approximation factor o(log n). Our result is the first such approximation for the natural and62

broad class of graphs with low treewidth. The algorithm works by recursively splitting the63

input graph using small balanced separators. It is worth noting that our algorithm can be64

implemented to run in polynomial time regardless of the value of k. While the algorithm is65

fairly straightforward, its analysis is highly non-trivial.66

Regarding the applicability of our approach, we point to the recent work of Maniu et al. [32]67

who experimentally estimated the treewidth of graphs arising from a variety of domains.68

They found that real-world instances usually have treewidth values that are very small69

compared the number of vertices in the graph. Therefore, we can reasonably expect our70

O(log k) approximation to yield much better results in real-world instances over the trivial71

O(log n) approximation.72

We conclude the paper in Section 4 with some interesting open problems.73

1.2 Related Work74

Not many results on MLogA are known. Chierichetti et al. [6] show that the problem is75

NP-hard on multi-graphs and present lower bounds on expander-like graphs. More specifically,76

they show that if a graph G has constant conductance then the cost of MLogA is Ω(m log n),77

and that if G has constant node or edge expansion then the cost of MLogA is Ω(n log n).78

The minimum logarithmic gap arrangement (MLogGapA) problem [6,11] is a related79

objective that captures more faithfully the information-theoretic space needed to represent80

a graph using a delta-encoding representation for its adjacency lists. For a vertex v ∈ V81

of degree k and an order π, consider the neighbors out(v) = (v1, . . . , vk) of v such that82

π(v1) < · · · < π(vk). Then the cost compressing the list out(v) under π is related to83
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fπ(v, out(v)) =
∑k−1

i=1 log |π(vi+1) − π(vi)|. MLogGapA consists in finding an order π,84

which minimizes85 ∑
v∈V

fπ(v, out(v)).86

Similarly to MLogA, the MLogGapA is known to be NP-hard [11]. Furthermore, Dhuli-87

pala et al. [11] experimentally verify that the cost of MLogGapA accurately predicts the88

compressed size of real-world instances for various modern encoding schemes.89

For some applications, such as index compression, it is convenient to study a generalization90

of MLogA and MLogGapA by considering a bipartite graph with query and data vertices.91

To this end, let G = (Q ∪ D, E) be an undirected unweighted bipartite graph with disjoint92

sets of vertices Q and D. The goal is to find a permutation, π, of data vertices, D, so that93

the following objective is minimized:94

∑
q∈Q

degq −1∑
i=1

log(π(ui+1) − π(ui)),95

where degq is the degree of query vertex q ∈ Q, and q’s neighbors are {u1, . . . , udegq
} with96

π(u1) < · · · < π(udegq ). The optimization problem is called bipartite minimum logarithmic97

arrangement (BiMLogA). Notice that BiMLogA is different from MLogGapA in that the98

latter does not differentiate between data and query vertices. It is easy to see that the new99

problem generalizes both MLogA and MLogGapA: to model MLogA, add a query vertex100

for every edge of the input graph; to model MLogGapA, add a query for every vertex of101

the input graph.102

While according to Chierichetti et al. [6] and Dhulipala et al. [11] MLogGapA and103

BiMLogA are arguably more relevant for compression than MLogA, we find that the latter104

problem interesting on its own from a theoretical point of view, and we regard our main105

contribution as a first toward obtaining approximation algorithms for these more general106

variants.107

Also closely related to our objective is the minimum linear arrangement problem, which108

has been studied under various names [12], such as optimal linear ordering, minimum-1-sum,109

or the edge sum problem. MLA was originally proposed in [26]. It was proven to be strongly110

NP-hard [22] and this was later shown to hold even for bipartite graphs [16] and interval111

graphs [9]. For general graphs, the fastest known exact algorithm is based on dynamic112

programming and runs in O(2n · m) time [30]. The best approximation factor known for113

general graphs is O(
√

log n log log n) [5, 19]; however, better approximations are known for114

special graph classes such as interval graphs [9], planar graphs [35], and series-parallel115

graphs [15]. On the positive side, MLA is known to be solvable in polynomial time on116

trees [1, 8, 24]. Furthermore, for some restricted classes of graphs, optimal layouts are known117

explicitly [7, 26,28].118

There is vast literature on the problem of computing an ordering of a graph vertex119

set to minimize or maximize a given objective function. Here we only mention a few120

notable examples. The minimum bandwidth problem [13, 17,20,25,37] is to find an ordering121

minimizing the maximum distance between any two vertices connected with an edge; that122

is, minπ max |π(u) − π(v)|. Finding a tree (path) decomposition with minimum treewidth123

(pathwidth) can be cast as the problem of finding a elimination order of the vertices [29].124

Finally, we mention the traveling salesman problem [27] and its many variants [3, 33, 34],125

which have inspired ground breaking algorithmic research for over five decades.126



XX:4 Approximating the Minimum Logarithmic Arrangement Problem

1 2 5 10 13 16 18 19

3 4 6 11 14 17 20 21

7 8 9 12 15 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 50 53 56 57 58

44 45 48 51 54 59 61 62

46 47 49 52 55 60 63 64

(a)

6 5 4 1 64 61 60 59

7 8 3 2 63 62 57 58

10 9 14 15 50 51 56 55

11 12 13 16 49 52 53 54

22 21 20 17 48 45 44 43

23 24 19 18 47 46 41 42

26 25 30 31 34 35 40 39

27 28 29 32 33 36 37 38

(b)

Figure 1 Layouts of the 8 × 8 grid graph optimizing for (a) MLA and (b) MLogA. The layout
for MLA is constructed by an algorithm of Fishburn et al. [21] and contains Ω(h) consecutively
numbered rows (shaded). The layout for MLogA is constructed following a space-filling curve as
described in Lemma 7.

2 Preliminaries127

In this section we first discuss natural heuristics for MLogA and their (worst-case) approxi-128

mation factors. Then we derive optimal arrangements for several graph classes.129

2.1 Heuristics130

Greedy131

Arguably the easiest approach for MLogA is a greedy one. Start with a vertex, and iteratively132

add the next vertex that yields the lowest increase of the objective. There are several greedy133

criteria that we could use.134

The simplest version of this approach that does not constrain in any way how we pick135

our vertices does not yield anything useful even in very simple instances: If the input is a136

path, the algorithm might pick every other vertex along the path and then the remaining137

vertices for a total cost of Ω(n log n), whereas an optimal solution has cost n − 1.138

One can refine the greedy criterion by asking that a newly added vertex is connected to139

one of the vertices already processed, and subject to this that the increase of the objective is140

minimized. Unfortunately, this also fails: If the input is a 2 × n grid, the algorithm might141

pick the upper path of the grid followed by the lower path (in opposite direction) for a total142

cost of Ω(n log n) whereas an optimal solution, which interleaves nodes from the top and143

bottom paths, has cost O(n).144

Minimum Linear Arrangement145

It is tempting to apply an algorithm designed for MLA to solve the related objective of146

MLogA, given that MLA admit an o(log n)-approximation. Here we show that such an147

approach may result in an Ω(log n) approximation for MLogA even if we have an exact148

algorithm for MLA. Consider the square grid graph; that is, the graph whose vertices149
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correspond to the points in the plane with integer coordinates in the range 1, . . . , h and two150

vertices connected by an edge whenever the corresponding points are at distance 1. The151

h × h grid is denoted by Gh,h and contains n = h2 vertices and m = 2h(h − 1) edges.152

Fishburn et al. [21] describe the optimal arrangement, π, of the square grid; it contains153

t consecutively numbered rows with t/h → 1 − 1/
√

2 as h → ∞; see Figure 1a. The154

corresponding vertical edges between the rows in the grid have length h and there are155

t × h such edges. Summing up the contribution of the edges for MLogA, we get LGAπ ≥156

t × h × lg h = Ω(h2 × log h) = Ω(m × log n). However, as we show in Lemma 7, there is an157

O(m) solution for MLogA; see Figure 1b.158

2.2 Lower bounds159

Before proving a lower bound for the objective of MLogA, we show a simple fact about160

sums of logarithmic values.161

▶ Lemma 1. For any integer ℓ ≥ 1 we have162

(ℓ − 1) · lg(ℓ + 1) <

ℓ∑
i=1

(1 + ⌊lg i⌋) < (ℓ + 1) · lg(ℓ + 1).163

Proof. We can use integrals to prove the upper bound:164

ℓ∑
i=1

(1 + ⌊lg i⌋) ≤
∫ ℓ+1

1
1 + lg x dx ≤ (ℓ + 1) · lg(ℓ + 1).165

And the lower bound:166

ℓ∑
i=1

(1 + ⌊lg i⌋) ≥
∫ ℓ+1

1
lg x dx ≥ (ℓ − 1) · lg(ℓ + 1).167

◀168

It is clear that LGA(G) ≥ m for every graph G, since the contribution of each edge to the169

objective is at least 1. The next lemma improves upon this trivial bound for dense graphs.170

▶ Lemma 2. Let G = (V, E) be a graph with n vertices and m edges, then171

LGA(G) ≥ (m − n) · lg m

n
172

Proof. Consider a vertex, v ∈ V , and all incident edges. The optimal layout of the star173

subgraph is achieved when v is placed in the middle of the order and the neighbors occupy174

consecutive intervals to the left and to the right of v. Thus the edges incident on v contribute175

to the objective at least176

⌊deg(u)/2⌋∑
i=1

(1 + ⌊lg i⌋) +
⌈deg(u)/2⌉∑

i=1
(1 + ⌊lg i⌋) ≥ (deg(u) − 2) · lg deg(u)

2177

where the inequality follows from applying Lemma 1 to each sum.178

Summing over all vertices and observing that every edge is counted twice, gives a global179

lower bound of180

LGA(G) ≥
∑
u∈V

deg(u) − 2
2 · lg deg(u)

2 ≥ (m − n) · lg m

n
.181

where the last inequality follows from Jensen’s inequality and the fact f(x) = (x − 2) · lg x is182

a concave function, which means that the sum is minimized when all n terms are equal. ◀183
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4 3

1

2 0

8

9

10 11

13

12 14

7

(a) A complete binary tree with 4 levels num-
bered according to Lemma 6

r r1 r2

rr1 r2

(b) Two ways of embedding a binary tree, side-
based (top) and center-based (bottom)

Figure 2 Embedding a complete binary tree with LGA ≤ 5
3 n.

2.3 Specific Graph Classes184

▶ Lemma 3. Let Kn denote the complete graph with n vertices. Then185

LGA(Kn) ≤ n2 lg n

2 .186

Proof. The bound follows the observation that all layouts of a complete graph are equivalent,187

and applying Lemma 1 to each node and accounting for double counting:188

LGA(Kn) = 1
2

n∑
i=1

n−1∑
j=1

(1 + ⌊lg j⌋) ≤ n2 lg n

2 .189

◀190

▶ Lemma 4. Let Pn and Cn denote the path and cycle with n vertices, respectively. Then191

LGA(Pn) = n − 1 = m and LGA(Cn) = n + ⌊lg(n − 1)⌋ = m + ⌊lg(n − 1)⌋.192

Proof. The bound for the path is trivial. For the cycle, denote the lengths of the edges of193

Cn by e1, . . . , en. Observe that for every ordering of Cn, there exist two edge-dis int paths194

connecting the first and the last vertices in the order. Hence, e1 + e2 + · · · + en ≥ 2n − 2195

and ei ≥ 1. Using an exchange argument, it is straightforward to show that given those196

constraints
∑n

i=1(1 + ⌊lg ei⌋) is minimized when e1 = · · · = en−1 = 1 and en = n − 1, which197

yields the claim. ◀198

▶ Lemma 5. Let K1,ℓ denote a star with ℓ leaves. Then199

(ℓ − 2) · (1 + lg ℓ

2) ≤ LGA(K1,ℓ) ≤ (ℓ + 2) · lg ℓ + 1
2 .200

Proof. The equality follows from the observation that the optimal layout is achieved when201

the central vertex of the star is placed in the middle of the order. The inequalities are the202

result of applying Lemma 1 to this sum. ◀203

▶ Lemma 6. Let Tn denote the k-level complete binary tree with n = 2k − 1 vertices. Then204

LGA(Tn) ≤
⌈ 5

3 (2k − 1)
⌉

− k − 1 ≤ 5
3 n.205

Proof. Consider a complete binary tree, Tn, with k levels such that n = 2k − 1. Let r be the206

root of the tree connected to two copies of a complete tree with k − 1 levels; see Figure 2a.207

In order to prove the claim, we consider two ways of embedding Tn: a side-based layout in208

which r is the rightmost (or leftmost) in the order, and a center-based layout in which r is209
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positioned between the two copies of the subtrees, Tn−1. See Figure 2b for an illustration210

and observe that the vertices of each of the subtrees do not overlap in the resulting order.211

Define the cost of embedding a complete binary tree with k levels using the side-based212

and center-based approaches by S(k) and C(k), respectively. It follows directly from the213

construction that214

C(k) = 2 + 2S(k − 1) and215

S(k) = 2 + ⌊lg(2k−1 + 2k−2 − 1)⌋ + S(k − 1) + C(k − 1)216

= 1 + k + S(k − 1) + C(k − 1) for k ≥ 2 and217

C(1) = S(1) = 0.218
219

We claim that C(k) =
⌈ 5

3 (2k − 1)
⌉

− k − 1 and S(k) = C(k) +
⌊

k
2
⌋
. By induction, the two220

bounds clearly hold for k = 1. For k ≥ 2, we have221

C(k) = 2 + 2S(k − 1) = 2 + 2
(

C(k − 1) +
⌊

k−1
2

⌋)
= 2 + 2

(⌈ 5
3 (2k−1 − 1)

⌉
− k +

⌊
k−1

2
⌋)

.222

Observe that for even k, we have 2k mod 3 = 1, while for odd k, it holds 2k mod 3 = 2. Thus,223

when k = 2t is even, 2
⌈ 5

3 (2k−1 − 1)
⌉

=
⌈ 5

3 (2k − 1)
⌉

− 1; therefore,224

C(k) = 2 +
⌈ 5

3 (2k − 1)
⌉

− 1 − 4t + 2
⌊ 2t−1

2
⌋

=
⌈ 5

3 (2k − 1)
⌉

− 2t − 1.225
226

Similarly, when k = 2t + 1, we have 2
⌈ 5

3 (2k−1 − 1)
⌉

=
⌈ 5

3 (2k − 1)
⌉

− 2; therefore,227

C(k) = 2 +
⌈ 5

3 (2k − 1)
⌉

− 2 − 2(2t + 1) + 2
⌊ 2t

2
⌋

=
⌈ 5

3 (2k − 1)
⌉

− (2t + 1) − 1.228
229

The inductive step for S(k) is verified analogously.230

Finally, observe that LGA(Tn) ≤ min(C(k), S(k)), which proves the desired bound. ◀231

We conjecture that the bound given by Lemma 6 is optimal for complete binary trees; it232

has been verified computationally for trees with up to 15 vertices.233

Next we explore MLogA on the h × h grid graph, Gh,h, and suggest using a space-filling234

curve to layout the vertices. A space filling curve is a continuous mapping from the unit235

interval [0, 1] to the unit square [0, 1]2. The idea is to overlay the grid over the unit square236

and then use the curve order to sort the vertices of the grid. We show that the layout237

obtained from the well-known Hilbert curve [38] yields a constant factor approximation for238

MLogA.239

▶ Lemma 7. Let Gh,h denote the h × h grid graph with h being a power of two. Then240

LGA(Gh,h) ≤ 4h2 = O(m).241

Proof. At a very high level, the Hilbert curve orders the points in the unit square by242

recursively dividing it into four smaller squares, visiting each of smaller square in turn and243

concatenating the partial traversals. This construction yields a hierarchical decomposition of244

the grid. At the top level of the hierarchy we have a single square holding all h2 points. One245

level down, at level 1, we have 4 smaller squares of h/2 × h/2 each holding h2/4 points. In246

general, level i has 4i squares each holding h2/4i points; see Figure 1b.247

We say that an edge (u, v) is cut at level i if u and v belong to the same square at level248

i but different squares at level i + 1. Notice that this means that the distance between u249

and v is no larger than the size of the the squares at level i, namely, |π(u) − π(v)| ≤ h2/4i.250

Furthermore, notice that there are 2h edges cut at level 0, 4h edges at level 1, and in general,251

2i+1h edges cut at level i.252
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X

G[C1] G[C2] · · · G[Cℓ]

(a) A balanced separator X and the connected
components of G[V \ X].

π0(X) π1(C1) π2(C2) . . . πℓ(Cℓ)

(b) Partial layouts of each component are se-
quenced in an arbitrary order.

Figure 3 Algorithm balanced finds a small balanced separator X, recursively computes a
partial layout πi for each connected component Ci of G[V \ X], and builds a full layout of G by
concatenating these partial layouts and an arbitrary sequencing of X.

Therefore, the objective value of the layout is upper bounded by253

LGA(Gh,h) ≤
lg h−1∑

i=0
2i+1h · (1 + ⌊lg h2

4i
⌋)254

≤ 2h2 + 2h

lg h−1∑
i=0

2i lg h2

4i
255

≤ 2h2 + 2h

∫ lg h

i=1
2x lg h2

4x
dx256

≤ 2h2 + 2
lg 2h2

257

≤ 4h2
258
259

Finally, we note that the grid contains 2h2 − 2h edges, so the layout is at least 2-approximate.260

◀261

3 Balanced Separator262

In this section we explore the performance of a divide-and-conquer algorithm based on263

balanced separators. Recall that a set of vertices X ⊆ V is a balanced vertex separator for264

G = (V, E) if every connected component of G[V \ X] has at most
⌈

|V \X|
2

⌉
vertices. The265

separation number of G is the minimum integer k such that every subgraph of G has a266

balanced separator of order at most k. It is known that the separation number of a graph is267

linearly related to its treewidth [14,36].268

Our algorithm, which we call balanced, recursively finds a small balanced separator X,269

arbitrarily sequences X to get a partial layout π0(X), identifies the connected components270

C1, C2, . . . , Cℓ of G[V \X], recursively finds a layout πi(Ci) for each subgraph G[Ci], and then271

concatenates all these layouts in arbitrary order, say ⟨π0(X), π1(C1), π2(C2), . . . , πℓ(Cℓ)⟩.272

For each problem G′ = (V ′, E′) we find along the way, we assign a level value to273

the problem based on its size; more precisely, we say that the subproblem is in level i if274

n
2i ≤ |V ′| < n

2i−1 . Note that because of the balanced nature of the separators, a problem can275

only generate subproblems in lower levels. Thus, it follows that the collection of subproblems276

at level i forms a partition of a vertex subset of the input instance. Furthermore, since each277
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subproblem at level i has cardinality at least n
2i , it follows that we can have at most 2i

278

subproblems at level i. We extend the level assignment of subproblems to vertices as follows.279

If u belongs to the separator chosen for a subproblem at level i, then we say that u belongs280

to level i. Notice that once a vertex is chosen into a separator, it never again shows up in281

subproblems.282

Now consider a separator X of a subproblem G′ = (V ′, E′). We assign every edge in E′
283

incident on X towards an endpoint in X (edges in E′[X] can pick an endpoint arbitrarily).284

For each u ∈ X, let µu be the number of edges assigned to u in this way; note that µu > 0285

since every u must be connected to V ′ \ X, otherwise X − u is also a balanced separator.286

Lastly, let Li denote the set of nodes in level i and ℓ − 1 be the deepest non-empty level.287

Since every edge in the input instance is assigned in this way, it follows that
∑

u µu = |E|288

and that 1 ≤ µu ≤ n.289

On one hand, the cost of the layout is upper bounded by290

UB(µ) =
ℓ−1∑
i=0

∑
u∈Li

µu ·
(

1 + lg n

2i

)
291

On the other hand, every node u with µu edges assigned to it needs at least as many bits292

to encode the edges as a star with µu leaves does. Using Lemma 5 we can infer that we need293

at least (µu − 2) · lg
(
1 + µu

2
)

bits. Together with the fact that we always need at least µu294

bits, we get that µu

4 · (1 + lg µu) bits are always needed. Therefore, by ignoring the constant295

factor, we can use the following as the lower bound:296

LB(µ) =
ℓ−1∑
i=0

∑
u∈Li

µu · (1 + lg µu) .297

Define ρ(µ) = UB(µ)
LB(µ) . The approximation ratio of the algorithm is bounded up to constant298

factors by ρ(µ). The rest of this section is devoted to showing that if the graph has small299

balanced separators, this ratio is small.300

Consider the auxiliary problem of finding an assignment µ and levels Li that maximizes301

ρ(µ) subject to the following constraints:302 ∑
u µu ≥ n, and 1 ≤ µu ≤ n for all u,303

|Li| ≤ k2i, where k is an absolute upper bound on the cardinality of the balanced304

separators we find along the way.305

Strictly speaking the first constraint should be
∑

u µu = m, but as we shall soon see, the306

worst bound of ρ(µ) occurs when m = n. The second constraint follows from the fact that307

there are at most 2i sub-problems at level i and that each of these has a separator of size at308

most k.309

▶ Lemma 8. For any assignment µ and levels Li subject to the above constraints, ρ(µ) is310

upper bounded by O(log k).311

Proof. First we identify further constraints that we can assume without loss of generality:312 ∑
u µu = n. Otherwise, we can multiply µ by γ =

∑
u µ/n, which cause UB(µ) to scale313

down by a factor of γ, while LB(µ) decreases by a factor strictly greater than γ (due to314

its super-linear terms).315

∀u, v ∈ Li, we have µu = µv. Otherwise, average their values, which does not change316

UB(µ) but decreases LB(µ).317
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∀u ∈ Li, v ∈ Lj , if i < j then µu ≥ µv. Otherwise, we can swap their values, increasing318

UB(µ) without changing LB(µ).319

|Li| = 2i for all i < ℓ − 1. Otherwise, if a level is not full we can promote a node for a320

lower level, which increases UB(µ) but does not change LB(µ).321

In every case, the change increases ρ(µ), so we can assume all these properties without loss322

of generality.323

We also assume that |Lℓ−1| = 2ℓ−1. Otherwise, if the level is not full we get rid of it324

altogether and scale up other values to add up to n. This can decrease the value of the325

solution a single time by a constant multiplicative amount; that is, at most 2.326

Furthermore, we can assume that if we have two nodes u ∈ Li and v ∈ Li+1 in consecutive327

layers and we increase/decrease µu and decrease/increase µv the change should not improve328

the ratio ρ(µ), which we denote for brevity with ρ from now on. Out of this requirement we329

get the following property.330

▷ Claim 9. The worst ratio ρ(µ) = UB(µ)
LB(µ) is attained when for any two nodes u ∈ Li and331

v ∈ Li+1 in consecutive layers we have332

µu

µv
= 2

1
ρ(µ) .333

Proof. Consider the operation of deviating slightly from the give vector µ to another vector334

increasing µu by a small δ amount while decreasing µv by the same amount. Let us denote335

with µ|δ this new vector. And let f(δ) = UB(µ|δ)
LB(µ|δ)336

Assuming that µ is the vector maximizing the ratio, we expect that f ′(0) = 0; for337

otherwise, we can deviate from µ and improve the ratio (either with δ > 0 or δ < 0 depending338

on the sign of f ′(0)).339

In order to derive the equation f ′(0) = 0, we first compute the derivatives of the numerator340

g(δ) = UB(µ|δ) and the denominator h(δ) = LB(µ|δ):341

g′(δ) =
(

1 + lg n

2i

)
−

(
1 + lg n

2i+1

)
= 1342

h′(δ) = (2 + lg(µ + δ)) − (2 + lg(µv − δ)) = lg µu + δ

µv − δ
343

344

We can write the constraint f ′(0) = 0 in terms of these functions as follows345

g′(0)LB(µ) − UB(µ)h′(0) = 0,346

which we can re-write as347

1
lg µu

µv

= UB(µ)
LB(µ) = ρ(µ),348

which in turn is equivalent to the relation shown in the lemma statement. ◀349

Thus, for the purposes of finding a bad assignment for our analysis, we can focus our350

attention on those obeying the above properties. To that end, we define µi to be the value351

of those nodes in level i. Therefore, without loss of generality, we focus on the following352

quantities353

ÛB(µ) = n +
ℓ−1∑
i=0

k2iµi lg n

2i
354
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and355

L̂B(µ) = n +
ℓ−1∑
i=0

k2iµi lg µi356

Furthermore, using Claim 9 we infer that357

µi = µ0

2
i
ρ

(1)358

Let α = 21− 1
ρ . Note that since ρ > 1, it follows that 1 < α < 2. Plugging (1) into the359

upper and lower bounds we get360

ÛB(µ) = n + kµ0

ℓ−1∑
i=0

αi lg n

2i
361

and362

L̂B(µ) = n + kµ0

ℓ−1∑
i=0

αi lg µ0

2
i
ρ

363

Approximating the value of the upper bound using integrals to get:364

ÛB(µ) ≤ n + kµ0

∫ ℓ

1
αx lg n

2x
dx365

= n + kµ0

[
αx

ln α
lg n

2x
+ αx

ln2 α

∣∣∣∣ℓ

1
366

≤ n + kµ0
αℓ

ln α

(
lg n

2ℓ
+ 1

ln α

)
367

368

Approximating the value of the lower bound yields:369

L̂B(µ) ≥ n + kµ0

∫ ℓ−1

1
αx lg µ0

2x/ρ
dx370

= n + kµ0

[
αx

ln α
lg µo

2x/ρ
+ αx

ρ ln2 α

∣∣∣∣ℓ−1

0
371

n + kµ0

[
αℓ−1

ln α

(
lg µo

2(ℓ−1)/ρ
+ 1

ρ ln α

)
−

(
lg µ0

ln α
+ 1

ρ ln2 α

)]
372

≥ c

[
n + kµ0

αℓ−1

ln α

(
lg µo

2(ℓ−1)/ρ
+ 1

ρ ln α

)]
373

374
375

where the last inequality holds for a constant c > 1/2 assuming that ρ > 2 and ℓ > 1. Both376

of these assumptions are safe to make for otherwise ρ = O(1).377

Finally, note that n =
∑ℓ−1

i=0 kµ0αi, which yields n ≤ kµ0
αℓ

α−1 . Therefore,378

lg n

2ℓ
≤ lg k + lg µ0

2ℓ/ρ
− lg(α − 1) ≤ lg k + lg µ0

2(ℓ−1)/ρ
+ 1,379
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where the last inequality holds for ρ > 2. Also, using the same assumption we note that380

1/ lg α = ρ
ρ−1 ≤ 2, and so 1

ln α = O(1).381

Using the fact that µi ≥ 1 for all i, we get lg µ0
2(ℓ−1)/ρ ≥ 0. Therefore, the ratio ÛB(µ)

L̂B(µ)
is382

maximized when the previous inequality is tight, which yields that ÛB(µ)
L̂B(µ)

= O(log k).383

◀384

▶ Theorem 10. For a graph with separation number at most k, algorithm balanced is an385

O(log k)-approximation for MLogA.386

Proof. The claim follows readily from Lemma 8. ◀387

3.1 Implementation Details388

In this section we discuss implementation details of balanced. While the guarantee in389

Theorem 10 is expressed in terms of the separation number of the input graph, we observe390

that finding a minimum balanced separator is an NP-hard problem [4]. However, we can get391

the same asymptotic guarantee by applying an approximation algorithm instead.392

▶ Lemma 11. Algorithm balanced can be implemented to run in polynomial time while393

maintaining an approximation factor of O(log k), where k is the separation number of the394

input graph.395

Proof. Feige [18] provides a polynomial time algorithm finding a balanced separator of396

size O(k
√

k) provided the input graph has a balanced separator of size k. Using the397

approximation algorithm for finding our balanced separators and Lemma 8, we get an398

approximation guarantee of O(log(k
√

k)) = O(log k).399

Each node of the divide-and-conquer recursion tree performs a polynomial amount of400

work, therefore the overall running time is polynomial. ◀401

We close this section by noting that once a balanced separator X of G is found, it is402

not important how the recursively-computed layouts of each component of G[V \ X] and403

X itself are sequenced—this sequencing order does not affect the analysis. An optimized404

implementation, would benefit from engineering a good heuristic for ordering the components:405

Ideally, want to place components C close to the X that have large |E[C, X]| and small |C|;406

however, these two metrics may be at odds with one another, so the heuristic would have to407

balance those two objectives.408

3.2 Related Algorithms409

Let us discuss the consequences of the analysis of Section 3 to other algorithms.410

Bisection411

The state-of-the-art approach for MLogA uses recursive graph bisection [11, 31]. Start with412

a given graph, G, and find a small almost balanced edge-cut, that is, a collection of edges413

whose removal yields two almost-equal-sized subgraphs. Then recursively layout each of the414

two subgraphs, and then concatenate the resulting orders.415

It is natural to wonder if this is a good heuristic provided the balanced cuts found by the416

algorithm are relatively small. This is indeed the case, since the endpoints of the edges in an417

almost-balanced cut form an almost-balanced separator. Using a similar analysis technique418
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to Theorem 10, one can show that if the bisection algorithm always finds almost-balanced419

cuts whose size is at most k then the solution found is O(log k)-approximate.420

Centroid decomposition421

Chung [8] proposed an optimal algorithm for MLA on trees that is based on the idea of422

removing the centroid of the tree, recursively finding a layout of each subtree and carefully423

concatenating these subtrees.424

A similar algorithm (but without the need to be careful about how the subproblems425

are combined) is an O(1)-approximation for MLogA on trees since the centroid is an426

almost-balanced separator.427

4 Conclusions and Open Problems428

In this paper we tackled a practical problem arising in graph compression. We studied429

approximation algorithms for MLogA, which was posed as an open question by Chierichetti430

et al. [6] and Dhulipala et al. [11]. Our main result, an approximation based on balanced431

separators, partially explains why the state-of-the-art heuristic (that uses a similar scheme)432

works well in practice.433

There are several interesting open questions related to the problem. First, the complexity434

of MLogA on simple graphs and graphs of bounded treewidth is open. We emphasize435

that the related problem, MLA, can be solved on trees in polynomial time [1,8, 24]. These436

algorithms rely on certain properties of optimally embedded trees for the linear objective, and437

it is unclear whether similar properties hold for the logarithmic objective. The complexity438

status of MLA on 2-trees (series-parallel graphs) is unsettled [15].439

Another natural question is to design a constant-factor approximation algorithm for440

general graphs. We stress that Theorem 10 provides such an algorithm for graphs with a441

constant separation number. At the same time, graphs without small separators (e.g., with a442

constant conductance) have cost Ω(m log n); thus, any order of the vertices yields a cost that443

is within a constant factor of the optimum. The challenge is to analyze the scenario between444

the two extremes.445

Finally, we would like to see some progress on designing practical exact approaches for446

MLogA. To the best of our knowledge, there is no algorithm that works faster than the447

naive exhaustive search of n! combinations. Can we solve the problem (exactly) in O(cn)448

time for some constant c > 0? Is there an efficient integer programming formulation of the449

problem? We emphasize that the two questions are interesting even when the input graph is450

a tree.451
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