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Abstract
With the necessity of privacy protection, it be-
comes increasingly vital to train deep neural
models in a federated learning manner for nat-
ural language processing (NLP) tasks. How-
ever, recent studies show eavesdroppers (i.e.,
dishonest servers) can still reconstruct the pri-
vate input in federated learning (FL). Such a
data reconstruction attack relies on the map-
pings between vocabulary and associated word
embedding in NLP tasks, which are unfor-
tunately less studied in current FL methods.
In this paper, we propose a fedrated model
decomposition method that protects the privacy
of vocabularies, shorted as FEDEVOCAB. In
FEDEVOCAB, each participant keeps the local
embedding layer in the local device and de-
taches the local embedding parameters from
federated aggregation. However, it is chal-
lenging to train an accurate NLP model when
the private mappings are unknown and vary
across participants in a cross-device FL set-
ting. To address this problem, we further pro-
pose an adaptive updating technique to improve
the performance of local models. Experimen-
tal results show that FEDEVOCAB maintains
competitive performance and provides better
privacy-preserving capacity compared to status
quo methods.

1 Introduction

Privacy-sensitive Natural Language Processing
(NLP) applications, such as personal virtual as-
sistants (Chen et al., 2017), online medical diagno-
sis (Hakak et al., 2020) and mobile keyboards (Ji
et al., 2019), often have sensitive user data stored
in local devices to protect user privacy. To ensure
service quality, they also need a large amount of
such data for training the corresponding machine
learning models. However, it would breach user
privacy or data protection law, e.g., GDPR, to apply
conventional training methods by putting sensitive
data in a centralized place.
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Hi, recently I feel very thirsty and urinate more. And I get hungry easily and eat more than usual. But 
being 165cm tall, my weight even dropped to 40kg. It has continued for half a month.

Hi! Does your family have a history of diabetes? If so, there is a high probability of diabetes.

Personal 
health status

User Privacy

Data Reconstruction

…, thirsty, 165cm, …, live, ingram, york,
123456, phone, …, district, urinate,
hungry, …, blood, sugar, street, 212-
17564321, …, 40kg, forest, number, …,
diabetes, history, probability, grandma, …

Address

Let me see…Uhh, my grandma has diabetes. This bonus is great! And I want one. I live at 123456 Ingram 
Street, Forest District, New York. And my phone number is 212-17654321. Thanks!

Our platform is promoting products such as blood glucose meters. If you need to monitor your blood
sugar, you can get this bonus for free by leaving your delivery address.

Family
disease history

Phone number

Personal Vocabulary

Example 1: and my phone number is 212-17654321.
Reconstructed: and my phone number is 212-17654321.

Inference

Build Vocabulary and Embedding

Example 2: my grandma has diabetes. 
Reconstructed: my grandma has diabetes.

𝑑! 𝑑" … 𝑑#
sugar 0.7 0.2 … -0.1

blood 0.4 0.3 … 0.3

… … … … …

diabetes 0.5 0.7 … 0.6

Private Mapping

Privacy Attack

Figure 1: User-device Online Medical Conversation.
The doctor records the user’s health conditions, demo-
graphic information and contact details. The sensitive
information of the user is made bold. The sensitive in-
formation can either be constructed from model updates
and private mappings by e.g. data reconstruction attack,
or be inferred from the local vocabulary when the local
data is small.

To resolve the dilemma, federated learning (FL)
methods are proposed to collaboratively learn a
global model in a distributed manner without re-
quiring sensitive data to leave local devices (McMa-
han et al., 2017a). In the FL framework, each local
device downloads the current model, updates the
model using local data, and subsequently sends
model updates to a central server for improving
the current model. The process is repeated until
certain criteria are met. Due to improved privacy
protection, there is a fast-growing interest in apply-
ing FL to NLP applications (Ge et al., 2020; Sui
et al., 2020; Liu et al., 2021).

However, recent studies show that it is still pos-
sible to reconstruct user data from model updates
sent to servers (Boenisch et al., 2021). Such at-
tack methods, e.g. Deep Leakage from Gradient
(DLG) (Zhu and Han, 2020), need to know the
mappings between words and their embeddings.
Eavesdroppers may be able to infer sensitive infor-
mation by knowing which words are used in local
devices, as shown in Figure 1. Hence, privacy-



preserving models should protect the mappings be-
tween sensitive words and their embeddings. How-
ever, it is challenging to train NLP models using
current FL methods if such mappings are unknown
and vary across devices. Despite potential privacy
risks, prior works largely neglect the importance of
protecting private vocabularies and the associated
word embedding layers in local devices in the FL
framework.

To address the above problems, we propose a
fedrated model decomposition algorithm that pro-
tects private vocabularies, coined FEDEVOCAB,
which keeps the word embedding layer (i.e., local
parameters) of a deep neural network in local de-
vices and only collaboratively updates the remain-
ing components of the model (i.e., global parame-
ters). Because the word embedding layer does not
participate in federated aggregations and a user de-
vice may not be always-available in each federated
training round in cross-device FL settings (Kairouz
et al., 2021), the local parameters may be poorly
coupled with those global parameters, resulting in
performance degeneration (Reddi et al., 2020). To
alleviate this issue, we introduce an adaptive up-
dating procedure into FEDEVOCAB, which learns
effective local parameters for resolving the perfor-
mance drops.

To sum up, our contributions are two-fold:

• We propose a novel federated learning algo-
rithm (FEDEVOCAB for short) to strengthen
the protection of user privacy by detaching
word embedding layers from federated aggre-
gations and adaptively updating local parame-
ters in order to further improve performance
in the challenging yet practical cross-device
FL setting.

• We conduct extensive experiments on three
corpora to evaluate FL methods with regard to
privacy protection, model utility and commu-
nication efficiency. Our method significantly
outperforms the state-of-the-art FL methods
in terms of privacy protection and communi-
cation efficiency, while still achieving com-
parable test accuracies on text classification
regardless if BiLSTM (Graves et al., 2005) or
DistilBERT (Sanh et al., 2019) serves as the
backbone model. Compared with the state-
of-the-art FL method, our method can reduce
token-wise recovery by 80.1% on average, im-
prove local model performance by about 1.3%

on average, and reduce communication cost
by 83 times at most.

2 Background and related work

Federated learning. Federated learning (McMa-
han et al., 2017a) (FL) is a privacy-enhancing dis-
tributed machine learning paradigm with individual
user’s data preserved locally. In FL, there has a cen-
tral server and numerous user devices where the
server is responsible for aggregating model param-
eters or gradients from users’ local training. At the
beginning, the service randomly selects multiple
users from large-scale devices in each communi-
cation round. The selected device computes and
uploads the model’s parameters or gradients to the
service provider that aggregates them to update the
global model. The above process is repeated for
multiple times until model converges. With the
user data remaining on local device, FL has widely
been applied to privacy-sensitive NLP tasks (Liu
et al., 2021; Ge et al., 2020; Sui et al., 2020).

However, recent studies have contested the
privacy-preserving ability of FL (Zhu and Han,
2020; Geiping et al., 2020; Boenisch et al., 2021;
Wei et al., 2020). Zhu and Han (2020) first show
how to recover the user’s input text from the up-
loaded gradients. Boenisch et al. (2021) propose
a perfect attack to recover input text based on sent
gradients with near-zero costs. In these works, the
mappings between words and their embeddings are
critical to recovering text data due to the discrete
nature of text. Unfortunately, previous studies have
focused on how to protect shared gradients while
largely ignoring this vital mapping challenge.

A line of work has introduced differential pri-
vacy (DP) (Dwork et al., 2014) or homomorphic
encryption (Gentry, 2009) into the federated train-
ing pipeline to ensure user privacy. FL with DP is
a general technique to protect user data by inject-
ing controlled noise to shared gradients (McMahan
et al., 2017b; Zhu et al., 2020). Nevertheless, it falls
into the dilemma of low utility (Basu et al., 2021;
Zhu and Han, 2020), and is still uncertain how
much privacy can be preserved in real-world appli-
cations (Huang et al., 2020). FL with encryption
method is another way to secure federated learn-
ing (Bonawitz et al., 2017). It is several orders of
magnitude slower than the unencrypted equivalent,
which is impractical for deep learning. Recently,
Huang et al. (2020) proposed TextHide based on
instance-encoding to preserve the model’s utility,



which shows promising results against gradients
matching attack. However, Xie and Hong (2021)
have experimentally shown that TextHide cannot
provide rigorous privacy guarantee. Orthogonal to
previous work, our work proposes a novel method
to ensure user data by protecting word embedding
layers and the associated private vocabularies in
local devices.

Partially local federated learning. Our work
is also related to recent partially local federated
learning. Liang et al. (2020) propose LG-FedAvg,
which jointly learns compact local representations
on each device and a global model across devices.
Although LG-FedAvg is very similar to our method,
the differences are as follows: 1) LG-FedAvg is
tested on a few users and small data sets1, and does
not use pre-trained models (such as GloVe (Pen-
nington et al., 2014) or DistilBERT (Devlin et al.,
2018)); 2) LG-FedAvg assumes users are stateful or
always-available, which is not undesirable at scale
in cross-device settings (Singhal et al., 2021); 3)
LG-FedAvg partitions local and global parameters
unstructuredly, which may lead to performance
degradation. Singhal et al. (2021) presents the
state-of-the-art partially local FL method called
FedRecon, which trains sensitive user-specific pa-
rameters locally and other parameters globally. Fe-
dRecon only protects mappings between sparsely
sensitive words and embeddings, yet it performs
poorly against data reconstruction attacks and in-
curs large communication overhead compared with
FEDEVOCAB. Distinguished from previous studies,
our work conceals all mappings between vocabu-
lary and word embedding in the stateless federated
training process, and handles the trade-off between
the model’s utility and privacy protection.

3 Method

3.1 Overview

Figure 2 depicts an overview of the proposed FEDE-
VOCAB. Our work mainly considers the classifi-
cation model because text classification is a fun-
damental task in NLP and one of the fields widely
used in FL (Zhu et al., 2020). As shown in Figure 2
(a), the federated NLP model consists of a word
embedding layer, an encoder, and a classification
layer.

To protect models from the data reconstruction

1The original paper (Liang et al., 2020) designs mobile
text data set containing 572 samples across 14 participants.

Algorithm 1: Training process of FEDEVOCAB

Parameters :
User setN ; Communication round T ; Epoch number
E ; Learning rate η; The global parametersWs; The
local embedding parametersWk

p and the local dataset
Dk of the k-th user; Adaptive updating algorithm A;
User-device update algorithm U;

InitializeWs on the server andWk
p on each user inN

for each communication round t = 1 to T do
N t ← (randomly sample K users fromN )
for each user k ∈ N t in parallel do
Wk,t

s ← UserLocalUpdate(k,Wt−1
s )

sendWk,t
s to the server

end
Perform federated aggregation by Eq. 1

end
UserLocalUpdate (k,Ws):
Wk ← (assembleWk

p andWs)
Wk

p ←A(Dk,Wk)
for epoch e = 1 to E do
Wk ← U(Dk,Wk

p ,Ws)
end
returnWk

s

attack while preserving the model’s utility, we
propose an efficient method named FEDEVOCAB,
which protects the private mappings between words
and their embeddings. To simulate realistic applica-
tions, we consider a more challenging yet practical
cross-device FL setting where participant users are
unstably, e.g., user may drop out, and the data on
each device are not independent and identically
distributed (Non-IID).

In the following, we describe the two key ideas
of FEDEVOCAB. The first one is private mappings
protection (Sec. 3.2), which is critical to defend
data reconstruction attack. The second is the adap-
tive updating (Sec. 3.3) to minimize the perfor-
mance drops in cross-device FL setting. The pseu-
docode of overall training processing of FEDEVO-
CAB is illustrated in Algorithm 1.

3.2 Private mappings protection
In this section, we elaborate on the core algorithm
of FEDEVOCAB. When the eavesdroppers perform
the data reconstruction attack, it is necessary to
know the mappings between words and their em-
beddings due to the discrete nature of the text data.
Based on this, it is more privacy-preserving to lo-
cally store word embedding layers and associated
vocabularies than sharing them. To this end, we
decouple vocabulary and word embedding from the
global NLP model. As shown in Figure 2 (a), users
can construct their personalized vocabulary and em-
bedding layer and keep them on the local device. In
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Figure 2: The overview of FEDEVOCAB method. (a) demonstrates the protection of private mappings in each local
device. (b) illustrates the training process of FEDEVOCAB.

this way, FEDEVOCAB can protect the important
mappings between vocabularies and embedding
layers against data reconstruction attacks. Such
vocabularies are personalized w.r.t. to the local
texts, e.g., reflecting users’ preference of wording,
in contrast, global models typically have a fixed
vocabulary shared among all users.

We then show how to inject private mappings
protection into the federated learning pipeline. Fig-
ure 2 (b) describes the federated training process
using FEDEVOCAB. Our method considers a stan-
dard setting in the FL framework that there is a
central server responsible for coordinating users
of interest for local training and distributing the
global parameters. In each federated communica-
tion round, there are K users to be selected from
all N users for training the FL model. We do
not assume user devices are always online, which
is realistic in many real-world scenarios. For in-
stance, mobile devices may drop out (shut down)
at anytime. For each selected k-th user, FEDEVO-
CAB decompose federated NLP model’s parame-
ters Wk = {Wk

p ,Ws} into local embedding pa-
rameters Wk

p and global parameters Ws. Unlike
the canonical FL method knowing all Wk details,
the server only accesses the global parameters and
distributes Ws to selected users. The optimization
for the server with the global parameters is:

min
ws

L(Ws) = min
ws

K∑
k=1

pkLk

(
Ws,Wk

p

)
(1)

where Lk is the local training objective of k-th
user, pk is the weight of the k-th user such that
pk = nk∑K

i=1 ni
and nk is amount of k-th user’s

dataset. Suppose that the k-th user has a super-
vised data set Dk = {(xkj , ykj )}

nk

j=1
, and the model

G(Wk, xkj ) : Rd → Y maps inputs xkj ∈ Rd to pre-
dicted label. The k-th user’s local training objective
Lk is defined by:

Lk(Ws,Wk
p ) =

1

nk

nk∑
j=1

l
(
G
(
(Ws,Wk

p ), x
k
j

)
, ykj

)
(2)

where l is the local loss function. Next, we present
how FEDEVOCAB trains such decomposed NLP
model in each federated communication round,
including the central server update and the user-
device update.

Central server update. The server distributes
global parameters to every user of interest at the
beginning of each federated communication round.
Then it monitors the collection of updated param-
eters sent by each user. After receiving the global
parameters of all selected users, the server performs
the federated aggregation and updates the global
parameters by Eq. 1.

User-device update. When the selected users
download the global parameters, they assemble a
whole model with distributed global parameters
and local embedding parameters. Then, selected
users train the assembled model with local private
data by Wk = Wk−η ∂Lk

∂Wk where η is the learning
rate. After local training, the k-th user sends its
updated global parameters Wk

s to the central server
for federated aggregation.

The training process described above is repeated
until specific criteria are met.



3.3 Adaptive Updating

It is realistic to assume that a user device does
not participate in every round of training. Hence,
the parameters of local word embeddings may
well be outdated and are incompatible with the
newly received global parameters. The prior stud-
ies show that it leads to deteriorated model per-
formance (Reddi et al., 2020; Singhal et al., 2021).
The challenge is thus to learn local parameters com-
patible with the new global parameters efficiently.

Motivated by gradient-based alternating mini-
mization, we introduce a simple but effective adap-
tive updating strategy into the local training process.
Specifically, once receiving new global parameters,
FEDEVOCAB performs one local training epoch
to adapt the local embedding parameters to the
global parameters and freezes the global module
during the process. Considering the limited com-
puting resources of user devices, it is sufficient to
reuse the same optimization method, which is used
for updating all model parameters after this step.
FEDEVOCAB can also adopt other gradient-based
alternating minimization techniques (Singhal et al.,
2021; Zhu and Sun, 2021), which we will explore
in the future.

4 Experiments

In this section, we demonstrate how our method
1) effectively defends against data reconstruction
attacks by protecting private mappings between vo-
cabularies and word embeddings, 2) preserves the
model’s utility with achieving competitive perfor-
mance, 3) efficiently reduces communicated param-
eters by keeping embedding layer in local devices.
In addition, we also show adaptive updating plays
a critical role in challenging yet practical cross-
device FL setting.

4.1 Experimental Setup

Datasets and Non-IID Partitions. Following
Lin et al. (2021), we conduct experiments on there
classification datasets: 20News (Lang, 1995), AG
News (Zhang et al., 2015), and SST-2 (Socher
et al., 2013). These public datasets serve as bench-
marks in Lin et al. (2021) to verify the proposed
FL method. In order to evaluate our method in a
realistic and challenging setting, we consider the
Non-IID data partitioning throughout the experi-
ments. In particular, instead of uniformly sampling
the datasets, we partition the datasets by using the
Dirichlet distribution as the class priors. We sample

Dataset # Train # Test # Labels

20News 11.3k (113) 7.5k 20
AG News 120k (1200) 7.6k 4

SST-2 67k (670) 1.8k 2

Table 1: Dataset Specifications. The number in paren-
thesis is the size of each user-device training data.

D ∼ Dir(α) and allocate data Dk to k-th user. α
determines the degree of Non-IID, and a smaller α
generates a high label distribution shift. Following
Lin et al. (2021) configuration, we set α = 1.0 as
default and set the number of cross-device users as
100 for all datasets. The statistics of these datasets
are in Table 1.

Models. We primarily evaluate two prevalent
NLP models in our experiments: BiLSTM (Graves
et al., 2005) and DistilBERT (Sanh et al., 2019).
These models are also widely used to mimic real-
istic federated NLP applications (Sui et al., 2020;
Lin et al., 2021; Huang et al., 2020) when the user’s
computational capabilities and bandwidth are re-
stricted. We have also evaluated our methods with
bigger models, such as BERT-Base, and the results
are shown in B.1. More details of model hyperpa-
rameter tuning are given in Appendix A.1.

Baselines. To comprehensively evaluate the per-
formance of FEDEVOCAB, we compare FEDEVO-
CAB against five baselines with different models
on various datasets. Local-only refers to training
model only using local data on each user device
without collaborations between other users. In the
FL family, we compare two classic and global FL
methods: FedAvg (McMahan et al., 2017a) is the
benchmark FL method that collaboratively trains
a global FL model across users, and FedProx (Li
et al., 2020) excels at handling heterogeneity in fed-
erated learning by using L2 regularization to limit
local model updates to be closer to the global model
for more stable and accurate convergence. We pro-
vide two partially local FL methods which also
decompose the model parameters into global pa-
rameters and local parameters: LG-FedAvg (Liang
et al., 2020) jointly learns compact local represen-
tations on each device and a global model across
all devices. FedRecon (Singhal et al., 2021) is the
state-of-the-art FL method that trains sensitive user-
specific parameters locally and other parameters
federated. See Appendix A.2 for details on each
baseline method implementations.



Method DistilBERT BiLSTM

FedAvg 88.2 87.6
FedRecon 2.4 2.1
FEDEVOCAB 1.3 1.2

Table 2: Comparison of FEDEVOCAB and baselines
on the auxiliary private dataset against private tokens
leakage. We report privacy tokens leakage ratio (%).
Lower is better. FEDEVOCAB shows firmly privacy-
preserving capacity for privacy-sensitive tokens.

4.2 Privacy Experiments
We first evaluate FEDEVOCAB against the gradient-
based data reconstruction attack, which imposes a
severe challenge to FL. Gradient-based data recon-
struction attack is first proposed by Zhu and Han
(2020) and can effectively recover users’ private
data. They assume eavesdroppers get access to the
complete model details and are able to intercept
gradients in the FL process. With this assumption,
the eavesdroppers can obtain both the training in-
puts through the DLG optimization algorithm. See
Appendix A.3 for details.

Baselines and Metrics. We consider the FL
methods performing well in the utility experiments
as baselines (see Sec. 4.3). In particular, we choose
the classic global FL method (FedAvg) and state-
of-the-art partially local FL method (FedRecon)
and evaluate them for privacy protection. As the
aim of attackers is to recover user text in auxil-
iary private datasets, we evaluate FEDEVOCAB and
baselines in terms of precision (the average percent-
age of recovered words in the target texts), recall
(the average percentage of words in the target texts
are predicted) and F1 score which is the harmonic
mean between precision and recall. Given that
only private token embeddings are locally trained
in FedRecon, we also exploit privacy tokens leak-
age ratio (PTLR) to evaluate each method’s ability
to protect privacy-sensitive tokens. More details
of this attack and the auxiliary private dataset are
provided in Appendix A.3.

Results. Table 2 and Figure 3 show the pri-
vacy protection results. These results demonstrate
that FEDEVOCAB can consistently outperform
previous methods in defending against the data
reconstruction attack.

Compared with FedRecon, eavesdroppers can-
not recover users’ local data with our method by
achieving almost zero recall and precision. FEDE-
VOCAB effectively protects privacy through mak-
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Figure 3: The data reconstruction attack results on the
auxiliary private dataset. The Pre. denotes precision
and Rec. denotes recall (lower is better for all met-
rics). FEDEVOCAB shows significantly effective de-
fense against data reconstruction attacks.

ing the mappings between the local device’s vo-
cabulary and their word embeddings private. In
contrast, FedRecon shares most of these essential
mappings, which leads to high recall and precision.
As shown in Table 2, FedRecon has achieved sim-
ilar performance results regarding privacy tokens
protection. These results demonstrate that privacy-
preserving user mappings can protect against data
reconstruction attacks efficiently. More case stud-
ies can be found in Appendix B.3.

The canonical FL method FedAvg shows frustrat-
ing results of privacy attacks, especially in sensitive
tokens. It is not a surprise that FEDEVOCAB is sub-
stantially better than FedAvg in attack metrics and
PTLR because FedAvg discloses the private vocab-
ulary and associated word embedding in training
processing.

In Figure 3, we show the privacy-preserving ca-
pacity of each FL method with different batch sizes.
We can see that increasing batch size makes the re-
covery more difficult. The plausible reason behind
this is that there are more variables to solve dur-
ing DLG optimization in large batch size. This
result is also in accordance with the experimental
results in Zhu and Han (2020), which suggests that
increasing the training batch size is a good defense
strategy. However, there is a trade-off with lim-
ited user-device computing resources (i.e., mobile)
and large batches. Notably, our method’s privacy-
preserving capability is not affected by the batch
size, providing a practical defense strategy for users
with restricted computing resources.



Methods 20News AG News SST-2 AVG.
Global Local Global Local Global Local Global Local

Local 8.2 59.4 32.5 77.8 51.1 82.5 30.6 73.2
FedAvg 73.6 78.4 87.2 92.2 92.3 95.0 84.4 88.5
FedProx 73.5 78.3 88.4 92.9 92.2 94.9 84.7 88.7
LG-FedAvg 53.5 80.0 63.2 89.8 63.8 85.5 60.2 85.1
FedRecon 75.5 82.0 87.1 94.1 93.0 95.8 85.2 90.6
FEDEVOCAB 75.2 86.8 87.8 95.5 92.5 95.6 85.2 92.6

Table 3: Comparison of FEDEVOCAB with baselines using DistilBERT. We report the test accuracy (%) under local
test and global test. Compared with best baseline, FEDEVOCAB achieves competitive performance, winning or
tying in AVG.

Methods 20News AG News SST-2 AVG.
Global Local Global Local Global Local Global Local

Local 7.3 42.2 34.0 64.6 54.7 83.7 32.0 63.5
FedAvg 35.4 56.3 84.1 91.6 83.0 89.6 67.5 79.2
FedProx 35.6 56.3 84.3 90.1 82.8 89.2 67.6 78.5
LG-FedAvg 14.4 53.4 48.1 88.7 59.1 85.6 40.5 75.9
FedRecon 38.3 57.3 86.0 92.0 85.4 90.2 69.9 79.8
FEDEVOCAB 40.3 58.6 86.9 92.8 87.8 92.1 71.7 81.2

Table 4: Comparison of FEDEVOCAB with baselines using BiLSTM. We report the test accuracy (%) under local
test and global test. FEDEVOCAB outperforms all baselines under global test and local test.

4.3 Utility Experiments

We measure the utility of our method in terms of
test accuracies and compare it with various base-
lines with both DistilBERT and BiLSTM on three
text classification corpora. Our experiments evalu-
ate all methods using two metrics:

1) Global Test (Global): FL methods are evalu-
ated on each test set having the same distribution
as the global data distribution. For each method,
we report the geometric mean of the test accura-
cies collected from each local device. The global
test results can measure the capability of models to
learn global knowledge.

2) Local Test (Local): Each test set on each local
device follows the local training data distributions,
which vary across devices. For each method, we
report the averaged test accuracy from all users.
Compared with the global test, the local test is
more realistic for real-world NLP applications and
it can show performance improvement without cen-
tralizing user-sensitive data.

Results. The utility results for FEDEVOCAB and
baselines are listed in Table 3 and Table 4. Overall,
FEDEVOCAB achieves competitive performance
results on the global test and local test where the
performance gap with the best baseline is within
1%. This competitive result demonstrates the us-
ability of detaching the embedding layer from fed-
erated aggregations. From Table 3 and Table 4, we

have two key findings:

First, the partially local FL method with adap-
tive updating outperforms the global FL method.
Compared with the global FL, FEDEVOCAB and
FedRecon significantly improve test accuracy on
the global test and local test. In particular, the
largest performance gains for FEDEVOCAB and Fe-
dRecon are 8.5% and 4.7% (local test on 20News
with DistilBERT in Table 3), respectively. These re-
sults show partially local FL method is able to help
the local model adapt to the local task and learn
global knowledge better in Non-IID data distribu-
tion. However, another partially local FL method
LG-FedAvg performs poorly on most datasets and
models. We conjecture that this is largely due to
the fact that 1) LG-FedAvg does not use adaptive
updating, resulting in a performance decrease in the
cross-device FL scenario; 2) Decoupling local and
global parameters in an unstructured way makes it
harder to learn, especially on data with the Non-IID
distributions.

Second, FL methods significantly outperform
the method with only local training. As shown in
Table 3 and Table 4, FL methods have better per-
formance compared to the local-only method, espe-
cially for users with a small amount of local data
and learning global knowledge (the maximum per-
formance gap is 67.3% in the global test of 20News
with DistilBERT). Unsurprisingly, the local-only
method produces extremely poor results. The rea-



20News AG News SST-2

DistilBERT BiLSTM DistilBERT BiLSTM DistilBERT BiLSTM
Global Local Global Local Global Local Global Local Global Local Global Local

Ours 75.2 86.8 40.3 58.6 87.8 95.5 86.9 92.8 92.5 95.6 87.8 92.1
-adap 72.9 78.7 37.1 55.4 86.2 93.3 86.3 91.5 90.7 94.3 85.1 89.8

Table 5: Impact of adaptive updating in FEDEVOCAB.

son is the local-only method exploits only limited
training samples on the local device to train the
model. Conversely, FL methods significantly im-
prove local model performance despite not having
direct access to the user data where centralized
training is impossible.

Compared with FedRecon, we find that FEDE-
VOCAB can obtain better results with BiLSTM and
comparable results on DistilBERT. We conjecture
that the performance gap is resulted by different
ways of local model updating: 1) our method up-
dates the word embedding layer by using all the lo-
cal data during adaptive updating. FedRecon based
on meta-learning (Finn et al., 2017) only uses part
of the data to update a part of local word embed-
dings (i.e., privacy-sensitive word embedding). It
is particularly challenging for this method to train
on a small volume of data in a local device; 2) Col-
laboratively training shared word embeddings may
make models suffer from instability due to Non-
IID data distributions. Table 3 and Table 4 also
demonstrate that FedAvg and FedProx get subopti-
mal performance where they cooperatively train the
whole embedding layer using data from Non-IID
data distributions.

4.4 Communication efficiency results

Current large-scale NLP models often contain bil-
lions of parameters, it is challenging to deploy
large models in realistic FL applications due to the
insufficient communication speed and low band-
width (Sui et al., 2020). Therefore, we evaluate the
communication efficiency of FEDEVOCAB and the
baselines.

From Figure 4 we can tell that, compared with all
baselines, FEDEVOCAB can transmit fewer model
parameters, hence it is practical for users with
limited bandwidth. The reduced communication
cost of FEDEVOCAB comes from detaching the em-
bedding layers from the federated aggregation. In
Figure 4, FEDEVOCAB is more effective in the clas-
sic NLP models (e.g., only 1.41MB in BiLSTM).
The global FL methods have almost no communica-
tion cost decrease compared with the partially local
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Figure 4: Communication efficiency of FEDEVOCAB
and comparison baselines. We report the communicated
model’s parameters in each federated training round
(lower is better). FEDEVOCAB can transmit fewer com-
munication parameters, which is practical for users with
limited bandwidth.

FL methods. The decreasing communication cost
of FedRecon comes from the size of the privacy
word embeddings. However, the privacy-sensitive
words in the real world are sparse. Although LG-
FedAvg can achieve more flexible traffic reduction,
it needs to communicate more parameters consid-
ering its performance (see Sec.4.3).

4.5 Contribution of adaptive updating

We investigate the contribution of adaptive updat-
ing used in FEDEVOCAB. We conduct ablation
studies and show the results by removing adaptive
updating (- adap) on all datasets. As illustrated
in Table 5, FEDEVOCAB with removing adaptive
updating obtains worse performance. Therefore,
adaptive updating is essential in enhancing FEDE-
VOCAB, especially for the cross-device FL setting.

5 Conclusion

We have presented FEDEVOCAB, a practical train-
ing method for privacy-preserving NLP models.
FEDEVOCAB protects the private mappings be-
tween local vocabulary and the associated embed-
ding layer by detaching the embedding layer from
federated aggregation. In this manner, FEDEVO-
CAB allows users to personalize their vocabularies
and word embedding layers. To tackle the dilemma
in cross-device FL, we propose an adaptive updat-
ing to minimize performance drops. The privacy
and utility experiments show FEDEVOCAB pro-



vides significantly better privacy protection than the
baselines while maintaining the utility of models.
Moreover, FEDEVOCAB also significantly reduces
communication costs than the SOTA FL methods.

Limitations

We show the limitations of FEDEVOCAB in terms
of various privacy attacks in FL and additional com-
puting costs in local training.

Privacy attacks. FEDEVOCAB mainly considers
the defense against gradient-based data reconstruc-
tion attacks and shows significant defense results.
However, the attacker is still able to recover the
sentence embedding before the encoder because of
shared gradients of the global module. Although
it is difficult for an attacker to recover the input
text without knowing the mappings between words
and their embeddings, it may perform membership
information attack (Melis et al., 2019) and sensitive
attribute information attack (Alnasser et al., 2021),
which will also lead to the user privacy disclosure
to a certain extent.

From the realistic scenario, the purpose of users’
participation in FL is not only to improve the perfor-
mance of local models, but also to protect their sen-
sitive data from obtaining or detecting. Compared
with other mentioned attacks, data reconstruction
attack is the primary privacy attacks to be defensed
in federated learning. Recently, some work has
proposed effective defense against these mentioned
attacks, such as adversarial training (Louppe et al.,
2017). We think FEDEVOCAB is easy to combine
these methods, which we will explore in the future.

In addition, there is no unified privacy protection
metric to evaluate the existing privacy protection
technologies. The evaluation metrics of differen-
tial privacy and homomorphic encryption are not
suitable for measuring the privacy protection abil-
ity of FEDEVOCAB. This is also the reason why
our method is not directly compared with existing
privacy protection technologies. With the growing
privacy concerns in deep learning, it is an urgent
need to explore a general privacy protection evalu-
ation metric.

Additional computing costs. In FEDEVOCAB,
we introduced adaptive updating to reduce the per-
formance degradation in the cross device FL sce-
nario. During local training, we use all local data
to update the embedded layer and freeze the global
module. Although our method is uncomplicated,

it also brings additional computing overhead, es-
pecially for devices with limited computing power
and a large amount of data.
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A Experimental Details

A.1 Models Implementations
Our model implementations and each user’s local
training procedure are based on FedNLP’s code2.
For fair comparison, we adopt the model hyperpa-
rameters straight from the default set in here for
all baselines and our method. To be more con-
crete, the one-layer BiLSTM has 300 hidden states
and the dropout rate is set to 0.5. Adam is cho-
sen as the optimizer with an initial learning rate
of 5e-3. For the transformer-based model, we
exploit AdamW as the optimizer and set an ini-
tial learning rate of 5e-5 with linear decay. To
make a fair comparison, we keep the same embed-
ding layer initialization for all methods where the
BiLSTM utilizes pre-trained GloVe (Pennington
et al., 2014) while DistilBERT uses the primary pre-
trained embedding layer. Our code are available at
https://github.com/SMILELab-FL/FedVocab.

A.2 Baseline Setup
All baseline methods are based on FedLab’s
code3, which is a lightweight open-source frame-
work (Zeng et al., 2021) for FL simulations. For
LG-FedAvg, we tune the interpolation between the
local and global model and report the best results.
For FedRecon, we follow Singhal et al. (2021) next
words prediction experiment where they configure
that out-of-vocabulary (OOV) embeddings are lo-
cal and the rest of the model (including the core
vocabulary embeddings) is global. In our experi-
ment, we set sensitive tokens (i.e., digital tokens)
in the model’s vocabulary as OOV tokens. The
communication rounds of each FL method is 100
and one training local epoch for all models. Note
that there is no collaborative training for the local-
only method. To make fair comparisons, the total
number of local training epochs in the local-only
method will be greater than that of FL methods.
We set local training epochs as 10. We train all
methods on an NVIDIA Tesla V100 and report the
best results.

A.3 Details of attacks
Auxiliary Dataset. For the auxiliary datatset, we
sample 128 sentences from AG News dataset as the
target data Dtag and perform data reconstruction at-
tack to get recovered data Drec. To demonstrate the
protection of private tokens (such as digital tokens),

2https://github.com/FedML-AI/FedNLP/
3https://github.com/SMILELab-FL/FedLab

each sentence in the auxiliary dataset contains at
least three digital tokens.

Deep Leakage from Gradients. The Deep Leak-
age from Gradients (DLG) optimization algo-
rithm (Zhu and Han, 2020) shows that sharing
the gradients can leak private training data. It
starts by randomly initializing a pair of dummy
data and labels and performs the usual forward and
backward. When getting the user-uploaded real
gradients, the attacker computes the l2-distance
between the dummy gradients deriving from the
dummy data and the real gradients. And then it
back-propagates this loss to update the dummy data.
After multiple iterative updates, the attacker can
recover the original input data.

However, NLP models need to preprocess dis-
crete words into embeddings which is different
from vision tasks where image inputs are contin-
uous values. The mappings between vocabulary
and its word embedding is able to inversely map
the continuous embedding into the original token.
Knowing the mappings is the critical point to re-
cover input text in data reconstruction attacks. Fol-
lowing Zhu and Han (2020), we apply DLG on
embedding space and minimize the gradients dis-
tance between dummy embeddings and real ones.
After optimization finishes, we can get the recov-
ered embeddings and derive original words by find-
ing the closest token in different mappings. For
FedAvg, we use the known mappings. The map-
pings in FedRecon are different from the known
mappings only in privacy tokens’ embeddings. Be-
cause FEDEVOCAB allows users to customize their
mappings, we use a mapping that is completely
different from the known mapping.

B Extra Results

B.1 The results of bigger model
To verify the effectiveness of the large model, we
evaluated our methods with bigger models, such as
BERT-Base. The results are shown in Figure 5 and
Table 6. We find that FEDEVOCAB can outperform
the baseline methods in terms of privacy protec-
tion and achieve competitive performance results
in terms of utility.

B.2 The effect of different embedding
initializations

We present results with different initialization
(Different init) and the default same initializa-
tion (Same init) on three benchmark datasets. In

https://github.com/FedMLAI/FedNLP/tree/master/experiments/distributed


Methods 20News AG News SST-2 AVG.
Global Local Global Local Global Local Global Local

Local 9.2 60.7 37.2 79.7 51.8 83 32.7 74.5
FedAvg 80.1 83.9 88.9 93.2 95.2 96.7 88.1 91.3
FedProx 80.2 83.8 89.7 93.7 95.5 96.7 88.5 91.4
LG-FedAvg 57.3 85.1 64.7 89.6 65.7 87.8 62.6 87.5
FedRecon 78.4 87.3 86.0 93.6 94.6 96.9 86.3 92.6
FEDEVOCAB 77.5 91.5 89.3 95.9 94.2 96.9 87.0 94.8

Table 6: Comparison of FEDEVOCAB with baselines using BERT-Base.
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Figure 5: The data reconstruction attack results on the
auxiliary private dataset with bigger model BERT-Base.
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Figure 6: The utility results of different embedding
initialization.

the Different init setting, each user can choose
its embedding initialization from pre-trained em-
bedding initialization set (i.e., GloVe embedding
initialization from {6B, 42B, 840B} or DistilBERT
embedder initialization from {DistilBERT, BERT-
Base, BERT-Large, GPT2}). As a result, users
can not only customize the vocabularies but also
choose different embedding initialization. The per-
formance results are shown in Figure 6. Compared
with Same init, FEDEVOCAB can even outper-
form the models trained with the same initial em-
beddings in terms of privacy protection (see Fig-
ure 3) while achieving comparable performance in
terms of utility.

We can observe that a slight performance degra-
dation of Different init is consistent for SST-2
and AG News, compared with Same init. But we
notice that Different init can outperform Same
init on the 20 News dataset. We speculate that the
reason is due to the characteristics of the dataset.
Compared with SST-2 and AG News, 20 News has
fewer data per user and more category labels. As a
result, 20New is more challenging in the federated
learning setting. Different init can help users

Orig: SPACE.com - UPDATE: Story first posted 6:49 a.m.
ET, 11 / 16 / 2004

FedAvg: space. com - update : story first posted 6 : 49 a .
m . et , 11 / 16 / 2004
FedRecon: space. com - update : story first posted martial
: paper a . m . et , front / faster / hop .
FEDEVOCAB: directlyuts broader organise gh sqlel sort fal
kyle minority wind attend easy presenting lo presenting es-
ports blogging official beganvery death experimental.

Table 7: Example of data reconstruction attack for Dis-
tilBERT. "Orig" denotes the original input sentence and
the italicized token denotes less privacy-sensitive text. In
our experiment, we set digital token as privacy-sensitive
token and tokens indicate no recovery by eavesdropper.

Orig: the st. louis cardinals and pitcher matt morris agree
to one-year, $ 2.5-million contract.

FedAvg: the st. louis cardinals and pitcher matt morris ag-
ree to one - year , $ 2 . 5 - million contract .
FedRecon: the st. louis cardinals pitcher matt morris agr-
ee to one - year , $ lennon . upon contract .
FEDEVOCAB: pops application fusion 20-4420-4429 slice
baby room countries a 82785 less for 4

Table 8: Example of data reconstruction attack for BiL-
STM. "Orig" denotes the original input sentence and the
italicized token denotes less privacy-sensitive text.

more personalize their local models and perform
better in more challenging settings.

B.3 Case Study
Table 7 and Table 8 show examples of the data
reconstruction attack from AG News dataset. We
perform the DLG described in A.3 and set batch
size as 1. Compared with baselines, FEDEVOCAB

can provide the firmly privacy-preserving ability
for the user-device text and privacy-sensitive to-
kens. FedAvg divulges user privacy tokens and al-
most all user text data since it discloses the shared
model’s details and its gradients in the communi-
cation process. Although FedRecon can protect
private tokens, other input tokens can be recon-
structed, which may increase the risk of legal and
ethical issues in the real world.


