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Abstract

Adaptive curricula in reinforcement learning (RL) have proven effective for
producing policies robust to discrepancies between the train and test environment.
Recently, the Unsupervised Environment Design (UED) framework generalized RL
curricula to generating sequences of entire environments, leading to new methods
with robust minimax regret properties. Problematically, in partially-observable or
stochastic settings, optimal policies may depend on the ground-truth distribution
over aleatoric parameters of the environment in the intended deployment setting,
while curriculum learning necessarily shifts the training distribution. We formalize
this phenomenon as curriculum-induced covariate shift (CICS), and describe how
its occurrence in aleatoric parameters can lead to suboptimal policies. Directly
sampling these parameters from the ground-truth distribution avoids the issue, but
thwarts curriculum learning. We propose SAMPLR, a minimax regret UED method
that optimizes the ground-truth utility function, even when the underlying training
data is biased due to CICS. We prove, and validate on challenging domains, that our
approach preserves optimality under the ground-truth distribution, while promoting
robustness across the full range of environment settings.

1 Introduction

Adaptive curricula, which dynamically adjust the distribution of training environments to best
facilitate learning, have played a key role in many recent achievements in deep reinforcement learning
(RL). Applications have spanned both single-agent RL [32, 50, 55, 22], where adaptation occurs over
environment variations, and multi-agent RL, where adaptation can additionally occur over co-players
[40, 49, 41]. These methods demonstrably improve the sample efficiency and robustness of the final
policy [25, 8, 21, 20], e.g. by presenting the agent with challenges at the threshold of its abilities.

In this paper we introduce and address a fundamental problem relevant to adaptive curriculum learning
methods for RL, which we call curriculum-induced covariate shift (CICS). Analogous to the covariate
shift that occurs in supervised learning (SL) [18], CICS refers to a mismatch between the input
distribution at training and test time. In the case of RL, we will show this becomes problematic when
the shift occurs over the aleatoric parameters of the environment—those aspects of the environment
holding irreducible uncertainty even in the limit of infinite experiential data [9]. While in some cases,
CICS may impact model performance in SL, adaptive curricula for SL have generally not been found
to be as impactful as in RL [52]. Therefore, we focus on addressing CICS specifically as it arises in
the RL setting, leaving investigation of its potential impact in SL to future work.
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Figure 1: Adaptive curricula can result in covariate shifts in environment parameters with respect to the
ground-truth distribution P (Θ) (top path), e.g. whether a road is icy or not, which can cause the policy to be
optimized for a utility function U differing from the ground-truth utility function U based on P (See Equation 1).
Here, the policies π and π drive assuming ice and no ice respectively. SAMPLR (bottom path) matches the
distribution of training transitions to that under P (Θ|τ) (pink triangles), thereby ensuring the optimal policy
trained under a biased curriculum retains optimality for the ground-truth distribution P .

To establish precise language around adaptive curricula, we cast our discussion under the lens of
Unsupervised Environment Design [UED, 8]. UED provides a formal problem description for which
an optimal curriculum is the solution, by defining the Underspecified POMDP (UPOMDP; see
Section 2), which expands the classic POMDP with a set of free parameters Θ, representing the
aspects of the environment that may vary. UED then seeks to adapt distributions over Θ to maximize
some objective, potentially tied to the agent’s performance. UED allows us to view adaptive curricula
as emerging via a multi-player game between a teacher that proposes environments with parameters
θ ∼ P (Θ) and a student that learns to solve them. In addition to notational clarity, this formalism
enables using game theoretic constructs, such as Nash equilibria [NE, 26], to analyze curricula.

This game-theoretic view has led to the development of curriculum methods with principled robustness
guarantees, such as PAIRED [8] and Robust Prioritized Level Replay [PLR⊥, 20], which aim to
maximize a student’s regret and lead to minimax regret [37] policies at NE. Thus, at NE, the student
can solve all solvable environments within the training domain. However, in their current form the
UED robustness guarantees are misleading: if the UED curriculum deviates from a ground-truth
distribution P (Θ) of interest, i.e. the distribution at deployment, with respect to aleatoric parameters
Θ′ ⊂ Θ, the resulting policies may be suboptimal under the ground-truth distribution P .

For a concrete example of how CICS can be problematic, consider the case of training a self-driving
car to navigate potentially icy roads, when icy conditions rarely occur under P . When present, the
ice is typically hard to spot in advance; thus, the aleatoric parameters Θ′ correspond to whether each
section of the road is icy. A priori, a curriculum should selectively sample more challenging icy
settings to facilitate the agent’s mastery over such conditions. However, this approach risks producing
an overly-pessimistic agent (i.e. one that assumes that ice is common), driving slowly even in fair
weather. Such a policy leads to inadequate performance on P , which features ice only rarely.

We can preserve optimality on P by grounding the policy—that is, ensuring that the agent acts
optimally with respect to the ground-truth utility function for any action-observation history τ and
the implied ground-truth posterior over Θ:

U(π|τ) = Eθ∼P (θ|τ)
[
U(π|τ, θ)

]
, (1)

where the ground-truth utility conditioned on X , U(π|X), is defined to be Eτ,θ∼P (θ|X) [
∑∞

t=0 γ
trt],

for rewards rt and a discount γ.

We can ground the policy by grounding the training distribution, which means constraining the
training distribution of aleatoric parameters P (Θ′) to match P (Θ′). This is trivially accomplished by
directly sampling θ′ ∼ P (Θ′), which we call naive grounding. Unfortunately, this approach makes
many curricula infeasible by removing the ability to selectively sample environment settings over
aleatoric parameters. Applying this strategy to the self-driving agent may result in a policy that is
optimal in expectation under P where there is rarely ice, but nevertheless fails to drive safely on ice.
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We wish to maintain the ability to bias a training distribution, since it is required for curriculum
learning, while ensuring the resulting decisions remain optimal in expectation under P . This goal is
captured by the following objective:

UD(π) = Eτ∼D
[
U(π|τ)

]
, (2)

where D is the training distribution of τ . Under naive grounding, D is equal to P (τ) and Equation
2 reduces to U(π). To overcome the limitations of naive grounding, we develop an approach that
allows D to deviate from P (τ), e.g. by prioritizing levels most useful for learning, but still grounds
the policy by evaluating decisions following potentially biased training trajectories τ according to
U(π|τ). Figure 1 summarizes this approach, and contrasts it with an ungrounded adaptive curriculum.

In summary this work presents the following contributions: i) We first formalize the problem of CICS
in RL in Section 3. ii) Then, we present SAMPLR, which extends PLR⊥, a state-of-the-art UED
method, to preserve optimality on P while training under a usefully biased training distribution in
Section 4. iii) We prove in Section 5 that SAMPLR promotes Bayes-optimal policies that are robust
over all environment settings θ ∼ P (Θ). iv) Our experiments validate these conclusions in two
challenging domains, where SAMPLR learns highly robust policies, while PLR⊥ fails due to CICS.

2 Background

2.1 Unsupervised Environment Design

Unsupervised Environment Design [UED, 8] is the problem of automatically generating an adaptive
distribution of environments which will lead to policies that successfully transfer within a target
domain. The domain of possible environment settings is represented by an Underspecified POMDP
(UPOMDP), which models each environment instantiation, or level, as a specific setting of the free
parameters that control how the environment varies across instances. Examples of free parameters are
the position of walls in a maze or friction coefficients in a physics-based task. Formally a UPOMDP
is defined as a tuple M = ⟨A,O,Θ,S, T , I,R, γ⟩, where A is the action space, O is the observation
space, Θ is the set of free parameters, S is the state space, T : S ×A×Θ → ∆(S) is the transition
function, I : S → O is the observation function, R : S → R is the reward function, and γ is the
discount factor. UED typically approaches the curriculum design problem as training a teacher agent
that co-evolves an adversarial curriculum for a student agent, e.g. by maximizing the student’s regret.

2.2 Prioritized Level Replay

We focus on a recent UED algorithm called Robust Prioritized Level Replay [PLR⊥, 21], which
performs environment design via random search. PLR⊥ maintains a buffer of the most useful levels
for training, according to an estimate of learning potential—typically based on regret, approximated
by a function of the temporal-difference (TD) errors incurred on each level. For each episode, with
probability p, PLR⊥ actively samples the next training level from this buffer, and otherwise evaluates
regret on a new level θ ∼ P (Θ) without training. This sampling mechanism provably leads to a
minimax regret policy for the student at NE, and has been shown to improve sample-efficiency and
generalization. The resultant regret-maximizing curricula naturally avoid unsolvable levels, which
have no regret. We provide implementation details for PLR⊥ in Appendix A.

3 Curriculum-Induced Covariate Shift

Since UED algorithms formulate curriculum learning as a multi-agent game between a teacher and a
student agent, we can formalize when CICS becomes problematic by considering the equilibrium
point of this game: Let Θ be the environment parameters controlled by UED, P (Θ), their ground-
truth distribution, and P (Θ), their curriculum distribution at equilibrium. We use τt to refer to the
joint action-observation history (AOH) of the student until time t (and simply τ when clear from
context). Letting V (π|τt) denote the value function under the curriculum distribution P (Θ), we
characterize an instance of CICS over Θ as problematic if the optimal policy under P (Θ) differs
from that under the ground-truth P (Θ) for some τt, so that

argmax
π

V (π|τt) ̸= argmax
π

V (π|τt).
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The value function V (π|τt) with respect to P (Θ) can be expressed as a marginalization over θ:

V (π|τt) =
∑
θ

P (θ|τt)Ṽ (π|τt, θ) ∝
∑
θ

P (θ)P̃ (τt|θ)Ṽ (π|τt, θ). (3)

Here, the notation P (θ) means P (Θ = θ), and the tilde on the P̃ and Ṽ terms indicates independence
from any distribution over Θ, as they both condition on θ. Importantly, the value function under
the curriculum distribution V (π|τt) corresponds to Equation 3 with P replaced by P . We see that
V (π|τt) is unchanged for a given τt when P (θ) is replaced with P (θ) if 1) P (θ∗|τt) = 1 for some
θ∗, and 2) P shares support with P . Then P̃ (τt|θ) = 1 iff θ = θ∗ and zero elsewhere. In this case,
the sums reduce to V (π|τt, θ∗), regardless of changing the ground-truth distribution P to P . In other
words, when Θ is fully determined given the current history τ , covariate shifts over Θ with respect to
P (Θ) have no impact on policy evaluation and thus the value function for the optimal policy. If the
first condition does not hold, the uncertainty over the value of some subset Θ′ ⊂ Θ is irreducible
given τ , making Θ′ aleatoric parameters for the history τ . Thus, assuming the curriculum shares
support with the ground-truth distribution, covariate shifts only alter the optimal policy at τ when
they occur over aleatoric parameters given τ . Such parameters can arise when the environment is
inherently stochastic or when the cost of reducing uncertainty is high.

Crucially, our analysis assumes P and P share support over Θ. When this assumption is broken,
the policy trained under the curriculum can be suboptimal for environment settings θ, for which
P (θ) = 0 and P (θ) > 0. In this paper, we specifically assume that P and P share support and focus
on addressing suboptimality under the ground-truth P due to CICS over the aleatoric parameters Θ′.

This discussion thus makes clear that problematic CICS can be resolved by grounding the training
distribution, i.e. enforcing the constraint P (Θ′|τ) = P (Θ′|τ) for the aleatoric parameters of the
environment. This constraint results in grounding the policy, i.e. ensuring it is optimal with respect to
the ground-truth utility function based on P (Equation 1). As discussed, naive grounding satisfies
this constraint by directly sampling θ′ ∼ P (Θ′), at the cost of curricula over Θ′. This work develops
an alternative for satisfying this constraint while admitting curricula over Θ′.

4 Sample-Matched PLR (SAMPLR)

Algorithm 1: Sample-Matched PLR (SAMPLR)
Randomly initialize policy π(ϕ), an empty level

buffer Λ of size K, and belief model B(st|τ).
while not converged do

Sample replay-decision Bernoulli, d ∼ PD(d)
if d = 0 or |Λ| = 0 then

Sample level θ from level generator
Collect π’s trajectory τ on θ, with a

stop-gradient ϕ⊥
else

Use PLR to sample a replay level from the
level store, θ ∼ Λ

Collect fictitious trajectory τ ′ on θ, based on
s′t ∼ B

Update π with rewards R(τ ′)
end
Compute PLR score, S = score(τ ′, π)
Update Λ with θ using score S

end

We now describe a general strategy
for addressing CICS, and apply it to
PLR⊥, resulting in Sample-Matched PLR
(SAMPLR). This new UED method features
the robustness properties of PLR⊥ while
mitigating the potentially harmful effects of
CICS over the aleatoric parameters Θ′.

As discussed in Section 3, CICS become
problematic when the covariate shift occurs
over some aleatoric subset Θ′ of the
environment parameters Θ, such that the
expectation over Θ′ influences the optimal
policy. Adaptive curriculum methods like
PLR⊥ prioritize sampling of environment
settings where the agent experiences the most
learning. While such a curriculum lets the
agent focus on correcting its largest errors, the
curriculum typically changes the distribution
over aleatoric parameters Θ′, inducing bias in
the resulting decisions. Ideally, we can eliminate this bias, ensuring the resulting policy makes optimal
decisions with respect to the ground-truth utility function, conditioned on the current trajectory:

U(π|τ) = Eθ′∼P (θ′|τ)
[
U(π|τ, θ′)

]
. (4)

A naive solution for grounding is to simply exclude Θ′ from the set of environment parameters
under curriculum control. That is, for each environment setting proposed by the curriculum, we
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resample θ′ ∼ P . We refer to this approach as naive grounding. Naive grounding forces the expected
reward and next state under each transition at the current AOH τ to match that under P . Thus, optimal
policies under naive grounding must be optimal with respect to the ground-truth distribution over θ′.

While technically simple, naive grounding suffers from lack of control over Θ′. This limitation is of
no concern when the value of Θ′ does not alter the distribution of τ until the terminal transition, e.g.
when Θ′ is the correct choice in a binary choice task, thereby only influencing the final, sparse reward
when the right choice is made. In fact, our initial experiment in Section 6 shows naive grounding
performs well in such cases. However, when the value of Θ′ changes the distribution of τ before
the terminal transition, the agent may benefit from a curriculum that actively samples levels which
promote learning robust behaviors under unlikely events. Enabling the full benefits of the curriculum
in such cases requires the curriculum to selectively sample values of Θ′. Instead of naive grounding,
we aim to ground only the policy updates, allowing the curriculum to bias the training distribution.
This can be accomplished by optimizing the following objective:

UD(π) = Eτ∼D
[
U(π|τ)

]
. (5)

To achieve this, we replace the reward rt and next state st+1 with counterfactual values that would be
experienced if θ′ were consistent with τ and P , so that θ′ ∼ P (θ′|τ). This substitution occurs by
simulating a fictitious transition, where the fictitious state is sampled as s′t ∼ B(s′t|τ), the action as
at ∼ π(·|τ) (as per usual), the fictitious next state as s′t+1 = T (s′t, at), and the fictitious reward as
r′t = R(s′t+1). The belief model B(s′t|τ) is the ground-truth posterior of the current state given τ :

B(st|τ) =
∑
θ′

P (st|τ, θ′)P (θ′|τ). (6)

Fictitious transitions, summarized in Figure 2, ground the observed rewards and state transitions to P .
Should training on these transitions lead to an optimal policy over Θ, this policy will also be optimal
with respect to P . We prove this property in Section 5. Fictitious transitions thus provide the benefit
of naive grounding without giving up curriculum control over Θ′.

Figure 2: A standard RL
transition (top) and a fictitious
transition used by SAMPLR
(bottom). A is the advantage
function.

In general, we implement B as follows: Given P (Θ′) as a prior, we
model the posterior P (θ′|τ) with Bayesian inference. The posterior
could be learned via supervised learning with trajectories collected
from the environment for a representative selection of θ′. Further,
we may only have limited access to P (Θ) throughout training, for
example, if sampling P (Θ) is costly. In this case, we can learn an
estimate P̂ (Θ′) from samples we do collect from P (Θ), which can
occur online. We can then use P̂ (Θ′) to inform the belief model.

SAMPLR, summarized in Algorithm 1, incorporates this fictitious
transition into PLR⊥ by replacing the transitions experienced in
replay levels sampled by PLR⊥ with their fictitious counterparts,
as PLR⊥ only trains on these trajectories. PLR⊥ uses PPO with
the Generalized Advantage Estimator [GAE, 38] as the base RL
algorithm, where both advantage estimates and value losses can be
written in terms of one-step TD errors δt at time t. Training on
fictitious transitions then amounts to computing these TD errors
with fictitious states and rewards: δt = r′t + V (s′t) − V (s′t+1).
Importantly, because PLR⊥ provably leads to policies that minimize worst-case regret over all θ at
NE, SAMPLR enjoys the same property for θ ∼ P (Θ). A proof of this fact is provided in Section 5.

Applying SAMPLR requires two key assumptions: First, the simulator can be reset to a specific state,
which is often true, as RL largely occurs in resettable simulators or those that can be made to do so.
When a resettable simulator is not available, a possible solution is to learn a model of the environment
which we leave for future work. Second, we have knowledge of P (Θ′). Often, we know P a priori,
e.g. via empirical data or as part of the domain specification, as in games of chance.

5 The Grounded Optimality of SAMPLR

Training on fictitious transitions is a method for learning an optimal policy with respect to the ground-
truth utility function UD(π) over the distribution D of training trajectories τ , defined in Equation 5.
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When D corresponds to the distribution of trajectories on levels θ ∼ P (Θ), UD(π) reduces to the
ground-truth utility function, U(π). For any UED method, our approach ensures that, in equilibrium,
the resulting policy is Bayes-optimal with respect to P (Θ) for all trajectories in the support of D.
Remark 1. If π∗ is optimal with respect to the ground-truth utility function UD(π) then it is optimal
with respect to the ground-truth distribution P (Θ) of environment parameters on the support of D.

Proof. By definition we have π∗ ∈ argmax
π∈Π

{UD(π)} = argmax
π∈Π

{Eτ∼D
[
U(π|τ)

]
}. Since π can

condition on the initial trajectory τ , the action selected after each trajectory can be independently
optimized. Therefore, for all τ ∈ D, π∗ ∈ argmax

π∈Π
{U(π|τ)} implying that π∗ is the optimal policy

maximizing U(π|τ).

Thus, assuming the base RL algorithm finds Bayes-optimal policies, a UED method that optimizes
the ground-truth utility function, as done by SAMPLR, results in Bayes-optimal performance over
the ground-truth distribution. If the UED method maximizes worst-case regret, we can prove an even
stronger property we call robust ϵ-Bayes optimality.

Let Uθ(π) be the ground-truth utility function for π on the distribution Dπ
θ of initial trajectories

sampled from level θ, so that Uθ(π) = UDπ
θ
(π). Given a policy π maximizing Uθ(π), we say that π

is robustly ϵ-Bayes optimal iff for all θ in the domain of P (Θ) and all π′, we have

Uθ(π) ≥ Uθ(π
′)− ϵ.

Note how this property differs from being simply ϵ-Bayes optimal, which would only imply that

U(π) ≥ U(π′)− ϵ.

Robust ϵ-Bayes optimality requires π to be ϵ-optimal on all levels θ in the support of the ground-
truth distribution, even those rarely sampled under P (Θ). We will show that at ϵ-Nash equilibrium,
SAMPLR results in a robustly ϵ-Bayes optimal policy for the ground-truth utility function Uθ(π). In
contrast, training directly on levels θ ∼ P (Θ) results in a policy that is only ϵ-Bayes optimal.

Theorem 1. If π∗ is ϵ-Bayes optimal with respect to U D̂(π) for the distribution D̂ of trajectories
sampled under π over levels maximizing the worst-case regret of π, as occurs under SAMPLR, then
π∗ is robustly ϵ-Bayes optimal with respect to the ground-truth utility function, U(π).

Proof. Let π∗ be ϵ-optimal with respect to U D̂(π) where D̂ is the trajectory distribution under π on
levels maximizing the worst-case regret of π. Let π∗ be an optimal grounded policy. Then for any θ,

Uθ(π
∗)− Uθ(π

∗) ≤ U D̂(π
∗)− U D̂(π

∗) ≤ ϵ (7)

The first inequality follows from D̂ being trajectories from levels that maximize worst-case regret
with respect to π∗, and the second follows from π∗ being ϵ-optimal on U D̂(π). Rearranging terms
gives the desired condition.

6 Experiments

Our experiments first focus on a discrete, stochastic binary choice task, with which we validate our
theoretical conclusions by demonstrating that CICS can indeed lead to suboptimal policies. Moreover,
we show that naive grounding suffices for learning robustly optimal policies in this setting. However,
as we have argued, naive grounding gives up control of the aleatoric parameters Θ′ and thus lacks
the ability to actively sample scenarios helpful for learning robust behaviors—especially important
when such scenarios are infrequent under the ground-truth distribution P (Θ). SAMPLR induces
potentially biased curricula, but retains optimality under P (Θ) by matching transitions under P (Θ′)
with those under P (Θ′). We assess the effectiveness of this approach in our second experimental
domain, based on the introductory example of driving icy roads. In this continuous-control driving
domain, we seek to validate whether SAMPLR does in fact learn more robust policies that transfer to
tail cases under P (Θ′), while retaining high expected performance on the whole distribution P (Θ′).

All agents are trained using PPO [39] with the best hyperparameters found via grid search using a set
of validation levels. We provide extended descriptions of both environments alongside the full details
of our architecture and hyperparameter choices in Appendix C.
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Figure 3: Left: Example Stochastic Fruit Choice levels. The plots show mean and standard error (over 10 runs)
of episodic returns (left); room count of solved levels (middle), during training (dotted lines) and test on the
ground-truth distribution (solid lines), for q = 0.7; and the room count of levels presented at training (right).

6.1 Stochastic Fruit Choice

We aim to demonstrate the phenomenon of CICS in Stochastic Fruit Choice, a binary choice task,
where the aleatoric parameter determines the correct choice. This task requires the agent to traverse up
to eight rooms, and in the final room, decide to eat either the apple or banana. The correct choice θ′ is
fixed for each level, but hidden from the agent. Optimal decision-making depends on the ground-truth
distribution over the correct fruit, P (Θ′). This task benefits from a curriculum over the number of
rooms, but a curriculum that selectively samples over both room layout and correct fruit choice can
lead to suboptimal policies. Figure 3 shows example levels from this environment.

This domain presents a hard exploration challenge for RL agents, requiring robust navigation across
multiple rooms. Further, this environment is built on top of MiniHack [36], enabling integration of
select game dynamics from the NetHack Learning Environment [23], which the agent must master to
succeed: To go from one room to the next, the agent needs to learn to kick the locked door until it
opens. Upon reaching the final room, the agent must then apply the eat action on the correct fruit.

Let πA be the policy that always chooses the apple, and πB , the banana. If the probability that the
goal is the apple is P (A) = q, then the expected return is RAq under πA and RB(1− q) under πB .
The optimal policy is πA when q > RB/(RA + RB), and πB otherwise. Domain randomization
(DR), which directly samples each level θ ∼ P (θ), optimizes for the correct ground-truth P (Θ′), but
will predictably struggle to solve the exploration challenge. PLR⊥ may induce curricula easing the
exploration problem, but can be expected make the correct fruit choice oscillate throughout training
to maximize regret, leading to problematic CICS.

We set RA = 3, RB = 10, and q = 0.7, making πB optimal with an expected return of 3.0. We
compare the train and test performance of agents trained with DR, PLR⊥, and PLR⊥ with naive
grounding over 200M training steps in Figure 3. In this domain, SAMPLR reduces to naive grounding,
as θ′ only effects the reward of a terminal transition, making fictitious transitions equivalent to real
transitions for all intermediate time steps. We see that DR struggles to learn an effective policy,
plateauing at a mean return around 1.0, while PLR⊥ performs the worst. Figure 6 in Appendix B
shows that the PLR⊥ curriculum exhibits much higher variance in q, rapidly switching the optimal
choice of fruit to satisfy its regret-maximizing incentive, making learning more difficult. In contrast,
PLR⊥ with naive grounding constrains q = 0.7, while still exploiting a curriculum over an increasing
number of rooms, as visible in Figure 6. This grounded curriculum results in a policy that solves
more complex room layouts at test time. Figures 5 and 6 in Appendix B additionally show how the
SAMPLR agent’s choices converge to πB and how the size of SAMPLR’s improvement varies under
alternative choices of q in {0.5, 0.3}.

6.2 Zero-Shot Driving Formula 1 Tracks with Black Ice

We now turn to a domain where the aleatoric parameters influence the distribution of τt at each t,
thereby creating opportunities for a curriculum to actively sample specific θ′ to promote learning on
biased distributions of τt. We base this domain on the black ice driving scenario from the introduction
of this paper, by modifying the CarRacingBezier environment in [20]. In our version, each track tile
has black ice with probability q, in which case its friction coefficient is 0, making acceleration and
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Figure 4: Charts show mean and standard error (over 10 runs) of fraction of visited tiles with ice during training
(left) and zero-shot performance on the full Formula 1 benchmark as a function of ice rate (right). Top row
screenshots show the agent approaching black ice (q = 0.4) and an example training track (q = 0.6). Bottom
row shows a Formula 1 track (q = 0.2) at two zoom scales.

braking impossible. This task is especially difficult, since the agent cannot see black ice in its pixel
observations. Figure 4 shows example tracks with ice rendered for illustration purposes. The episodic
returns scale linearly with how much of the track is driven and how quickly this is accomplished.
As success requires learning to navigate the challenging dynamics over ice patches, a curriculum
targeting more difficult ice configurations should lead to policies more robust to black ice. Here, the
ground-truth distribution P (Θ′) models the realistic assumption that most days see little to no ice.
We therefore model the probability of ice per tile as q ∼ Beta(α, β), where α = 1, β = 15.

Table 1: Icy F1 returns, mean ± standard error over 10 runs.

Condition DR PLR Naive SAMPLR

Ground truth
q ∼ Beta(1, 15) 581± 23 543± 21 618± 6 616± 6

Zero-shot
q = 0.2 332± 63 323± 60 363± 15 393± 13
q = 0.4 94.7± 41 43± 38 75± 39 195± 11
q = 0.6 −76.3± 24 −115± 12 −79± 25 −1± 17
q = 0.8 −131.1± 11 −151± 6.0 −139± 9 −111± 7

We test the hypothesis that SAMPLR’s
regret-maximizing curriculum results in
policies that preserve optimal performance
on the ground-truth distribution P (Θ′),
while being more robust to tail cases
compared to DR and PLR⊥ with naive
grounding. We expect standard PLR⊥ to
underperform all methods due to CICS,
leading to policies that are either too
pessimistic or too optimistic with respect
to the amount of ice. These baselines provide the controls needed to distinguish performance changes
due to the two grounding approaches and those due to the underlying curriculum learning method.

We train agents with each method for 5M and test zero-shot generalization performance on the
Formula 1 (F1) tracks from the CarRacingF1 benchmark, extended to allow each track segment to
have black ice with probability q in {0.0, 0.2, 0.4, 0.6, 0.8}. These test tracks are significantly longer
and more complex than those seen at training, as well as having a higher rate of black ice.

To implement SAMPLR’s belief model, we use a second simulator as a perfect model of the
environment. At each time step, this second simulator, which we refer to as the fictitious simulator,
resets to the exact physics state of the primary simulator, and its icy tiles are resampled according to
the exact posterior over the aleatoric parameter q = θ′, such that θ′ ∼ P (θ′|τ), ensuring the future
uncertainty is consistent with the past. The agent decides on action at based on the current real
observation ot, and observes the fictitious return r′t and next state s′t+1 determined by the fictitious
simulator after applying at in state s′t ∼ P (s′t|τ, θ′). This dual simulator arrangement, fully detailed
in Appendix A.2, allows us to measure the impact of training on fictitious transitions independently
of the efficacy of a model-based RL approach. Further, as the training environment in RL is most
often simulation (e.g. in sim2real), this approach is widely applicable.

SAMPLR outperforms all baselines in zero-shot transfer to higher ice rates on the full F1 benchmark
and attains a statistically significant improvement at p < 0.001 when transferring to q = 0.4 and
q = 0.6, and p < 0.05 when q = 0.8. Importantly, SAMPLR outperforms PLR⊥ with naive
grounding, indicating that SAMPLR exploits specific settings of Θ′ to better robustify the agent
against rare icy conditions in the tail of P (Θ′). Indeed, Figure 4 shows that on average, SAMPLR
exposes the agent to more ice per track tile driven, while PLR⊥ underexposes the agent to ice
compared to DR and naive grounding, suggesting that under PLR⊥ agents attain higher regret on
ice-free tracks—a likely outcome as ice-free tracks are easier to drive and lead to returns, with
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which regret scales. Unfortunately, this results in PLR⊥ being the worst out of all methods on the
ground-truth distribution. SAMPLR and naive grounding avoid this issue by explicitly matching
transitions to those under P at τ . As reported in Table 1, SAMPLR matches the baselines in mean
performance across all F1 tracks under P (Θ′), indicating that despite actively sampling challenging
θ′, it preserves performance under P (Θ′), i.e. the agent does not become overly cautious.

7 Related Work

The mismatch between training and testing distributions of input features is referred to as covariate
shift, and has long served as a fundamental problem for the machine learning community. Covariate
shifts have been extensively studied in supervised learning [48, 18, 5, 2]. In RL, prior works have
largely focused on covariate shifts due to training on off-policy data [44, 34, 11, 14, 13, 46] including
the important case of learning from demonstrations [31, 33]. Recent work also aimed to learn invariant
representations robust to covariate shifts [53, 54]. More generally, CICS is a form of sample-selection
bias [15]. Previous methods like OFFER [7] considered correcting biased transitions via importance
sampling [43] when optimizing for expected return on a single environment setting, rather than robust
policies over all environments settings. We believe our work provides the first general formalization
and solution strategy addressing curriculum-induced covariate shifts (CICS) for RL.

The importance of addressing CICS is highlighted by recent results showing curricula to be essential
for training RL agents across many of the most challenging domains, including combinatorial
gridworlds [55], Go [40], StarCraft 2 [49], and achieving comprehensive task mastery in open-ended
environments [41]. While this work focuses on PLR⊥, other methods include minimax adversarial
curricula [30, 50, 51] and curricula based on changes in return [25, 32]. Curriculum methods have
also been studied in goal-conditioned RL [12, 6, 42, 27], though CICS does not occur here as goals
are observed by the agent. Lastly, domain randomization [DR, 35, 29] can be seen as a degenerate
form of UED, and curriculum-based extensions of DR have also been studied [19, 47].

Prior work has also investigated methods for learning Bayes optimal policies under uncertainty
about the task [56, 28], based on the framework of Bayes-adaptive MDPs (BAMDPs) [3, 10]. In
this setting, the agent can adapt to an unknown MDP over several episodes by acting to reduce its
uncertainty about the identity of the MDP. In contrast, SAMPLR learns a robustly Bayes-optimal
policy for zero-shot transfer. Further unlike these works, our setting assumes the distribution of some
aleatoric parameters is biased during training, which would bias the a posteriori uncertainty estimates
with respect to the ground-truth distribution when optimizing for the BAMDP objective. Instead,
SAMPLR proposes a means to correct for this bias assuming knowledge of the true environment
parameters, to which we can often safely assume access in curriculum learning.

Deeply related, Off-Belief Learning [OBL, 16] trains cooperative agents in self-play using fictitious
transitions assuming all past actions of co-players follow a base policy, e.g. a uniformly random one.
Enforcing this assumption prevents agents from developing conventions that communicate private
information to co-players via arbitrary action sequences. Such conventions hinder coordination with
independently trained agents or, importantly, humans. SAMPLR can be viewed as adapting OBL to
single-agent curriculum learning, where a co-player sets the environment parameters at the start of
each episode (see Appendix D). This connection highlights how single-agent curriculum learning is
inherently a multi-agent problem, and thus problems afflicting multi-agent learning also surface in
this setting; moreover, methods addressing such issues in one setting can then be adapted to the other.

8 Conclusion

This work characterized how curriculum-induced covariate shifts (CICS) over aleatoric environment
parameters Θ′ can lead to suboptimal policies under the ground-truth distribution over these
parameters, P (Θ′). We introduced a general strategy for correcting CICS, by training the agent on
fictitious rewards and next states whose distribution is guaranteed to match what would be experienced
under P (Θ′). Our method SAMPLR augments PLR⊥ with this correction. By training on fictitious
transitions, SAMPLR actively samples specific values of θ′ that induce trajectories with greater
learning potential, while still grounding the training data to P (Θ′). Crucially, our experiments in
challenging environments with aleatoric uncertainty showed that SAMPLR produces robust policies
outperforming those trained with competing baselines that do not correct for CICS.
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A core assumption made by SAMPLR and all other UED methods is the ability to reset the
environment to arbitrary configurations of some set of free parameters. While such resets can
be difficult or impossible to perform in real world environments, in practice, this assumption is nearly
always satisfied, as RL training largely occurs under a sim2real paradigm due to the additional costs
of training in the wild. Most RL simulators can either be directly reset to specific environment
configurations or be straightforwardly made to do so. SAMPLR thus provides a means to more
fully exploit the affordances of a simulator to produce more robust policies: Policies trained with
SAMPLR retain optimality when transferred to the ground-truth distribution of aleatoric parameters
in the real environment—a crucial property not satisfied by prior UED methods. Importantly, the
approach based on fictitious transitions used by SAMPLR can, in principle, be generally applied to
prior UED methods to provide them with this desirable property.
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A Algorithms

A.1 Robust Prioritized Level Replay

We briefly describe the PLR⊥ algorithm and provide its pseudocode for completeness. For a detailed
discussion of PLR⊥ and its theoretical guarantees, we point the reader to [20].

For a given UPOMDP, PLR⊥ induces a curriculum by using random search over the set of possible
environment configurations θ to find the high regret levels for training. In order to estimate regret for
level θ, PLR⊥ uses an estimator score(τ, π) that is a function of the last trajectory on that level τ
and the agent’s policy π that generated τ . In practice these estimates are based on variations of the
time-averaged value loss over τ . At the start of each episode with probability 1− p, PLR⊥ samples
a new level θ from the training distribution P , and uses the ensuing episode purely for evaluation,
without training the agent on the collected experiences. It maintains a level buffer Λ of the top-K
highest regret levels found throughout training. With probability p, episodes are used for training on
levels sampled from this set, according to the replay distribution Preplay. Given staleness coefficient ρ,
temperature β, a prioritization function h (e.g. rank), level buffer scores S, level buffer timestamps
C, and the current episode count c (i.e. current timestamp), Preplay is defined as

Preplay = (1− ρ) · PS + ρ · PC ,

PS =
h(Si)

1/β∑
j h(Sj)1/β

,

PC =
c− Ci∑

Cj∈C c− Cj
.

The first component PS weighs each level based on its estimated regret, and the second, PC , based
on the age of the regret estimate. The staleness term mitigates regret values drifting off policy during
training. The staleness coefficient ρ controls the contribution of each component. This process is
summarized in Algorithm 2, and the details of how PLR⊥ updates the top-K high regret levels in Λ,
in Algorithm 3.

Algorithm 2: Robust PLR (PLR⊥)
Randomly initialize policy π(ϕ) and an empty

level buffer, Λ of size K.
while not converged do

Sample replay-decision Bernoulli,
d ∼ PD(d)

if d = 0 then
Sample level θ from level generator
Collect π’s trajectory τ on θ, with a

stop-gradient ϕ⊥
else

Use PLR to sample a replay level from
the level store, θ ∼ Λ

Collect policy trajectory τ on θ and
update π with rewards R(τ)

end
Compute PLR score, S = score(τ, π)
Update Λ with θ using score S

end

Algorithm 3: PLR level-buffer update rule
Input: Level buffer Λ of size K with scores S

and timestamps C; level θ; level score
Sθ; and current episode count c

if |Λ| < K then
Insert θ into Λ, and set S(θ) = Sθ ,
C(θ) = c

else
Find level with minimal support,
θmin = argmin

θ
Preplay(θ)

if S(θmin) < Sθ then
Remove θmin from Λ
Insert θ into Λ, and set S(θ) = Sθ ,
C(θ) = c

Update Preplay with latest scores S and
timestamps C

end
end

A.2 SAMPLR Implementation Details

In the car racing environment, the aleatoric parameters θ′ determine whether each track tile contains
black ice. Thus, the training distribution P (Θ′) directly impacts the distribution over τ . In order
to correct for the biased trajectories τ generated under its minimax regret curriculum, we must
train the policy to maximize the ground-truth utility function conditioned on τ , U(π|τ). SAMPLR
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accomplishes this by training the policy on fictitious transitions that replace the real transitions
observed. Each fictitious transition corresponds to the reward r′t and s′t+1 that would be observed
if the agent’s action were performed in a level such that θ′ ∼ P (θ′|τ). By training the agent on a
POMDP whose future evolution conditioned on τ is consistent with P , we ensure any optimal policy
produced under the biased training distribution will also be optimal under P (Θ′).

Recall from Equation 6 that B(s′t|τ) =
∑

θ′ P (s′t|τ, θ′)P (θ′|τ). We can thus sample a fictitious
state s′t according to B by first sampling θ′ ∼ P (θ′|τ), and then s′t ∼ P (s′t|τ, θ′). We implement
SAMPLR for this domain by assuming perfect models for both the posterior P (θ′|τ) and P (s′t|τ, θ′).
Simulating a perfect posterior over θ′ is especially straightforward, as we assume each tile has ice
sampled I.I.D. with probability q ∼ Beta(α, β), where we make use of the conjugate prior. As τ
contains the entire action-observation history up to the current time, it includes information that can
be used to infer how much ice was already seen. In order to simulate a perfect posterior over θ′, we
thus track whether each visited track tile has ice and use these counts to update an exact posterior
over q, equal to Beta(α + N+, β + N−), where N+ and N− correspond to the number of visited
tiles with and without ice respectively. We then effectively sample θ′ ∼ P (θ′|τ) by resampling all
unvisited tiles from this posterior.

In order to sample from P (s′t|τ, θ′) and similarly from the grounded transition distribution
P (s′t+1|at, τ, θ′), we make use of a second simulator we call the fictitious simulator, which acts
as a perfect model of the environment. We could otherwise learn this model via online or offline
supervised learning. Our design choice using a second simulator in place of such a model allows
us to cleanly isolate the effects of SAMPLR’s correction for CICS from potential errors due to the
inherent difficulties of model-based RL.

Let us denote the primary simulator by E , and the fictitious simulator by E ′. We ensure that the
parameters of both simulators always match for θ ∈ Θ \Θ′. Before each training step, we first set
the physics state of E ′ to that of E exactly, ensuring both simulators correspond to the same st, and
then resample θ′ ∼ P (θ′|τ) for the fictitious simulator as described above. We then take the resulting
state of E ′ as s′t. The agent next samples an action from its policy, at ∼ π(at|s′t). Stepping forward
E ′ in state s′t with action at then produces a sample of s′t+1 from a perfect grounded belief model,
along with the associated reward, r′t. Throughout PPO training, the 1-step TD-errors δt for time t are
computed using these fictitious transitions. Similarly, the PLR⊥ mechanism underlying SAMPLR
estimates regret using δt based on fictitious transitions.

B Additional Experimental Results

B.1 Stochastic Fruit Choice

When the probability of apple being the correct goal is q = 0.7, and the payoff for correctly choosing
the apple (banana) is 3 (10), the optimal policy in expectation is to always choose the banana, resulting
in an expected return of 3.0. Figure 5 shows that both DR and PLR⊥ fail to learn to consistently eat
the banana after 200M steps of training. In contrast, SAMPLR learns to always choose the banana
when it successfully solves a level.

In additional experiments, we find that the impact of CICS varies with q. When q = 10/13, the
expected returns for the policy always choosing apple (πB) equals that for the policy always choosing
banana (πB). The top row of Figure 6 shows that the negative impact of CICS on PLR⊥ and thus the
benefits of SAMPLR diminish the farther q is from this equilibrium value. Intuitively, for q closer to
the equilibrium value, smaller covariate shifts suffice to flip the policy, making it easier for PLR⊥

to rapidly oscillate the optimal policy during training. We see in the bottom row of 6 that PLR⊥

indeed produces large adversarial oscillations in q. This makes it difficult for the agent to settle
on the optimal policy with respect to any ground-truth distribution. In contrast, SAMPLR grounds
PLR’s otherwise wild shifts in q with respect to its ground-truth value, allowing the agent to learn a
well-grounded policy.
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Figure 5: Left: Proportion of training episodes for q = 0.7 in which the agent fails to eat any fruit; eats the
apple; or eats the banana. Right: Number of rooms in levels during training. Plots show mean and standard error
of 10 runs.
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Figure 6: Top: Mean and standard error of episodic test returns as the probability q of the apple being the
correct choice varies. Bottom: The proportion of training levels chosen by each method where apple is the
correct choice. The mean and standard deviation are shown.

B.2 Car Racing with Black Ice

We see that on a gradient-update basis, SAMPLR and PLR⊥ with naive grounding begin to overtake
domain randomization much earlier in training. This is because PLR⊥, does not perform gradient
updates after each rollout, but rather only trains on a fraction p of episodes which sample high regret
replay levels. In our experiments, we set the replay rate p = 0.5, meaning for the same number of
training steps, the PLR⊥-based methods only take half as many gradient steps as the DR baseline.
Figure 7 shows each method’s training and zero-shot transfer performance on validation F1 tracks
with q = 0.2, as a function of the number of environment steps, while Figure 8 plots the same results
as a function of the number of gradient updates performed. On a gradient basis, SAMPLR sees even
more pronounced gains in robustness compared to DR—that is, SAMPLR learns more robust policies
with less data.
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Figure 7: Performance of each method on the training distribution and zero-shot transfer environments with
probability of ice per tile q = 0.2. These results show mean and standard error of episodic test returns as a
function of number of environment steps collected during training.
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Figure 8: The same performance results reported in Figure 7, but as a function of number of gradient updates
performed.

C Experimental Details and Hyperparameters

In this section, we provide detailed descriptions of each of the experimental domains featured in this
work. In addition, we describe our architecture and hyperparameter choices for each setting. Table 2
summarizes our choice of hyperparameters for each domain.

C.1 Stochastic Fruit Choice

Environment details We make use of MiniHack [36], a library built on top of the NetHack
Learning Environment [NLE, 23], for creating custom environments in the NetHack runtime. Our
Stochastic Fruit Choice environment embeds a stochastic binary choice task within a challenging
hard-exploration problem. The agent must navigate through up to eight rooms in each level, and in
the final room, choose the correct piece of fruit, either the apple or banana to receive a reward. If
the agent eats the wrong fruit for the level, it receives a reward of 0. With probability q, the apple is
the correct fruit to eat. Eating either fruit terminates the episode. The episode also terminates once
the budget of 250 steps is reached. Notably, passage into adjacent rooms requires first kicking down
a locked door. As per NLE game dynamics, locked doors may require a random number of kicks
before they give way. To complicate the learning of this kicking skill, kicking the stone walls of the
room will lower the agent’s health points; multiple misguided kicks can then lead to the agent dying,
ending the episode.

The agent’s observation consists of two primary elements: The nethack glyph and blstats tensors.
The glyph tensor represents a 2D symbolic observation of the dungeon. This glyph tensor contains a
21× 79 window of glyph identifiers, which can each be one of the 5991 possible glyphs in NetHack,
which represent monsters, items, environment features, and other game entities. The blstats
vector contains character-centric values, such as the agent’s coordinates and the information in the
“bottom-line stats” of the game, such as the agent’s health stats, attribute levels, armor class, and
experience points.
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The action space includes the eight navigational actions, corresponding to moving toward each cell in
the agent’s Moore neighborhood, in addition to two additional actions for kicking (doors) and eating
(apples and bananas).

Architecture We make use of the same agent architecture from [23]. The policy applies a ConvNet
to all visible glyph embeddings and a separate ConvNet to a 9 × 9 egocentric crop around the
agent—which was found to improve generalization—producing two latent vectors. These are then
concatenated with an MLP encoding of the blstats vector, the resulting vector is further processed
by an MLP layer, and finally, input through an LSTM to produce the action distribution. We used the
policy architecture provided in https://github.com/facebookresearch/nle.

Choice of hyperparameters Our choice of PPO hyperparameters, shared across all methods, was
based on a grid search, in which we train agents with domain randomization on a 15× 15 maze, in
which the goal location and initial agent location, along with up to 50 walls, are randomly placed. For
each setting, we average results over 3 training runs. We chose this environment to perform the grid
search, as it allows for significantly faster training than the multi-room environment featured in our
main experiments. Specifically, we swept over the following hyperparameter values: number of PPO
epochs in {5, 20}, number of PPO minibatches in {1, 4}, PPO clip parameter in {0.1, 0.2}, learning
rate in {1e-3, 1e-4}, and discount factor γ in {0.99, 0.995}. Fixing these hyperparameters to the best
setting found, we then performed a separate grid search over PLR’s replay rate p in {0.5, 0.95} and
replay buffer size in {4000, 5000, 8000}, evaluating settings based on evaluation levels sampled via
domain randomization after 50M steps of training.

Compute All agents in the Stochastic Fruit Choice environment were trained using Tesla V100 GPUs
and Intel Xeon E5-2698 v4 CPUs. DR, PLR⊥, and naive grounding all required approximately 24
hours to complete the 50M training steps for each run of the hyperparameter sweep and 192 hours to
complete the 200 million training steps for each full multi-room run. In total, our experimental results,
including hyperparameter sweeps, required roughly 8,500 hours (around 350 days) of training.

C.2 Car Racing with Black Ice

Environment details This environment extends the CarRacingBezier environment from [20] to
optionally contain black ice on each track tile with probability q, where for a given track, q may first
be sampled from an arbitrary prior distribution and after which, ice is sampled I.I.D. per tile. It is
impossible to accelerate or brake over ice tiles, which have a friction coefficient of 0, making icy
settings much more challenging. Like in CarRacingBezier, each track shape is generated by sampling
a random set of 12 control points that define a closed Bézier curve. For a track composed of L tiles,
the agent receives a reward of 1000/L for each tile visited, and a per-step penalty of −0.1. Like [20],
we adopt the methodology outlined in [24] and do not penalize the agent for driving out of bounds,
terminate episodes early when the agent drives too far off the track, and repeat each action for 8
frames. At each time step, the agent receives a 96× 96× 3 RGB frame consisting of a local birdseye
view of the car on the track and a dashboard showing the agent’s latest action and return. Actions
take the form of a three-dimensional, continuous vector. Each component represents control values
for torque in [−1.0, 1.0], acceleration in [0.0, 1.0], and deceleration in [0.0, 1.0].

Architecture We adopt a policy architecture used across several prior works [20, 24, 45], consisting
of a stack of 2D convolutions feeding into a fully-connected ReLU layer. The convolutions have
square kernels of size 2, 2, 2, 2, 3, 3, output channels of dimension 8, 16, 32, 64, 128, 256, and
stride lengths of 2, 2, 2, 2, 1, 1. The resulting 256-dimensional embedding is then fed into alpha,
beta, and value heads. The alpha and beta heads are each fully-connected softplus layers, to whose
outputs we add 1 to produce the α and β parameters for the Beta distribution parameterizing each
action dimension (i.e. each action is sampled from Beta(α, β) and then translated into the appropriate
range). The value head is a fully-connected ReLU layer. All hidden layers are 100-dimensional.

Choice of hyperparameters We selected hyperparameters based on evaluation performance over 5
episodes on the Italy, Singapore, and Germany F1 tracks with ice probability per tile fixed to q = 0.2,
when trained under the ice distribution featured in our main results, where q ∼ Beta(1,15). For
each setting, we averaged results over 3 runs. PPO hyperparameters, shared across methods, were
selected based on the performance of agents trained with domain randomization across settings in a
grid search covering learning rate in {0.001, 0.0003, 0.0001, 0.00001}, number of epochs in {3, 8},
number of minibatches in {2, 4, 16}, and value loss coefficient in {0.5, 1.0, 2.0}. The remaining PPO
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hyperparameters, as well as PLR⊥-specific hyperparameters were based on those used in [20], with
the exception of a smaller level buffer size, which we found helped improve validation performance.
Additionally, for each method, we also swept over the choice of whether to initialize the policy to
ensure actions are initially close to zero. Initializing the policy in this way has been shown to reduce
variance in performance across seeds [1].

Compute All car racing agents were trained using Tesla V100 GPUs and Intel Xeon E5-2698 v4
CPUs. DR, PLR⊥, and naive grounding all required approximately 24 hours to complete the 5M
training steps in each experiment run, while SAMPLR required 42 hours. In total, our experimental
results, including hyperparameter sweeps, required roughly 11,500 hours (around 480 days) of
training.

Table 2: Hyperparameters used for training each method.

Parameter Stochastic Fruit Choice Black-Ice Car Racing

PPO
γ 0.995 0.99
λGAE 0.95 0.9
PPO rollout length 256 125
PPO epochs 5 3
PPO minibatches per epoch 1 4
PPO clip range 0.2 0.2
PPO number of workers 32 16
Adam learning rate 1e-4 1e-4
Adam ϵ 1e-5 1e-5
PPO max gradient norm 0.5 0.5
PPO value clipping yes no
return normalization no yes
value loss coefficient 0.5 1.0
entropy coefficient 0.0 0.0

PLR⊥ and SAMPLR
Replay rate, p 0.95 0.5
Buffer size, K 4000 500
Scoring function positive value loss positive value loss
Prioritization rank power
Temperature, β 0.3 1.0
Staleness coefficient, ρ 0.3 0.7

D Connection to Off-Belief Learning

In cooperative multi-agent reinforcement learning (MARL), self-play promotes the formation of
cryptic conventions—arbitrary sequences of actions that allow agents to communicate information
about the environment state. These conventions are learned jointly among all agents during training,
but are arbitrary and hence, indecipherable to independently-trained agents or humans at test
time. Crucially, this leads to policies that fail to perform zero-shot coordination [ZSC, 17], where
independently-trained agents must cooperate successfully without additional learning steps—a setting
known as ad-hoc team play. Off-Belief Learning [OBL; 16] resolves this problem by forcing agents
to assume their co-players act according to a fixed, known policy π0 until the current time t, and
optimally afterwards, conditioned on this assumption. If π0 is playing uniformly random, this
removes the possibility of forming arbitrary conventions.

Formally, let G be a decentralized, partially-observable MDP [Dec-POMDP, 4], with state s, joint
action a, observation function Ii(s) for each player i, and transition function T (s, a). Let the
historical trajectory τ = (s1, a1, ...at−1, st), and the action-observation history (AOH) for agent i be
τ i = (Ii(s1), a1, ..., at−1, Ii(st)). Further, let π0 be an arbitrary policy, such as a uniformly random
policy, and Bπ0(τ |τ i) = P (τt|τ it , π0), a belief model predicting the current state, conditioned on
the AOH of agent i and the assumption of co-players playing policy π0 until the current time t, and
optimally according to π1 from t and beyond. OBL aims to find the policy π1 with the optimal,
counter-factual value function,
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V π0→π1(τ i) = Eτ∼Bπ0 (τ
i) [V

π1(τ)] . (8)

Thus, the agent conditions its policy on the realized AOH τ i, while optimizing its policy for transition
dynamics based on samples from Bπ0

, which are consistent with the assumption that co-players play
according to π0 until time t. Therefore, if π0 is a uniformly random policy, π1 can no longer benefit
from conditioning on the action sequences of its co-players, thereby preventing the formation of
cryptic conventions that harm ZSC.

Similarly, in single-agent curriculum learning, we can view the UED teacher as a co-player that
performs a series of environment design decisions that defines the environment configuration θ at the
start of the episode, and subsequently performs no-ops for the remainder of the episode. As discussed
in Section 3, curriculum-induced covariate shifts (CICS) can cause the final policy to be suboptimal
with respect to the ground-truth distribution P when the teacher produces a curriculum resulting in
the training distribution of aleatoric parameters P (Θ′) deviating from the ground-truth distribution
P (Θ′). We then see that the fictitious transitions used by SAMPLR are equivalent to those used by
OBL, where the belief model B assumes the teacher makes its design choices such that the resulting
distribution of aleatoric parameters Θ′ matches the ground-truth P (Θ′). This connection reveals that
SAMPLR can be viewed as an adaptation of OBL to the single-agent curriculum learning setting,
whereby the UED teacher, which designs the environment configuration, is viewed as the co-player.

E Broader Impact Statement

SAMPLR trains policies that are optimal under some ground-truth distribution P despite using data
sampled from a curriculum distribution that may be biased with respect to P . However, often in
practice, our knowledge of P may be based on estimations that are themselves biased. For example,
when applying SAMPLR with respect to an estimated ground-truth distribution of user demographics,
the resulting policy may still be biased toward some demographics, if the ground-truth estimation
is biased. Therefore, when applying SAMPLR, we must still take care to ensure our notion of the
ground truth is sound.
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