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Abstract

Open-domain question answering relies on ef-
ficient passage retrieval to select candidate
contexts, where traditional sparse vector space
models, such as TF-IDF or BM25, are the de
facto method. In this work, we show that
retrieval can be practically implemented us-
ing dense representations alone, where em-
beddings are learned from a small number
of questions and passages by a simple dual-
encoder framework. When evaluated on a
wide range of open-domain QA datasets, our
dense retriever outperforms a strong Lucene-
BM25 system greatly by 9%-19% absolute in
terms of top-20 passage retrieval accuracy, and
helps our end-to-end QA system establish new
state-of-the-art on multiple open-domain QA
benchmarks.1

1 Introduction

Open-domain question answering (QA) (Voorhees,
1999) is a task that answers factoid questions us-
ing a large collection of documents. While early
QA systems are often complicated and consist of
multiple components (Ferrucci (2012); Moldovan
et al. (2003), inter alia), the advances of reading
comprehension models suggest a much simplified
two-stage framework: (1) a context retriever first
selects a small subset of passages where some
of them contain the answer to the question, and
then (2) a machine reader can thoroughly exam-
ine the retrieved contexts and identify the correct
answer (Chen et al., 2017). Although reducing
open-domain QA to machine reading is a very rea-
sonable strategy, a huge performance degradation
is often observed in practice2, indicating the needs
of improving retrieval.

∗Equal contribution
1The code and trained models have been released at

https://github.com/facebookresearch/DPR.
2For instance, the exact match score on SQuAD v1.1 drops

from above 80% to less than 40% (Yang et al., 2019a).

Retrieval in open-domain QA is usually imple-
mented using TF-IDF or BM25 (Robertson and
Zaragoza, 2009), which matches keywords effi-
ciently with an inverted index and can be seen
as representing the question and context in high-
dimensional, sparse vectors (with weighting). Con-
versely, the dense, latent semantic encoding is com-
plementary to sparse representations by design. For
example, synonyms or paraphrases that consist of
completely different tokens may still be mapped to
vectors close to each other. Consider the question

“Who is the bad guy in lord of the rings?”, which can
be answered from the context “Sala Baker is best
known for portraying the villain Sauron in the Lord
of the Rings trilogy.” A term-based system would
have difficulty retrieving such a context, while
a dense retrieval system would be able to better
match “bad guy” with “villain” and fetch the cor-
rect context. Dense encodings are also learnable
by adjusting the embedding functions, which pro-
vides additional flexibility to have a task-specific
representation. With special in-memory data struc-
tures and indexing schemes, retrieval can be done
efficiently using maximum inner product search
(MIPS) algorithms (e.g., Shrivastava and Li (2014);
Guo et al. (2016)).

However, it is generally believed that learning
a good dense vector representation needs a large
number of labeled pairs of question and contexts.
Dense retrieval methods have thus never be shown
to outperform TF-IDF/BM25 for open-domain QA
before ORQA (Lee et al., 2019), which proposes
a sophisticated inverse cloze task (ICT) objective,
predicting the blocks that contain the masked sen-
tence, for additional pretraining. The question en-
coder and the reader model are then fine-tuned us-
ing pairs of questions and passages/answers jointly.
Although ORQA successfully demonstrates that
dense retrieval can outperform BM25, setting new
state-of-the-art results on multiple open-domain

https://github.com/facebookresearch/DPR


QA datasets, it also suffers from two weaknesses.
First, ICT pretraining is computationally intensive
and it is not completely clear that regular sentences
are good surrogates of questions in the objective
function. Second, because the context encoder is
not fine-tuned using pairs of questions and answers,
the corresponding representations could be subop-
timal.

In this paper, we address the question: can we
train a better dense embedding model using only
pairs of questions and answers, without additional
pretraining? By leveraging the now standard BERT
pretrained model (Devlin et al., 2019) and a dual-
encoder architecture (Bromley et al., 1994), we fo-
cus on developing the right training scheme using
a relatively small number of question and passage
pairs. Through a series of careful ablation studies,
our final solution is extremely simple — the embed-
ding is optimized for maximizing inner products
of the question and relevant passage vectors, with
an objective comparing all pairs of questions and
passages in a batch. To our surprise, our Dense Pas-
sage Retriever (DPR) is exceptionally strong. It not
only outperforms BM25 by a large margin (65.2%
vs. 42.9% in Top-5 accuracy), but also results in
a substantial improvement on the end-to-end QA
accuracy compared to ORQA (41.5% vs. 33.3%)
in the open Natural Questions setting (Lee et al.,
2019; Kwiatkowski et al., 2019).

Our contributions are twofold. First, we demon-
strate that with the proper training setup, sim-
ply fine-tuning the question and passage encoders
on existing question-passage pairs is sufficient to
greatly outperform BM25. Our empirical results
also suggest that additional pretraining may not be
needed. Second, we verify that, in the context of
open-domain question answering, a higher retrieval
precision indeed translates to a higher end-to-end
QA accuracy. By applying a modern reader model
to the top retrieved passages, we achieve compara-
ble or better results on multiple QA datasets in the
open-retrieval setting, compared to several, much
complicated systems.

2 Background

The problem of open-domain QA studied in this
paper can be described as follows. Given a factoid
question, such as “Who first voiced Meg on Family
Guy?” or “Where was the 8th Dalai Lama born?”, a
system is required to answer it using a large corpus
of diversified topics. More specifically, we assume

the extractive QA setting, in which the answer is
restricted to a span appearing in one or more pas-
sages in the corpus. Assume that our collection
contains D documents, d1, d2, · · · , dD. We first
split each of the documents into text passages of
equal lengths as the basic retrieval units3 and getM
total passages in our corpus C = {p1, p2, . . . , pM},
where each passage pi can be viewed as a sequence
of tokens w(i)

1 , w
(i)
2 , · · · , w(i)

|pi|. Given a question q,

the task is to find a span w(i)
s , w

(i)
s+1, · · · , w

(i)
e from

one of the passages pi that can answer the question.
Notice that to cover a wide variety of domains, the
corpus size can easily range from millions of docu-
ments (e.g., Wikipedia) to billions (e.g., the Web).
As a result, any open-domain QA system needs to
include an efficient retriever component that can se-
lect a small set of relevant texts, before applying the
reader to extract the answer (Chen et al., 2017).4

Formally speaking, a retriever R : (q, C) → CF
is a function that takes as input a question q and a
corpus C and returns a much smaller filter set of
texts CF ⊂ C, where |CF | = k � |C|. For a fixed
k, a retriever can be evaluated in isolation on top-k
retrieval accuracy, which is the fraction of ques-
tions for which CF contains a span that answers the
question.

3 Dense Passage Retriever (DPR)

We focus our research in this work on improv-
ing the retrieval component in open-domain QA.
Given a collection of M text passages, the goal of
our dense passage retriever (DPR) is to index all
the passages in a low-dimensional and continuous
space, such that it can retrieve efficiently the top
k passages relevant to the input question for the
reader at run-time. Note that M can be very large
(e.g., 21 million passages in our experiments, de-
scribed in Section 4.1) and k is usually small, such
as 20 ∼ 100.

3.1 Overview

Our dense passage retriever (DPR) uses a dense
encoder EP (·) which maps any text passage to a d-
dimensional real-valued vectors and builds an index
for all the M passages that we will use for retrieval.

3The ideal size and boundary of a text passage are func-
tions of both the retriever and reader. We also experimented
with natural paragraphs in our preliminary trials and found that
using fixed-length passages performs better in both retrieval
and final QA accuracy, as observed by Wang et al. (2019).

4Exceptions include (Seo et al., 2019) and (Roberts et al.,
2020), which retrieves and generates the answers, respectively.



At run-time, DPR applies a different encoderEQ(·)
that maps the input question to a d-dimensional
vector, and retrieves k passages of which vectors
are the closest to the question vector. We define
the similarity between the question and the passage
using the dot product of their vectors:

sim(q, p) = EQ(q)
ᵀEP (p). (1)

Although more expressive model forms for measur-
ing the similarity between a question and a passage
do exist, such as networks consisting of multiple
layers of cross attentions, the similarity function
needs to be decomposable so that the represen-
tations of the collection of passages can be pre-
computed. Most decomposable similarity functions
are some transformations of Euclidean distance
(L2). For instance, cosine is equivalent to inner
product for unit vectors and the Mahalanobis dis-
tance is equivalent to L2 distance in a transformed
space. Inner product search has been widely used
and studied, as well as its connection to cosine
similarity and L2 distance (Mussmann and Ermon,
2016; Ram and Gray, 2012). As our ablation study
finds other similarity functions perform compara-
bly (Section 5.2; Appendix B), we thus choose
the simpler inner product function and improve the
dense passage retriever by learning better encoders.

Encoders Although in principle the question and
passage encoders can be implemented by any neu-
ral networks, in this work we use two independent
BERT (Devlin et al., 2019) networks (base, un-
cased) and take the representation at the [CLS]
token as the output, so d = 768.

Inference During inference time, we apply the
passage encoder EP to all the passages and index
them using FAISS (Johnson et al., 2017) offline.
FAISS is an extremely efficient, open-source li-
brary for similarity search and clustering of dense
vectors, which can easily be applied to billions of
vectors. Given a question q at run-time, we derive
its embedding vq = EQ(q) and retrieve the top k
passages with embeddings closest to vq.

3.2 Training

Training the encoders so that the dot-product sim-
ilarity (Eq. (1)) becomes a good ranking function
for retrieval is essentially a metric learning prob-
lem (Kulis, 2013). The goal is to create a vector
space such that relevant pairs of questions and pas-
sages will have smaller distance (i.e., higher simi-

larity) than the irrelevant ones, by learning a better
embedding function.

Let D = {〈qi, p+i , p
−
i,1, · · · , p

−
i,n〉}mi=1 be the

training data that consists of m instances. Each
instance contains one question qi and one relevant
(positive) passage p+i , along with n irrelevant (neg-
ative) passages p−i,j . The loss function is the nega-
tive log likelihood of the correct passage:

L(qi, p
+
i , p

−
i,1, · · · , p

−
i,n) (2)

= − log
esim(qi,p

+
i )

esim(qi,p
+
i ) +

∑n
j=1 e

sim(qi,p
−
i,j)
.

Positive and negative passages For retrieval
problems, it is often the case that positive examples
are available explicitly, while negative examples
need to be selected from an extremely large pool.
For instance, passages relevant to a question may
be given in a QA dataset, or can be found using
the answer. All other passages in the collection,
while not specified explicitly, can be viewed as
irrelevant by default. In practice, how to select
negative examples is often overlooked but could be
decisive for learning a high-quality encoder. We
generally consider three different types of nega-
tives: (1) Random: any random passage from the
corpus; (2) BM25: top passages returned by BM25
which don’t contain the answer but match most
question tokens; (3) Gold: positive passages paired
with other questions which appear in the training
set. We will discuss the impact of different types
of negative passages and training schemes in Sec-
tion 5.2. Our best model uses gold passages from
the same mini-batch and one BM25 negative pas-
sage. In particular, re-using gold passages from the
same batch as negatives can make the computation
efficient while achieving great performance. We
discuss this approach below.

In-batch negatives Assume that we have B
questions in a mini-batch and each one is asso-
ciated with a relevant passage. Let Q and P be the
(B×d) matrix of question and passage embeddings
in a batch of size B. S = QPT is a (B ×B) ma-
trix of similarity scores, where each row of which
corresponds to a question, paired with B passages.
In this way, we reuse computation and effectively
train on B2 (qi, pj) question/passage pairs in each
batch. Any (qi, pj) pair is a positive example when
i = j, and negative otherwise. This creates B train-
ing instances in each batch, where there are B − 1
negative passages for each question.



The trick of in-batch negatives has been used in
the full batch setting (Yih et al., 2011) and more
recently for mini-batch (Gillick et al., 2019; Hen-
derson et al., 2017). It has been shown to be an
effective strategy for learning a dual encoder model
that boosts the number of training examples.

4 Experimental Setup

In this section, we describe the data we used for
experiments and the basic setup.

4.1 Wikipedia Data Pre-processing
Following (Lee et al., 2019), we use the English
Wikipedia dump from Dec. 20, 2018 as the source
documents for answering questions. We first apply
the pre-processing code released in DrQA (Chen
et al., 2017) to extract the clean, text-portion of
articles from the Wikipedia dump. This step re-
moves semi-structured data, such as tables, info-
boxes, lists, as well as the disambiguation pages.
We then split each article into multiple, disjoint text
blocks of 100 words as passages, serving as our
basic retrieval units, following (Wang et al., 2019),
which results in 21,015,324 passages in the end.5

Each passage is also prepended with the title of the
Wikipedia article where the passage is from, along
with an [SEP] token.

4.2 Question Answering Datasets
We use the same five QA datasets and train-
ing/dev/testing splitting method as in previous
work (Lee et al., 2019). Below we briefly describe
each dataset and refer readers to their paper for the
details of data preparation.
Natural Questions (NQ) (Kwiatkowski et al.,
2019) was designed for end-to-end question an-
swering. The questions were mined from real
Google search queries and the answers were spans
in Wikipedia articles identified by annotators.
TriviaQA (Joshi et al., 2017) contains a set of trivia
questions with answers that were originally scraped
from the Web.
WebQuestions (WQ) (Berant et al., 2013) consists
of questions selected using Google Suggest API,
where the answers are entities in Freebase.
CuratedTREC (TREC) (Baudiš and Šedivỳ,
2015) sources questions from TREC QA tracks
as well as various Web sources and is intended for
open-domain QA from unstructured corpora.

5However, Wang et al. (2019) also propose splitting docu-
ments into overlapping passages, which we do not find advan-
tageous compared to the non-overlapping version.

Dataset Train Dev Test

Natural Questions 79,168 58,880 8,757 3,610
TriviaQA 78,785 60,413 8,837 11,313
WebQuestions 3,417 2,474 361 2,032
CuratedTREC 1,353 1,125 133 694
SQuAD 78,713 70,096 8,886 10,570

Table 1: Number of questions in each QA datasets. The
second column of Train shows the numbers of ques-
tions after pruning. See text for detail.

SQuAD v1.1 (Rajpurkar et al., 2016) is a popu-
lar benchmark dataset for reading comprehension.
Annotators were presented with a Wikipedia para-
graph, and asked to write questions that could be
answered from the given text. Although SQuAD
has been used previously for open-domain QA re-
search, it is not ideal because many questions lack
context in absence of the provided paragraph. We
still include it in our experiments for providing
a fair comparison to previous work and we will
discuss more in Section 5.1.

Selecting positive passages Because only pairs
of questions and answers are provided in TREC,
WebQuestions and TriviaQA6, we use the highest-
ranked passage from BM25 that contains the an-
swer as the positive passage. If none of the top
100 retrieved passages has the answer, the ques-
tion will be discarded. For SQuAD and Natural
Questions, since the original passages have been
split and processed differently than our pool of
candidate passages, we match and replace each
gold passage with the corresponding passage in the
candidate pool.7 We discard the questions when
the matching is failed due to different Wikipedia
versions or pre-processing. Table 1 shows the num-
ber of questions in training/dev/test sets for all the
datasets and the actual questions used for training
the retriever.

5 Experiments: Passage Retrieval

In this section, we evaluate the retrieval perfor-
mance of our Dense Passage Retriever (DPR),
along with analysis on how its output differs from
traditional retrieval methods, the effects of different
training schemes and the run-time efficiency.

The DPR model used in our main experiments

6We use the unfiltered TriviaQA version and discard the
noisy evidence documents mined from Bing.

7The improvement of using gold contexts over passages
that contain answers is small. See Section 5.2 and Ap-
pendix A.



Training Retriever Top-20 Top-100
NQ TriviaQA WQ TREC SQuAD NQ TriviaQA WQ TREC SQuAD

None BM25 59.1 66.9 55.0 70.9 68.8 73.7 76.7 71.1 84.1 80.0

Single DPR 78.4 79.4 73.2 79.8 63.2 85.4 85.0 81.4 89.1 77.2
BM25 + DPR 76.6 79.8 71.0 85.2 71.5 83.8 84.5 80.5 92.7 81.3

Multi DPR 79.4 78.8 75.0 89.1 51.6 86.0 84.7 82.9 93.9 67.6
BM25 + DPR 78.0 79.9 74.7 88.5 66.2 83.9 84.4 82.3 94.1 78.6

Table 2: Top-20 & Top-100 retrieval accuracy on test sets, measured as the percentage of top 20/100 retrieved
passages that contain the answer. Single and Multi denote that our Dense Passage Retriever (DPR) was trained
using individial or combined training datasets (all the datasets excluding SQuAD). See text for more details.

is trained using the in-batch negative setting (Sec-
tion 3.2) with a batch size of 128 and one additional
BM25 negative passage per question. We trained
the question and passage encoders for up to 40
epochs for large datasets (NQ, TriviaQA, SQuAD)
and 100 epochs for small datasets (TREC, WQ),
with a learning rate of 10−5 using Adam, linear
scheduling with warm-up and dropout rate 0.1.

While it is good to have the flexibility to adapt
the retriever to each dataset, it would also be de-
sirable to obtain a single retriever that works well
across the board. To this end, we train a multi-
dataset encoder by combining training data from
all datasets excluding SQuAD.8 In addition to DPR,
we also present the results of BM25, the traditional
retrieval method9 and BM25+DPR, using a linear
combination of their scores as the new ranking
function. Specifically, we obtain two initial sets
of top-2000 passages based on BM25 and DPR,
respectively, and rerank the union of them using
BM25(q,p) + λ · sim(q, p) as the ranking function.
We used λ = 1.1 based on the development set
retrieval accuracy.

5.1 Main Results

Table 2 compares different passage retrieval sys-
tems on five QA datasets, using the top-k accuracy
(k ∈ {20, 100}). With the exception of SQuAD,
DPR performs consistently better than BM25 on
all datasets. The gap is especially large when k is
small (e.g., 78.4% vs. 59.1% for top-20 accuracy
on Natural Questions). When training with mul-
tiple datasets, TREC, the smallest dataset of the
five, benefits greatly from more training examples.
In contrast, Natural Questions and WebQuestions

8As discussed in Section 5.1, SQuAD is limited to a small
set of Wikipedia documents, which introduces unwanted bias.

9Lucene implementation. BM25 parameters b = 0.4 (doc-
ument length normalization) and k1 = 0.9 (term frequency
scaling) are tuned using development sets.

20 40 60 80 100
k: # of retrieved passages

40

50

60

70

80

90

To
p-

k 
ac

cu
ra

cy
 (%

)
BM25
# Train: 1k
# Train: 10k
# Train: 20k
# Train: 40k
# Train: all (59k)

Figure 1: Retriever top-k accuracy with different num-
bers of training examples used in our dense passage re-
triever vs BM25. The results are measured on the de-
velopment set of Natural Questions. Our DPR trained
using 1,000 examples already outperforms BM25.

improve modestly and TriviaQA degrades slightly.
Results can be improved further in some cases by
combining DPR with BM25 in both single- and
multi-dataset settings.

We conjecture that the lower performance on
SQuAD is due to two reasons. First, the annota-
tors wrote questions after seeing the passage. As
a result, there is a high lexical overlap between
passages and questions, which gives BM25 a clear
advantage. Second, the data was collected from
only 500+ Wikipedia articles and thus the distribu-
tion of training examples is extremely biased, as
argued previously by Lee et al. (2019).

5.2 Ablation Study on Model Training

To understand further how different model training
options affect the results, we conduct several addi-
tional experiments and discuss our findings below.

Sample efficiency We explore how many train-
ing examples are needed to achieve good passage
retrieval performance. Figure 1 illustrates the top-k

https://lucene.apache.org/


retrieval accuracy with respect to different numbers
of training examples, measured on the development
set of Natural Questions. As is shown, a dense pas-
sage retriever trained using only 1,000 examples
already outperforms BM25. This suggests that with
a general pretrained masked language model, it is
possible to train a high-quality dense retriever with
a small number of question–passage pairs. Adding
more training examples (from 1k to 59k) further
improves the retrieval accuracy consistently.

In-batch negative training We test different
training schemes on Natural Questions dev set
and summarize the results in Table 3. The top
block is the standard 1-of-N training setting, where
each question in the batch is paired with a pos-
itive passage and its own set of n negative pas-
sages (Eq. (2)). We find that the choice of nega-
tives — random, BM25 or gold passages (positive
passages from other questions) — does not impact
the results much in this setting.

The middle bock is the in-batch negative training
(Section 3.2) setting. We find that using a similar
configuration (7 gold negative passages), in-batch
negative training improves the results substantially.
The key difference between the two is whether the
gold negative passages come from the same batch
or from the whole training set. Effectively, in-batch
negative training is an easy and memory-efficient
way to reuse the negative examples already in the
batch rather than creating new ones. It produces
more pairs and thus increases the number of train-
ing examples, which might contribute to the good
model performance. As a result, accuracy consis-
tently improves as the batch size grows.

Finally, we explore in-batch negative training
with additional “hard” negative passages that have
high BM25 scores given the question, but do not
contain the answer string (the bottom block). These
additional passages are used as negative passages
for all questions in the same batch. We find that
adding a single BM25 negative passage improves
the result significantly while adding two does not
help further.

Selection of positive passages We use passages
that match the gold contexts in the original datasets
(when available) as positive examples (Section 4.2).
Our experiments on Natural Questions show that
switching to indirect supervision, treating passages
that contain answers as positives, has only a small
impact: 1 point lower top-k accuracy for retrieval.

Type #N IB Top-5 Top-20 Top-100

Random 7 7 47.0 64.3 77.8
BM25 7 7 50.0 63.3 74.8
Gold 7 7 42.6 63.1 78.3

Gold 7 3 51.1 69.1 80.8
Gold 31 3 52.1 70.8 82.1
Gold 127 3 55.8 73.0 83.1

G.+BM25(1) 31+32 3 65.0 77.3 84.4
G.+BM25(2) 31+64 3 64.5 76.4 84.0
G.+BM25(1) 127+128 3 65.8 78.0 84.9

Table 3: Comparison of different training schemes,
measured as top-k retrieval accuracy on Natural Ques-
tions (development set). #N: number of negative
examples, IB: in-batch training. G.+BM25(1) and
G.+BM25(2) denote in-batch training with 1 or 2 ad-
ditional BM25 negatives, which serve as negative pas-
sages for all questions in the batch.

Appendix A contains more details.

Similarity and loss Besides dot product, cosine
and Euclidean L2 distance are also commonly used
as decomposable similarity functions. We test these
alternatives and find that L2 performs compara-
ble to dot product, and both of them are superior
to cosine. Similarly, in addition to negative log-
likelihood, a popular option for ranking is triplet
loss, which compares a positive passage and a nega-
tive one directly with respect to a question (Burges
et al., 2005). Our experiments show that using
triplet loss does not affect the results much. More
details can be found in Appendix B.

Cross-dataset generalization One interesting
question regarding DPR’s discriminative training is
how much performance degradation it may suffer
from a non-iid setting. In other words, can it still
generalize well when directly applied to a different
dataset without additional fine-tuning? To test the
cross-dataset generalization, we train DPR on Natu-
ral Questions only and test it directly on the smaller
WebQuestions and CuratedTREC datasets. We find
that DPR generalizes well, with 3-5 points loss
from the best performing fine-tuned model in top-
20 retrieval accuracy (69.9/86.3 vs. 75.0/89.1 for
WebQ and TREC, respectively), while still greatly
outperforming the BM25 baseline (55.0/70.9).

5.3 Qualitative analysis
Although DPR performs better than BM25 in gen-
eral, passages retrieved by these two methods dif-
fer qualitatively. Term-matching methods like
BM25 are sensitive to highly selective keywords



and phrases, while DPR captures lexical variations
or semantic relationships better. See Appendix C
for examples and more discussion.

5.4 Run-time efficiency
The main reason that we require a retrieval compo-
nent for open-domain QA is to reduce the number
of candidate passages that the reader needs to con-
sider, which is crucial for answering user’s ques-
tions in real-time. We profiled the passage retrieval
speed on a server with Intel Xeon CPU E5-2698 v4
@ 2.20GHz and 512GB memory. With the help of
FAISS in-memory index for real-valued vectors10,
DPR can be made incredibly efficient, processing
995.0 questions per second, returning top 100 pas-
sages per question. In contrast, BM25/Lucene (im-
plemented in Java, using file index) processes 23.7
questions per second per CPU thread.

On the other hand, the time required for building
an index for dense vectors is much longer. Com-
puting dense embeddings on 21-million passages
is resource intensive, but can be easily parallelized,
taking roughly 8.8 hours on 8 GPUs. However,
building the FAISS index on 21-million vectors
on a single server takes 8.5 hours. In comparison,
building an inverted index using Lucene is much
cheaper and takes only about 30 minutes in total.

6 Experiments: Question Answering

In this section, we experiment with how different
passage retrievers affect the final QA accuracy.

6.1 End-to-end QA system
We implement an end-to-end question answering
system in which we can plug different retriever
systems directly. Besides the retriever, our QA sys-
tem consists of a neural reader that outputs the
answer to the question. Given the top k retrieved
passages (up to 100 in our experiments), the reader
assigns a passage selection score to each passage.
In addition, it extracts an answer span from each
passage and assigns a span score. The best span
from the passage with the highest passage selection
score is chosen as the final answer. The passage
selection model serves as a reranker through cross-
attention between the question and the passage. Al-
though cross-attention is not feasible for retrieving
relevant passages in a large corpus due to its non-
decomposable nature, it has more capacity than the

10FAISS configuration: we used HNSW index type on CPU,
neighbors to store per node = 512, construction time search
depth = 200, search depth = 128.

dual-encoder model sim(q, p) as in Eq. (1). Apply-
ing it to selecting the passage from a small number
of retrieved candidates has been shown to work
well (Wang et al., 2019, 2018; Lin et al., 2018).

Specifically, let Pi ∈ RL×h (1 ≤ i ≤ k) be
a BERT (base, uncased in our experiments) rep-
resentation for the i-th passage, where L is the
maximum length of the passage and h the hidden
dimension. The probabilities of a token being the
starting/ending positions of an answer span and a
passage being selected are defined as:

Pstart,i(s) = softmax
(
Piwstart

)
s
,

Pend,i(t) = softmax
(
Piwend

)
t
,

Pselected(i) = softmax
(
P̂ᵀwselected

)
i
,

where P̂ = [P
[CLS]
1 , . . . ,P

[CLS]
k ] ∈ Rh×k and

wstart,wend,wselected ∈ Rh are learnable vectors.
We compute a span score of the s-th to t-th words
from the i-th passage as Pstart,i(s)× Pend,i(t), and
a passage selection score of the i-th passage as
Pselected(i).

For training, we sample one positive and m− 1
negative passages for each question at each it-
eration, where m is a hyper-parameter (we use
m = 24). The model training objective is maxi-
mum marginal likelihood for a passages could con-
tain multiple correct answer spans. We use the
batch size of 16 for large (NQ, TriviaQA, SQuAD)
and 4 for small (TREC, WQ) datasets, and tune k
on the development set. For experiments on small
datasets under the Multi setting, in which using
other datasets is allowed, we fine-tune the reader
trained on Natural Questions to the target dataset.
All experiments were done on eight 32GB GPUs.

6.2 Results

Table 4 summarizes our final end-to-end QA re-
sults, measured by exact match with the reference
answer after minor normalization as in (Chen et al.,
2017; Lee et al., 2019). From the table, we can
see that higher retriever accuracy typically leads to
better final QA results: in all cases except SQuAD,
answers extracted from the passages retrieved by
DPR are more likely to be correct, compared to
those from BM25. For large datasets like NQ and
TriviaQA, models trained using multiple datasets
(Multi) perform comparably to those trained using
the individual training set (Single). Conversely,
on smaller datasets like WQ and TREC, the multi-
dataset setting has a clear advantage. Overall, our



Training Model NQ TriviaQA WQ TREC SQuAD

Single BM25+BERT (Lee et al., 2019) 26.5 47.1 17.7 21.3 33.2
Single ORQA (Lee et al., 2019) 33.3 45.0 36.4 30.1 20.2
Single HardEM (Min et al., 2019a) 28.1 50.9 - - -
Single GraphRetriever (Min et al., 2019b) 34.5 56.0 36.4 - -
Single PathRetriever (Asai et al., 2020) 32.6 - - - 56.5
Single REALMWiki (Guu et al., 2020) 39.2 - 40.2 46.8 -
Single REALMNews (Guu et al., 2020) 40.4 - 40.7 42.9 -

Single
BM25 32.6 52.4 29.9 24.9 38.1
DPR 41.5 56.8 34.6 25.9 29.8
BM25+DPR 39.0 57.0 35.2 28.0 36.7

Multi
DPR 41.5 56.8 42.4 49.4 24.1
BM25+DPR 38.8 57.9 41.1 50.6 35.8

Table 4: End-to-end QA (Exact Match) Accuracy. The first block of results are copied from their cited papers.
REALMWiki and REALMNews are the same model but pretrained on Wikipedia and CC-News, respectively. Single
and Multi denote that our Dense Passage Retriever (DPR) is trained using individual or combined training datasets
(all except SQuAD). For WQ and TREC in the Multi setting, we fine-tune the reader trained on NQ.

DPR-based models outperform the previous state-
of-the-art results on four out of the five datasets,
with 1% to 12% absolute differences in exact match
accuracy. It is interesting to contrast our results to
those of ORQA (Lee et al., 2019) and also the
concurrently developed approach, REALM (Guu
et al., 2020). While both methods include addi-
tional pretraining tasks and employ an expensive
end-to-end training regime, DPR manages to out-
perform them on both NQ and TriviaQA, simply
by focusing on learning a strong passage retrieval
model using pairs of questions and answers. The
additional pretraining tasks are likely more useful
only when the target training sets are small. Al-
though the results of DPR on WQ and TREC in the
single-dataset setting are less competitive, adding
more question–answer pairs helps boost the perfor-
mance, achieving the new state of the art.

To compare our pipeline training approach with
joint learning, we run an ablation on Natural Ques-
tions where the retriever and reader are jointly
trained, following Lee et al. (2019). This approach
obtains a score of 39.8 EM, which suggests that our
strategy of training a strong retriever and reader in
isolation can leverage effectively available supervi-
sion, while outperforming a comparable joint train-
ing approach with a simpler design (Appendix D).

One thing worth noticing is that our reader does
consider more passages compared to ORQA, al-
though it is not completely clear how much more
time it takes for inference. While DPR processes up

to 100 passages for each question, the reader is able
to fit all of them into one batch on a single 32GB
GPU, thus the latency remains almost identical to
the single passage case (around 20ms). The exact
impact on throughput is harder to measure: ORQA
uses 2-3x longer passages compared to DPR (288
word pieces compared to our 100 tokens) and the
computational complexity is super-linear in pas-
sage length. We also note that we found k = 50
to be optimal for NQ, and k = 10 leads to only
marginal loss in exact match accuracy (40.8 vs.
41.5 EM), which should be roughly comparable to
ORQA’s 5-passage setup.

7 Related Work

Passage retrieval has been an important compo-
nent for open-domain QA (Voorhees, 1999). It
not only effectively reduces the search space for
answer extraction, but also identifies the support
context for users to verify the answer. Strong sparse
vector space models like TF-IDF or BM25 have
been used as the standard method applied broadly
to various QA tasks (e.g., Chen et al., 2017; Yang
et al., 2019a,b; Nie et al., 2019; Min et al., 2019a;
Wolfson et al., 2020). Augmenting text-based re-
trieval with external structured information, such
as knowledge graph and Wikipedia hyperlinks, has
also been explored recently (Min et al., 2019b; Asai
et al., 2020).

The use of dense vector representations for re-
trieval has a long history since Latent Semantic



Analysis (Deerwester et al., 1990). With labeled
pairs of queries and documents, discriminatively
trained dense encoders have become popular re-
cently (Yih et al., 2011; Huang et al., 2013; Gillick
et al., 2019; Humeau et al., 2019). Such approaches
complement the sparse vector methods as they can
potentially give high similarity scores to semanti-
cally relevant text pairs, even without exact token
matching. The dense representation alone, how-
ever, is typically inferior to the sparse one.

Dense retrieval for open-domain QA was first
explored by Das et al. (2019), who propose to re-
trieve relevant passages iteratively using reformu-
lated question vectors. As an alternative approach
that skips passage retrieval, Seo et al. (2019) pro-
pose to encode candidate answer phrases as vectors
and directly retrieve the answers to the input ques-
tions efficiently. Using additional pretraining with
the objective that matches surrogates of questions
and relevant passages, Lee et al. (2019) jointly train
the question encoder and reader. Their approach
outperforms the BM25 plus reader paradigm on
multiple open-domain QA datasets in QA accuracy,
and is further extended by REALM (Guu et al.,
2020), which includes tuning the passage encoder
asynchronously by re-indexing the passages dur-
ing training. The pretraining objective has also
recently been improved by Xiong et al. (2020b).
In contrast, our model provides a simple and yet
effective solution that shows stronger empirical per-
formance, without relying on additional pretraining
or complex joint training schemes.

DPR has also been used as an important mod-
ule in very recent work. For instance, extending
the idea of leveraging hard negatives, Xiong et al.
(2020a) use the retrieval model trained in the pre-
vious iteration to discover new negatives and con-
struct a different set of examples in each training
iteration. Starting from our trained DPR model,
they show that the retrieval performance can be
further improved. Generation models, such as
BART (Lewis et al., 2020a) and T5 (Raffel et al.,
2019), have also been shown as effective reader
models, achiving good performance when paired
with DPR (Izacard and Grave, 2020; Lewis et al.,
2020b).

8 Conclusion

In this work, we demonstrated that dense retrieval
can outperform and potentially replace the tradi-
tional sparse retrieval component in open-domain

question answering. While a simple bi-encoder ap-
proach can be made to work surprisingly well, we
showed that there are some critical ingredients to
training a dense retriever successfully. Moreover,
our empirical analysis and ablation studies indicate
that more complex model frameworks or similarity
functions do not necessarily provide additional val-
ues. As a result of improved retrieval performance,
we obtained new state-of-the-art results on multiple
open-domain question answering benchmarks.
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Billion-scale similarity search with GPUs. ArXiv,
abs/1702.08734.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In ACL, pages 1601–1611.

Brian Kulis. 2013. Metric learning: A survey. Foun-
dations and Trends in Machine Learning, 5(4):287–
364.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics (TACL).

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Association for Com-
putational Linguistics (ACL), pages 6086–6096.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020a. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Association for Computa-
tional Linguistics (ACL), pages 7871–7880.

Patrick Lewis, Ethan Perez, Aleksandara Piktus,
Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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A Distant Supervision

When training our final DPR model using Natural
Questions, we use the passages in our collection
that best match the gold context as the positive
passages. As some QA datasets contain only the
question and answer pairs, it is thus interesting
to see when using the passages that contain the
answers as positives (i.e., the distant supervision
setting), whether there is a significant performance
degradation. Using the question and answer to-
gether as the query, we run Lucene-BM25 and pick
the top passage that contains the answer as the pos-
itive passage. Table 5 shows the performance of
DPR when trained using the original setting and
the distant supervision setting.

B Alternative Similarity Functions &
Triplet Loss

In addition to dot product (DP) and negative log-
likelihood based on softmax (NLL), we also exper-
iment with Euclidean distance (L2) and the triplet
loss. We negate L2 similarity scores before ap-
plying softmax and change signs of question-to-
positive and question-to-negative similarities when
applying the triplet loss on dot product scores. The
margin value of the triplet loss is set to 1. Ta-
ble 6 summarizes the results. All these additional
experiments are conducted using the same hyper-
parameters tuned for the baseline (DP, NLL).

Note that the retrieval accuracy for our “baseline”
settings reported in Table 5 (Gold) and Table 6
(DP, NLL) is slightly better than those reported in
Table 3. This is due to a better hyper-parameter
setting used in these analysis experiments, which
is documented in our code release.

C Qualitative Analysis

Although DPR performs better than BM25 in gen-
eral, the retrieved passages of these two retrievers
actually differ qualitatively. Methods like BM25
are sensitive to highly selective keywords and
phrases, but cannot capture lexical variations or se-
mantic relationships well. In contrast, DPR excels
at semantic representation, but might lack sufficient
capacity to represent salient phrases which appear
rarely. Table 7 illustrates this phenomenon with
two examples. In the first example, the top scor-
ing passage from BM25 is irrelevant, even though
keywords such as England and Ireland appear mul-
tiple times. In comparison, DPR is able to return

Top-1 Top-5 Top-20 Top-100

Gold 44.9 66.8 78.1 85.0
BM25 43.9 65.3 77.1 84.4

Table 5: Retrieval model accuracy on NQ dev set
trained on passages that match the gold context (Gold)
and on passages that contain the answers (BM25).

Sim Loss Retrieval Accuracy
Top-1 Top-5 Top-20 Top-100

DP
NLL 44.9 66.8 78.1 85.0
Triplet 41.6 65.0 77.2 84.5

L2
NLL 43.5 64.7 76.1 83.1
Triplet 42.2 66.0 78.1 84.9

Table 6: Retrieval Top-k accuracy on NQ dev set using
different similarity and loss functions.

the correct answer, presumably by matching “body
of water” with semantic neighbors such as sea and
channel, even though no lexical overlap exists. The
second example is one where BM25 does better.
The salient phrase “Thoros of Myr” is critical, and
DPR is unable to capture it.

D Joint-training of Retriever and Reader

We fix the passage encoder in our joint-training
scheme while allowing only the question encoder
to receive backpropagation signal from the com-
bined (retriever + reader) loss function. This allows
us to leverage the HNSW-based FAISS index for
efficient low-latency retrieving, without reindexing
the passages during model updates. Our loss func-
tion largely follows ORQA’s approach, which uses
log probabilities of positive passages selected from
the retriever model, and correct spans and passages
selected from the reader model. Since the passage
encoder is fixed, we could use larger amount of
retrieved passages when calculating the retriever
loss. Specifically, we get top 100 passages for each
question in a mini-batch and use the method similar
to in-batch negative training: all retrieved passages’
vectors participate in the loss calculation for all
questions in a batch. Our training batch size is set
to 16, which effectively gives 1,600 passages per
question to calculate retriever loss. The reader still
uses 24 passages per question, which are selected
from the top 5 positive and top 30 negative passages
(from the set of top 100 passages retrieved from
the same question). The question encoder’s initial



Question Passage received by BM25 Passage retrieved by DPR

What is the body of water
between England and Ireland?

Title:British Cycling Title: Irish Sea
. . . England is not recognised as a region by the UCI, and
there is no English cycling team outside the Commonwealth
Games. For those occasions, British Cycling selects and sup-
ports the England team. Cycling is represented on the Isle
of Man by the Isle of Man Cycling Association. Cycling in
Northern Ireland is organised under Cycling Ulster, part of
the all-Ireland governing body Cycling Ireland. Until 2006,
a rival governing body existed, . . .

. . . Annual traffic between Great Britain and Ireland amounts
to over 12 million passengers and of traded goods. The Irish
Sea is connected to the North Atlantic at both its northern
and southern ends. To the north, the connection is through
the North Channel between Scotland and Northern Ireland
and the Malin Sea. The southern end is linked to the Atlantic
through the St George’s Channel between Ireland and Pem-
brokeshire, and the Celtic Sea. . . .

Who plays Thoros of Myr in
Game of Thrones?

Title: No One (Game of Thrones) Title: Pål Sverre Hagen
. . . He may be ”no one,” but there’s still enough of a person
left in him to respect, and admire who this girl is and what
she’s become. Arya finally tells us something that we’ve kind
of known all along, that she’s not no one, she’s Arya Stark
of Winterfell.” ”No One” saw the reintroduction of Richard
Dormer and Paul Kaye, who portrayed Beric Dondarrion and
Thoros of Myr, respectively, in the third season, . . .

Pål Sverre Valheim Hagen (born 6 November 1980) is a Nor-
wegian stage and screen actor. He appeared in the Norwe-
gian film ”Max Manus” and played Thor Heyerdahl in the
Oscar-nominated 2012 film ”Kon-Tiki”. Pl Hagen was born
in Stavanger, Norway, the son of Roar Hagen, a Norwegian
cartoonist who has long been associated with Norwayś largest
daily, ”VG”. He lived in Jtten, a neighborhood in the city of
Stavanger in south-western Norway. . . .

Table 7: Examples of passages returned from BM25 and DPR. Correct answers are written in blue and the content
words in the question are written in bold.

state is taken from a DPR model previously trained
on the NQ dataset. The reader’s initial state is a
BERT-base model. In terms of the end-to-end QA
results, our joint-training scheme does not provide
better results compared to the usual retriever/reader
training pipeline, resulting in the same 39.8 exact
match score on NQ dev as in our regular reader
model training.


