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Abstract
Lexicon-free speech recognition naturally deals with the prob-
lem of out-of-vocabulary (OOV) words. In this paper, we show
that character-based language models (LM) can perform as well
as word-based LMs for speech recognition, in word error rates
(WER), even without restricting the decoding to a lexicon. We
study character-based LMs and show that convolutional LMs
can effectively leverage large (character) contexts, which is
key for good speech recognition performance downstream. We
specifically show that the lexicon-free decoding performance
(WER) on utterances with OOV words using character-based
LMs is better than lexicon-based decoding, with character or
word-based LMs.
Index Terms: speech recognition, beam-search decoder, out-
of-vocabulary words, lexicon-free

1. Introduction
Character-based models permeated text classification [1], lan-
guage modeling [2, 3, 4], machine translation [5, 6, 7, 8, 9, 10],
and automatic speech recognition (ASR) [11, 12, 13]. How-
ever, most competitive ASR systems, character based or not,
use a beam search decoder constrained on a word-level lan-
guage model and lexicon [14, 15, 16, 17, 18]. To the best of our
knowledge, the first ASR system to achieve competitive results
with a character-based model and without a lexicon (on Switch-
board and WSJ) was [19], that our lexicon-free character-based
ConvLM surpasses on WSJ (see Table 4).

The main advantage of a lexicon-free approach is that it al-
lows the decoder to handle out-of-vocabulary (OOV) words: the
decoder and the language model are responsible not only for
scoring words but usually also restrict the vocabulary. Draw-
backs sometimes include system complexity and most often
poorer performance than in the lexicon based case. The first
lexicon-free beam-search decoder aiming at dealing with OOV
was benchmarked on Switchboard [20], although with a signif-
icantly worse word error rate (WER) than lexicon-based sys-
tems. Other recent works in this direction on the Arabic and
Finnish languages include [21, 22].

Here, we study a simple end-to-end ASR system combining
a character level acoustic model with a character level language
model through beam search. We show that it can yield com-
petitive word error rates on the WSJ and Librispeech corporas,
even without a lexicon. Finally, our model shows significant
word error rates improvement on utterances that include out-of-
vocabulary words.

2. Setup
Acoustic model (AM) We consider in this paper 1D gated
convolutional neural networks [23, 15], trained to map speech
features (log-mel filterbanks) to their corresponding letter tran-
scription. The training criterion is the auto segmentation cri-
terion (ASG) [24]. The token set contains 31 graphemes: the

standard English alphabet, the apostrophe and period, two repe-
tition characters (e.g. the word ann is transcribed as an1), and
a silence token (|) used as word boundary.

Language model (LM) Our language models are character-
based. We evaluated n-gram language models, as well as gated
convolutional language models (ConvLMs) [23], and show that
with enough context these language models can match (in per-
plexity) their word-based counterparts. The LM training data
was pre-processed to be consistent with the AM training data:
the silence character (|) defines word boundaries, and repetition
symbols are used when letter repetitions occur.

Beam-search decoder We extended the beam-search de-
coder from [15] to support character-level language models.
Given a word transcription y, we denote AM(y) the correspond-
ing acoustic score and PLM(y) the corresponding LM likeli-
hood. The beam-search decoder generates transcriptions by
finding the argmax of the following score [24]:

AM(y) + α logPLM(y) + β|y|+ γ

T∑
i=1

[πi = ‘|‘], (1)

where π = π1, ..., πT is the sequence of letters corresponding
to the transcription y. The hyper-parameters α, β and γ weight
the language model, word penalty and silence penalty, respec-
tively. The decoder has two additional parameters: (i) the beam
size and (ii) a beam threshold, controlling which hypothesis can
make it to the beam.

Experiments We experiment with the Wall Street Journal
(WSJ) dataset [25] (about 81 hours of transcribed audio data)
and the Librispeech dataset [26] (1000 hours with clean and
noisy speech).

3. Language Model Experiments
We consider word-level n-gram and ConvLM-based language
models as baseline, and compare them in word perplexity with
their character-level counterpart.

Data preparation Language models for both WSJ and Lib-
rispeech are trained with the corresponding language model
data available for these datasets. For word-level model train-
ing, we keep all words (162K) for WSJ and use only the most
frequent 200K (out of 900K) words for Librispeech (words ap-
pearing less than 10 times are dropped). Words outside this
scope are replaced by unknown.

n-gram LMs All models were trained with KenLM [27]. For
both Librispeech and WSJ, we trained 4-gram word-level lan-
guage models as a baseline. For character-level language mod-



Table 1: Word perplexity on validation data of WSJ corpus. For
character-level LMs, lower and upper perplexity bounds are
shown. For models marked with star (*) pruning is applied dur-
ing training. The receptive field of all those language models is
in characters.

Language Model Size Rcp. field (char.) nov93dev

word 4-gram 878 M 32 156
char 5-gram 3.3 M 5 (927, 1285)
char 10-gram 447 M 10 (221, 243)
char 15-gram* 546 M 15 (186, 205)
char 15-gram 3.5 G 15 (186, 203)
char 20-gram* 836 M 20 (178, 196)
char 20-gram 9.7 G 20 (180, 196)

word GCNN-14B 1.1 G 450 80
char GCNN-14B 936 M 57 (76, 95)
char GCNN-20B 1.3 G 81 (74, 90)

Table 2: Word perplexity on validation sets of Librispeech. For
character-level LMs lower and upper bounds are presented. For
models marked with star (*) pruning is applied during training.
The average receptive fields are 31 characters and 439 char-
acters for the word 4-gram and word GCNN-14B LMs, respec-
tively.

Language Model Size dev-clean dev-other

word 4-gram* 13 G 148 137
char 5-gram 7.7 M (748, 1000) (649, 869)
char 10-gram 2.5 G (210, 230) (191, 210)
char 15-gram* 6.5 G (165, 180) (151, 165)
char 17-gram* 9.5 G (163, 178) (148, 162)
char 20-gram* 13 G (162, 177) (147, 161)

word GCNN-14B* 1.8 G 57 58
char GCNN-14B 936 M (76, 88) (73, 84)
char GCNN-20B 1.3 G (66, 76) (64, 75)

els, we study how the context width impacts perplexity, train-
ing n-grams ranging from 5 to 20. For large values of n, we
pruned the models by thresholding rarely-occurring n-grams:
6,7,8-grams appearing once, 9-grams appearing once or twice,
and all n-grams for n ≥ 10 appearing≤ 3 times were dropped.

ConvLMs As a baseline for ConvLMs, we use the ‘GCNN-
14B‘ word-level LM architecture from [23], which achieved
competitive results on several language model benchmarks.
This network contains 14 convolutional-residual blocks with a
growing number of channels and gated linear units as activation
functions, resulting in 318M parameters and an effective recep-
tive field of 57 tokens. An adaptive softmax [28] over words
follows the convolutional layers.

For character-level LMs, we consider both the ‘GCNN-
14B‘ architecture and a deeper variant (20 convolutional layers)
dubbed ‘GCNN-20B‘, with a larger receptive field of 81 tokens.
For both configurations a softmax (over letters) follows the last
convolutional layer. The resulting number of parameters was
163M for ‘GCNN-14B‘ and 224M for ‘GCNN-20B‘. Dropout
is used at each convolutional and linear layer: with probabilities
0.2 for WSJ and 0.1 for Librispeech.

ConvLM were trained with the fairseq toolkit1 [29], using
Nesterov accelerated gradient descent [30] with fixed learning
rate. Gradient clipping and weight normalization are used fol-
lowing [23].

Word-level perplexity for character-level LMs To compare
word and character-level LMs, we estimate a word-level per-
plexity for character-level LMs. The word probability can be
estimated with:

P (word|C) = P (l1|C)
n∏

i=2

P (li|C l1 . . . li−1), (2)

where l1, ..., ln are letters in a word and the last letter ln is a si-
lence symbol ‘|‘ with which the word finishes, C— the previous
context. However, this approach does not take into account that
word-level LMs are constrained to a fixed-size lexicon, while
character-based LMs have virtually an infinite vocabulary. We
thus re-normalize (2), taking into account only words from the
word-level LM vocabulary V:

PV(word|C) = P (word|C)∑
wordi∈V P (wordi|C)

. (3)

For large vocabulary V the denominator in (3) is computation-
ally expensive. The probability (2) can be used as an upper
bound of (3) (see, for example, [31]) while the lower bound can
be obtained by taking in the denominator of (3) the sum over
most probable (by word-level LM) words which cover 95% of
word-level LM distribution.

We then exclude from the perplexity computation words
which are not presented in the word-level LM vocabulary V (n-
gram and ConvLM models have the same V).2

Results The comparison of different language models is pre-
sented in Tables 1 and 2 for WSJ and Librispeech, respec-
tively. It can be seen that (as expected) increasing the context
decreases perplexity for both n-gram models and ConvLMs.
With n-grams, pruning is critical to avoid overfitting. On both
benchmarks character-level language models already have sim-
ilar performance for n-grams with n ≥ 15, and are clearly out-
performed by ConvLMs. With enough context, character-level
LMs appear to be in the same ballpark as word-level LMs.

4. ASR Experiments
In this section, we decode the output of a single acoustic model
trained on WSJ or Librispeech, through a beam-search proce-
dure constrained by the language models trained in Section 3.
Both acoustic model training and decoding were performed
with the wav2letter++ open source library3 [32]. The decoder
was adapted to support character-level LMs, as well as lexicon-
free decoding, alleviating the need for a word lexicon while de-
coding.

Data preparation For WSJ, we consider the standard subsets
si284, nov93dev and nov92 for training, validation and test, re-
spectively. For Librispeech, all the available training data was
used for training. Validation and test were achieved accord-

1https://github.com/facebookresearch/fairseq
2Only about 20 word occurrences for nov93dev WSJ and around 200

(300) for clean (other) Librispeech.
3https://github.com/facebookresearch/

wav2letter



Table 3: Word and character error rates (%) on Librispeech data.

Language Model Lexicon dev-clean dev-other test-clean test-other
WER CER WER CER WER CER WER CER

CAPIO (Single)4 yes 3.0 8.3 3.6 8.6
CAPIO (Ensemble) [33] yes 2.7 7.6 3.2 7.6
DeepSpeech25 yes 5.8 12.7
Sequence-to-sequence [17] yes 3.5 11.5 3.8 12.8
Learnable front-end [18] yes 3.2 10.1 3.4 11.2

word 4-gram* yes 4.6 1.8 13.3 6.8 5.0 1.8 14.4 7.2
char 15-gram* yes 4.8 1.9 14.1 7.1 5.2 1.9 14.9 7.4
char 20-gram* yes 4.8 1.9 13.9 7.0 5.1 1.9 14.8 7.3
char 15-gram* no 4.9 1.9 14.1 7.1 5.1 1.9 14.9 7.4
char 20-gram* no 4.8 1.9 13.9 6.9 4.9 1.8 14.7 7.2

word GCNN-14B* yes 3.1 1.3 10.3 5.4 3.4 1.3 11.1 5.7
char GCNN-20B yes 3.4 1.4 10.7 5.7 ? ? ? ?
char GCNN-20B no 3.4 1.4 10.8 5.7 3.5 1.3 11.7 6.1

ing to the available two configurations (clean for clean speech
and other for ”noisy” speech). All hyper-parameter tuning was
performed on validation sets, and only final performance was
evaluated on the test sets. We kept the original 16kHz sampling
rate and computed log-mel filterbanks with 40 (for Librispeech)
or 80 (for WSJ) coefficients for a 25ms sliding window, strided
by 10ms. All features are normalized to have zero mean and
unit variance per input sequence before feeding into the neu-
ral network. No data augmentation or speaker adaptation was
performed.

Acoustic model training Models are trained with stochastic
gradient descent (SGD), gradient clipping [34] and weight nor-
malization [35]. We followed [15] for the architecture choices,
picking the ”high dropout” model with 19 convolutional lay-
ers for Librispeech, and the lighter version with 17 layers for
WSJ. Batch size was set to 4 and 16, for Librispeech, and WSJ
respectively.

Tuning the beam-search decoder Hyper-parameters of the
decoder were selected via a random search. A large fixed
beam size and beam threshold were set before running a ran-
dom search. The language model weight α was randomly sam-
pled from the interval (0, 5), the word β and silence γ penal-
ties were sampled from the interval (−5, 5) for both language
model types. For each configuration and dataset up to 100 at-
tempts of random search were run. Hyper-parameters that lead
to the best WER were chosen for the final evaluation on the test
sets.

Results Models are evaluated in Word Error Rate (WER) and
Character Error Rate (CER), as reported in Table 4 for WSJ and
in Table 3 for Librispeech. The ASR system based on either
n-gram or ConvLM character-level language model achieves
performance similar to its word-level language model configu-
ration both on WSJ and Librispeech. Furthermore, the lexicon-
free ASR systems, where the beam-search is not conditioned by
a word-level lexicon vocabulary, are very close to their lexicon-
based counterparts for both types of language models, n-gram

4Speaker adaptation; pronunciation lexicon [33]
512k hours AM train set and common crawl LM [14]

and ConvLM. On the WSJ test set (see Table 4), decoding with
the character-level ConvLM (even in a lexicon-free setup) leads
to better performance than with word-level and achieves state-
of-the-art results.

Table 4: Word and character error rates (%) on WSJ data.

Language Model Lexicon nov93dev nov92
WER CER WER CER

EE-LF-MMI (char LM)6 no 5.4
EE-LF-MMI (word LM)6 yes 4.1
CNN-BLSTM-HMM7 yes 6.6 3.5
DeepSpeech25 yes 5.0 3.6
Learnable front-end [18] yes 6.8 3.5

word 4-gram yes 8.5 3.4 5.5 2.2
char 15-gram* yes 9.4 3.7 6.2 2.3
char 20-gram* yes 9.3 3.6 5.9 2.2
char 15-gram* no 9.5 3.8 6.2 2.3
char 20-gram* no 9.4 3.7 6.1 2.3

word GCNN-14B yes 6.5 2.7 4.3 1.8
char GCNN-20B yes 6.4 2.8 3.6 1.5
char GCNN-20B no 6.4 2.7 3.6 1.5

Beam size analysis For each utterance we can define an ef-
fective beam size as the maximum position index in the sorted
beam over all frames for the final transcription. In other words,
selecting a beam size larger than the effective beam size should
not affect decoding. In Figure 1, we show that the effective
beam size for the character-level models is significantly smaller
than one for the word-level models. When decoding with word-
level LMs, a large (2000-8000) beam size is often needed, while
for the character-level LMs, a beam size of 2000 is always
enough. This property looks promising from the computational
point of view, when switching to character-level language mod-
els.

6Data augmentation; n-gram LM [19]
7Speaker adaptation; 3k acoustic states [36]



Table 5: Word and character error rates (%) for Librispeech: ‘in vocabulary‘ (IV) utterances and ‘out-of-vocabulary‘ (OOV) utterances.
Proportions for test-clean data: IV — 93.3% utterances, OOV — 6.7% utterances (176 among 2620). Proportions for test-other
data: IV — 91.6% utterances, OOV — 8.4% utterances (247 among 2939).

Language Model Lexicon test-clean IV test-other IV test-clean OOV test-other OOV
WER CER WER CER WER CER WER CER

word 4-gram* yes 4.44 1.65 13.46 6.76 11.16 3.84 22.16 10.84
char 15-gram* yes 4.61 1.72 14.01 7.01 11.43 3.83 22.76 10.92
char 20-gram* yes 4.49 1.68 13.87 6.88 11.78 3.74 22.40 10.83
char 15-gram* no 4.70 1.74 14.09 7.01 9.37 3.24 21.38 10.36
char 20-gram* no 4.50 1.68 13.93 6.84 9.41 3.18 21.69 10.27

word ConvLM* yes 2.74 1.05 10.09 5.21 9.94 3.52 19.39 9.41
char ConvLM-20B yes ? ? ? ? 10.38 3.41 18.84 9.56
char ConvLM-20B no 3.14 1.21 10.96 5.69 7.74 2.66 18.34 9.38

Table 6: Librispeech transcription examples with n-gram LMs: T — target, W — word-level LM decoder with lexicon, C — character-
level LM decoder with lexicon, F — lexicon-free decoder with character-level LM. Underlined words are not presented in the lexicon.

T fauchelevent limped along behind the hearse in a very contented frame of mind
W lochleven limped along behind the hearse in a very contented frame of mind
C lochleven limped along behind the hearse in a very contented frame of mind
F fauchelevent limped along behind the hearse in a very contented frame of mind

T ... he did not want to join his own friends that is sergey ivanovitch stepan arkadyevitch sviazhsky and ...
W ... he did not come to join his own friends that a soldier ivanovitch step on markovitch the sky and ...
C ... he did not own to join his own friends that a sojer ivanovitch step on radovitch totski and ...
F ... he did not own to join his own friends that a sojer ivanovitch stepan arkadyevitch tievski and ...

T menahem king of israel had died and was succeeded by his son pekahiah
W many a king of israel had died and was succeeded by his son pekah
C many king of israel had died and was succeeded by his son pekah
F many a king of israel had died and was succeeded by his son pekaiah
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Figure 1: Distribution of the effective beam size for the beam-
search decoder with different LMs on ‘other‘ part of Lib-
rispeech validation set. Beam size 8000 is used for all cases.

Lexicon-free decoding analysis We investigated how out-of-
vocabulary (OOV) words are transcribed by our lexicon-free
decoder, as those words cannot be output by a standard beam-
search decoder conditioned with a word-level lexicon. The
OOV words we consider are not present in the lexicon vo-
cabulary, meaning these words are beyond the top-k most fre-
quent words chosen in our lexicon, or did not even appear in
the acoustic and language models training/validation sets. In
Table 5, we evaluated WER and CER on the isolated “out-of-
vocabulary” utterances, which contain at least one OOV word.
For comparison, we also report performance on “in vocabulary”

utterances (IV), which contain only words present in the lexi-
con. The lexicon-free decoder performs significantly better on
the utterances that include OOV words, while holding competi-
tive performance on the IV utterances. The lexicon-free decoder
with an n-gram language model recognizes up to 25% (28.5%)
and 13.5% (13.5%) OOV words (occurrences) for the clean and
other test parts of Librispeech, respectively. With a ConvLM
language model, this performance raises up to 31% (33%) and
10% (8%) OOV words (occurrences) for the clean and other test
parts of Librispeech, respectively. A few examples of decoded
transcriptions are reported in Table 6.

5. Conclusion
We built an ASR system with a beam-search decoder based
on a character-level language model that achieves performance
close to the state-of-the-art among end-to-end models. We also
showed that transcribing with a lexicon-free beam-search de-
coder achieves a performance similar to transcribing with a
beam-search decoder conditioned by a word-level lexicon, it-
self already close to the state-of-the-art. Moreover, lexicon-
free ASR naturally handles the out-of-vocabulary words: it has
significantly better performance on the utterances with out-of-
vocabulary words than when the system is conditioned by a
word-level lexicon.
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[28] E. Grave, A. Joulin, M. Cissé, H. Jégou et al., “Efficient softmax
approximation for gpus,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017,
pp. 1302–1310.

[29] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional Sequence to Sequence Learning,” ArXiv e-prints,
May 2017.

[30] Y. Nesterov, “A method for unconstrained convex minimization
problem with the rate of convergence o (1/kˆ 2),” in Doklady AN
USSR, vol. 269, 1983, pp. 543–547.

[31] B. Krause, L. Lu, I. Murray, and S. Renals, “Multiplicative lstm
for sequence modelling,” arXiv preprint arXiv:1609.07959, 2016.

[32] Q. X. J. C. J. K. G. S. V. L. R. C. Vineel Pratap, Awni Hannun,
“wav2letter++: The fastest open-source speech recognition
system,” CoRR, vol. abs/1812.07625, 2018. [Online]. Available:
https://arxiv.org/abs/1812.07625

[33] K. J. Han, A. Chandrashekaran, J. Kim, and I. Lane, “The capio
2017 conversational speech recognition system,” arXiv preprint
arXiv:1801.00059, 2017.

[34] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of train-
ing recurrent neural networks,” in International Conference on
Machine Learning, 2013, pp. 1310–1318.

[35] T. Salimans and D. P. Kingma, “Weight normalization: A sim-
ple reparameterization to accelerate training of deep neural net-
works,” in Advances in Neural Information Processing Systems,
2016, pp. 901–909.

[36] W. Chan and I. Lane, “Deep recurrent neural networks for acous-
tic modelling,” arXiv preprint arXiv:1504.01482, 2015.


